定子断路器故障问题分析
发电机定子三次谐波保护误发信的处理

发电机定子三次谐波保护误发信的处理总结了此类人为因素的原因,提出了查找思路和运行操作等注意事项。
【昌昌键词】电压互感器接触不良定子接地保护三次谐波人为因素1机组概况赤峰能源机组容量为2X135MW汽轮发电机组,机端额定电压为15.75kV,发电机保护采用双重化配置,A、B套保护均采用南瑞继保的RCS-985C微机型发电机保护装置。
2发电机定子接地保护2.1零序电压定子接地保护原理定子接地保护采用基波零序电压,保护发电机85〜95%的定子绕组单相接地,基波零序电压保护反应发电机零序电压大小。
由于保护采用了频率跟踪、数字滤波及全周傅氏算法,使得零序电压对三次谐波的滤除比达100以上,保护只反应基波分量。
2.2三次谐波定子保护原理2.2.1三次谐波电压比率定子接地保护三次谐波电压比率判据只保护发电机中性点25%左右的定子接地,机端三次谐波电压取自机端开口三角零序电压,中性点侧三次谐波电压取自发电机中性点变压器。
三次谐波保护动作方程:U3T/U3NK3wzd式中:U3T、U3N为机端和中性点三次谐波电压值,K3wzd为三次谐波电压比率整定值。
机组并网前后,机端等值容抗有较大的变化,因此三次谐波电压比率关系也随之变化,RCS-985C微机型发电机保护装置在机组并网前后各设一段定值,随机组出口断路器位置接点变化自动切换。
三次谐波电压比率判据可选择动作于跳闸或信号。
2.2.2三次谐波电压差动定子接地保护三次谐波电压差动判据:式中为中性点、机端三次谐波电压向量,为自动跟踪调整系数向量,kre为三次谐波差动比率定值。
本判据在机组并网后且负荷电流大于0.2Ie(发电机额定电流)时自动投入。
三次谐波电压差动判据动作于信号。
2.2.3机端PT断线原理机端PT断线报警动作判据:(1)正序电压小于18V,且任一相电流大0.04In;(2)负序电压3U2大于8V。
满足以上任一条件延时10s发相应PT断线报警信号,异常消失,延时los后信号自动返回。
水电站常见故障分析及处理

(6)若检查、试验表明变压器自动跳闸不是变压器故障引 起,则在外部故障排除后,变压器可申请重新投入运行。 (7)若检查发现下列情况之一者,应认为变压器内部存在 故障,必须进一步查明原因;排除故障,并经电气试验、 色谱分析以及其它针对性的试验证明故障确已排除后,方 可重新投入运行: A.瓦斯继电器中抽取的气体经分析判断为可燃性气体; B. 变压器有明显的内部故障特征,如外壳变形、油位 异常、强烈喷油等; C.变压器套管有明显的闪络痕迹或破损、断裂等; D.差动、瓦斯等继电保护装臵动作。
9
(1)励磁回路开路,励磁绕组断线 ; (2)励磁绕组长期发热,绝缘损坏接地短路 ; (3)系统振荡,功率发生严重不平衡,系统吸收大量无功 负荷,静稳定遭破坏,发电机组抢无功,原动机系统失 灵或反应迟缓引起发电机失去平衡,振荡、失磁跳闸; (4)运行人员误调整,如:调节器运行方式不合理、投退 操作开关失误、调整不及时、维护励磁碳刷方法不当等 处理: (1)立刻将机组解列停机,检查是否由于人为误碰灭磁开 关跳闸引起。 (2)检查励磁回路、转子回路是否有开路现象。 (3)检查励磁装臵有无故障。 (4)检查无异常后开机至空转手动建压至额定,正常后联 系调度并入系统。
17
(2)有时可以在机旁听到折断的冲击声; (3)此时拐臂和双连臂错位; (4)机组振动声增大; 原因分析: (1)开关机过程中有异物卡住; (2)导叶端面间隙过小使机组在运行中产生卡阻和摩擦造 成剪断销剪断。 (3)导叶中轴孔和下轴孔操存在偏心使机组在运行中导叶 受力不平致使剪断销憋劲剪断。 处理: (1 )若导叶被异物卡住,考虑蜗壳是否有木料、石块进入。 (2)若是导叶端面间隙不一,受力不均,根据大修后的尺 寸记录检查调整。 (3)若机组的声音、振动、摆度无变化,可能系信号回路 原因(回路不通或剪断销信号器损坏)。 18
发电机定子接地保护原理

发电机定子接地保护原理概述发电机定子接地保护是一种用于检测和保护发电机定子绕组对地短路故障的保护装置。
它的基本原理是通过监测发电机定子绕组的接地电流,及时检测到绝缘故障,并采取相应的措施来避免进一步损坏设备或造成人身伤害。
发电机定子接地故障发电机定子绕组对地短路故障是指发电机定子绕组中的一个或多个相对于地的导体与地之间发生了不正常的导通。
这种故障可能由于绝缘老化、污秽、机械损伤等原因引起。
当发生这种故障时,会导致绕组中流过大量接地电流,严重影响发电机的正常运行。
基本原理发电机定子接地保护基本原理如下:1.接地判断:通过监测发电机定子绕组与地之间的接地电流来判断是否存在对地短路故障。
通常采用差动方式进行接地判断,即将各相线路中流过的电流进行比较,如果某一相的接地电流与其他相之间存在差异,则判断该相存在对地短路故障。
2.故障检测:一旦接地故障被判断出来,保护装置会立即采取措施来检测故障的性质和位置。
常用的方法是通过测量接地电流的大小、频率和波形等参数来确定故障的性质,并通过测量不同位置的接地电压来确定故障的位置。
3.报警和保护动作:当发现对地短路故障时,保护装置会发出声音或光信号进行报警,并同时采取措施来防止进一步损坏设备。
通常采用的保护动作包括切断发电机定子绕组与系统之间的电气连接,以及切断发电机与系统之间的机械连接。
具体实现发电机定子接地保护通常由以下几个部分组成:1.接地电流传感器:用于测量发电机定子绕组中流过的接地电流。
传感器通常使用夹式或开式设计,以便能够方便地安装在绕组上并实时监测接地电流。
2.信号处理单元:用于接收和处理接地电流传感器传输的电流信号。
信号处理单元通常包括放大、滤波、采样和计算等功能,以便能够准确地测量接地电流的大小和波形。
3.故障判断单元:用于判断发电机定子绕组是否存在对地短路故障。
故障判断单元通常采用差动比较的方法,即将各相线路中流过的电流进行比较,并通过设定的阈值来确定是否存在接地故障。
发电机断路器失灵保护判据问题探讨

发电机断路器失灵保护判据问题探讨兀鹏越;孙钢虎;徐金;许寅智;刘国荣【摘要】This paper discussed and analyzed a mal-operation of generator circuit breaker failure protection, brought out the issues that existed in the current criteria which may lead to protection failure. By analyzing the single phase-to-ground fault and phase-to-phase fault in small current earthing system.To determine the reason that cause incapable pick up of overcurrent element, thus to put forward some suggests to improve the criteria for generator circuit breaker failure protection.%对一起发电机出口断路器失灵保护误动事故进行了论述和分析,提出了现有发电机断路器失灵保护中的电流判据会导致保护拒动的问题,分析了小电流接地系统单相接地及相间短路等故障时,断路器失灵保护电流判据无法起动的原因,对改进发电机断路器失灵保护判据提出了采用有流判据及增加电压等判据的建议。
【期刊名称】《电气技术》【年(卷),期】2012(000)012【总页数】4页(P74-77)【关键词】断路器失灵;发电机断路器;误动;小电流接地;保护判据【作者】兀鹏越;孙钢虎;徐金;许寅智;刘国荣【作者单位】西安热工研究院有限责任公司,西安710043;西安热工研究院有限责任公司,西安710043;南瑞继保电气有限公司,南京211100;南瑞继保电气有限公司,南京211100;西北电力建设第一工程公司,陕西渭南714000【正文语种】中文【中图分类】TM561按照《防止电力生产重大事故的二十五项重点要求》[1]中11.6条的要求:“发电机变压器组的主断路器出现非全相运行时,其相关保护应及时起动断路器失灵保护,在主断路器无法断开时,断开与其相连在同一母线上的所有电源。
高压断路器工作原理及故障分析

高压断路器工作原理及故障分析高压断路器是电力系统中重要的保护设备,它能够在电力系统出现故障时迅速切断电路以保护设备和人员安全。
本文将介绍高压断路器的工作原理及常见故障分析,希望能帮助读者深入了解高压断路器并提高电力系统的安全性和可靠性。
一、高压断路器的工作原理高压断路器通常由电动机驱动,通过机械传动装置将断路器的断路触头闭合或分开。
当断路器闭合时,电流能够顺利通过;而当断路器打开时,通过合适的弧流灭弧装置将电弧断开,实现电流的切断。
二、高压断路器的故障分析1. 噪音大高压断路器在工作时可能会发出噪音,但如果噪音异常大,就需要及时进行故障分析和处理。
通常导致高压断路器噪音异常大的原因有:机械传动部件磨损、接头松动、绝缘损坏等。
此时需要进行检修,更换磨损的部件,紧固接头,修复绝缘等。
2. 无法正常闭合或分开高压断路器无法正常闭合或分开的故障可能是由于机械传动装置故障、电动机故障、控制系统故障等引起的。
在出现这种故障时,需要分别检查以上原因,并进行维修或更换相关零部件,确保高压断路器能够正常工作。
3. 弧光或电弧不断4. 需要时常加注润滑油高压断路器在工作时需要时常加注润滑油,如果加注的频率异常高,就需要进行故障分析。
通常这种情况是由于机械传动部件磨损、润滑系统故障等引起的。
需要查找出具体原因,并进行修复,确保高压断路器能够正常工作,加注润滑油的频率正常。
5. 高压断路器无法实现闭合和分开操作通过对高压断路器工作原理及常见故障进行分析,我们可以更好地了解高压断路器的工作特点,发现并解决潜在故障,提高电力系统的安全性和可靠性。
在实际使用中,还需要定期对高压断路器进行检测和维护,以确保其能够正常工作。
应该加强对高压断路器的日常管理和维护人员的培训,提高其操作和维护水平。
只有这样,才能更好地保护电力系统设备和人员的安全,确保高压断路器运行的稳定可靠。
断路器故障应急预案

制定定期检查计划,对断路器 进行预防性维护,确保其正常 工作。
定期检查断路器的触头、灭弧 装置等关键部位,及时发现并 处理潜在故障。
对断路器进行性能测试,确保 其正常工作,符合相关标准。
设备更新与升级
01
及时更新换代断路器,采用技术先进、性能稳定的 设备。
02
对老旧设备进行升级改造,提高其安全性能和稳定 性。
断路器故障应急预案
汇报人:可编辑
xx年xx月xx日
• 断路器故障概述 • 断路器故障应急处理流程 • 断路器故障预防措施 • 断路器故障应急预案的评估与改
进 • 断路器故障应急预案案例分析
目录
01
断路器故障概述
故障定义与类型
故障定义
断路器故障是指断路器在运行过程中 出现异常或失效,导致电路无法正常 断开或闭合。
预案的定期评估
01 定期对断路器故障应急预案进行评估,确保预案 的可行性和有效性。
02 对预案进行风险评估,识别潜在的安全隐患和不 足之处。
03 评估预案的响应时间、资源调配和协调配合等方 面,提高预案的执行效率。
预案的修订与完善
01
根据预案的评估结果,及时修订和完善预案,提高预案的针对 性和实用性。
故障的危害与影响
设备损坏
断路器故障可能导致设备 损坏,影响电力系统的稳 定运行。
停电影响
断路器故障可能导致停电 ,影响用户的正常生产和 生活。
安全风险
断路器故障可能引发火灾 、爆炸等安全事故,危及 人身和财产安全。
02
断路器故障应急处理流程
故障发现与报告
故障发现
工作人员在巡视设备时,应密切关注 断路器的运行状态,如发现异常应及 时上报。
断路器的操作注意事项 断路器如何操作

断路器的操作注意事项断路器如何操作1、无影响安全运行的缺陷。
断路器遮断容量应充分母线短路电流要求,若断路器遮断容量等于或小于母线短路电流时,断路器与操动(作)机构之间应有金属隔板或用墙隔1、无影响安全运行的缺陷。
断路器遮断容量应充分母线短路电流要求,若断路器遮断容量等于或小于母线短路电流时,断路器与操动(作)机构之间应有金属隔板或用墙隔离。
有条件时应进行远方操作,重合闸装置应停用。
2、断路器位置指示器应与指示灯信号及表计指示对应。
3、断路器合闸前,应检查继电保护按规定投入。
分闸前应考虑所带负荷的布置。
4、断路器跳闸次数靠近检修周期时,需解除重合闸装置5、液压机构在压力异常信号发出时,禁止操作弹簧储能机构。
在储能信号发出时,禁止合闸操作。
6、断路器合闸后,应确认三相均已接通,自动装置已按规定设置,但是一般不允许用手动机械合断路器。
7、操作时掌控开关不应返回太快,应待红、绿灯信号发出后再放手,以免分、合闸线圈短时通电而拒动。
电磁机构不应返回太慢,防止辅佑襄助开关故障,烧毁合闸线圈。
—专业分析仪器服务平台,试验室仪器设备交易网,仪器行业专业网络宣扬媒体。
相关热词:等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
真空断路器的操作过电压真空的操作过电压紧要有截流过电压、重燃高频过电压、重击穿过电压、弹跳过电压等。
截流过电压和重燃过电压一般在开合感性负荷时产生;重击穿过电压和弹跳过电压一般在开合容性负荷时产生。
1.截流过电压在开断交流电流时,由于其极强的灭弧本领,在电流尚未到达自然零点时,电弧熄灭,电流被强迫截断,这就是截流现象。
由于电流被快速截断,电感负荷的磁场能就转化为电场能,引起截流过电压。
真空断路器常发生的故障分析和处理

真空断路器常发生的故障分析和处理真空断路器是一种常见的电力设备,用于中小容量的变电站和配电站以及工矿企业的电力系统中。
它采用真空灭弧技术来断开电路,具有高断开能力、快速灭弧、低温上升等优点,因此被广泛应用。
但是真空断路器在使用过程中也会出现一些故障,本文将就真空断路器常见的故障进行分析和处理。
首先,真空断路器的触头和固定触头常发生焊死故障。
这可能是由于触头之间的电流过大引起的高温,导致金属膨胀使触头和固定触头直接接触而焊死。
处理这种故障的方法是首先检查真空断路器的电流是否过大,如果是,则需要做好负荷控制工作。
同时,还需要定期对真空断路器进行保养和维护,确保触头的表面光洁,避免积灰和氧化而影响触头的正常工作。
其次,真空断路器的真空失效也是一个常见的故障。
真空断路器的正常工作依赖于真空介质的绝缘性能,如果真空失效,则会导致灭弧困难或灭弧失败。
真空失效的主要原因是断路器内部存在气体或杂质,影响了真空度。
处理这种故障的方法是首先进行真空度测试,确认真空度是否达到要求。
如果真空度不够,需要进行真空抽取和充填。
同时,还需要对绝缘部分进行清洁和检查,确保没有异物存在。
第三,真空断路器的操作机构故障也比较常见。
操作机构是真空断路器的重要组成部分,用于控制断路器的开闭操作。
操作机构故障的原因可能是机构部件磨损、润滑不良等。
处理这种故障的方法是定期对操作机构进行润滑和维护,确保机构能够灵活可靠地工作。
同时,还需要注意操作机构的使用条件,避免过大的力和震动对操作机构产生影响。
最后,真空断路器的外观和连接端子的松动也是一种常见故障。
外观松动可能是由于设备运输过程中的振动引起的,而连接端子的松动可能是由于设备长时间运行后的疲劳导致的。
处理这种故障的方法是首先检查真空断路器的外观,确认螺栓和连接件是否松动或脱落,及时进行紧固。
对于连接端子的松动,需要定期进行检查和紧固,确保连接的可靠性。
总之,真空断路器在使用过程中可能会发生多种故障,包括触头焊死、真空失效、操作机构故障以及外观和连接端子的松动等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定子断路器故障问题分析
一、普遍故障
1、定子断路器的L(过载)和I(瞬时短路)保护设定值设定太小(特别是
后者),从而引起故障跳闸。
改进建议:将保护设定值增大,就不会出现脱扣频繁动作。
2、在自供电状态下,若自供电电流处于脱扣器启动的临界值时,可能使得
脱扣器处于“开- 关”的震荡状态,脱扣器出于对自身的保护而采取保护脱扣。
改进建议:,施加外界辅助电源(DC24V)可以有效地避免脱扣器的临界
震荡状态,保证脱扣器的正常运行。
3、定子断路器的工作条件是不能低于零下-25度左右,如低于零下-25度断路器内部里的润滑脂和机械结构工作不灵敏。
改进建议:让NCC300柜内加热器先运行(给柜子里的电器件加热)3小时以上,再做并网测试。
二、分闸线圈长时间通电的原因
1.分闸电磁铁机械故障
线圈松动造成断路器分闸时电磁铁芯位移,使铁芯卡涩,造成线圈烧毁。
或是由于铁芯的活动冲程过小,当接通分闸回路电源时,铁
芯顶不动脱扣机构而使线圈长时间通电烧毁。
2.断路器拒分
控制回路正常时,断路器出现拒分的故障均为连杆机构问题,死点调整不当,使断路器分闸铁芯顶杆的力度不能使机构及时脱扣,使线圈过载,造成分闸线圈烧毁。
3.辅助开关分合闸状态位置调整不当
在断路器分合闸状态时,应调整辅助开关使其指示到标示的范围内,然而实际调整断路器开距和超行程等参数时,会改变断路器分合闸的初始状态,而辅助开关分合位置的初始状态未做相应的调整,将导致辅助开关不能正常切换分合闸回路而使分闸线圈烧毁。
4.分闸控制回路辅助开关接点使用不当
分闸控制回路上接有一对延时动合接点,该延时目的是为了保证断路器在合闸过程中出现短路故障时能完成自由脱扣。
然而,当断路器合闸时间极短,远小于断路器的分闸时间,断路器未来得及脱扣时就已合闸到位,此时,分闸控制回路的延时接点的延时作用将失去意义。
相反,该延时接点在分闸过程中,由于辅助开关动静触头绝缘间隙较小,经常出现拉弧现象,频繁拉弧,久而久之使辅助开关的触头烧毁,继而引起分闸线圈烧毁。
5. 分闸回路电阻偏大
分闸线圈回路绝缘降低,或是线路过细造成电阻偏大,使得分闸回路电压有衰减,导致控制电压达不到线圈分闸电压动作值,分闸线圈长期带电,线圈烧毁。
防止分闸线圈烧毁的措施
(1) 将分闸回路的延时动合接点改接为一对普通的常开接点,经常检查辅助开关的接点及辅助开关的拐臂螺丝,正确调整辅助开关的位置,使辅助开关与断路器分合闸位置正确、有效地配合。
(2) 固定好分闸线圈,经常检查分闸线圈的铁芯有无卡涩。
(3) 每年的检修工作中,正确调整好断路器的连杆机构,经常检查断路器的自由脱扣是否正常,断路器的低电压动作试验是否在额定电压的30%-65%时可靠跳闸。
二、合闸线圈长时间通电的原因
1.断路器机构故障
当断路器合闸控制回路正常时,断路器本体的内导电杆、传动连杆等卡涩,或是因为断路器操作机构连板配合不好,死点调得偏高,导致断路器拒合闸,使合闸铁芯过载,引起线圈烧坏。
2.辅助开关位置不当
正常合闸时,断路器的合闸接触器的线圈回路与辅助开关的常闭延时接点串联,断路器合闸后,辅助开关接点自动切断合闸回路,辅助接点打不开或拉弧,合闸接触器通过重合闸回路或绿灯回路自保持,合闸线圈长时间带电而被烧毁。
3.合闸接触器故障
断路器合闸时,由于合闸电流比较大,控制回路不能直接控制合闸线圈,只能通过合闸接触器间接接通合闸线圈。
因此,当合闸接触器发生故障时,不能及时断开,使合闸线圈通电时间过长,烧毁
线圈。
另外,合闸接触器的线圈电阻变大,会使合闸接触器正常通电时吸合力度不够,主触点产生拉弧,久而久之,合闸接触器的主触点接触电阻增大,间接地影响断路器合闸线圈的励磁电流,使合闸线圈的励磁力度不足,铁芯不能正确动作,使线圈过载,造成线圈烧毁。
4.合闸电源容量下降,或者合闸回路电阻偏大,使合闸瞬间合闸线圈两端电压低于80%Ue。
合闸线圈烧毁的预防措施
(1)加强合闸接触器的检查、维护。
每次开关小修、周期大修都要对其进行检查动、静触头表面接触面积、接触压力等;
(2)正确调整辅助开关的位置。
(3)避免检修、试验工作中造成烧合闸线圈的可能。