数学(一)极点冲刺金卷【模拟三】
初三数学第一阶段冲刺试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共25分)1. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的周长为()。
A. 14cmB. 16cmC. 18cmD. 20cm2. 若函数y=2x+3的图象上所有点的横坐标都是正数,则函数图象在()。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列方程中,解为x=2的是()。
A. x+1=3B. 2x=4C. 3x=6D. 4x=84. 在平面直角坐标系中,点A(2,3)关于y轴的对称点为()。
A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)5. 若等差数列{an}的前三项分别为2,5,8,则该数列的公差为()。
A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)6. 若等腰三角形底角为45°,则顶角为()°。
7. 函数y=3x-2的图象与x轴交点的坐标为()。
8. 方程2x-5=3的解为()。
9. 在△ABC中,∠A=30°,∠B=75°,则∠C的度数为()°。
10. 等差数列{an}的第一项为3,公差为2,则第10项an为()。
三、解答题(每题10分,共40分)11. 解方程:x²-5x+6=0。
12. 已知函数y=2x+1,求函数图象与x轴、y轴的交点坐标。
13. 在△ABC中,AB=AC,AD是BC边上的中线,E是AD的中点,求证:BE=EC。
14. 一个长方体的长、宽、高分别为a、b、c,求证:长方体的体积V=abc。
四、综合题(每题15分,共30分)15. 已知等腰三角形底边长为10cm,腰长为13cm,求该三角形的面积。
16. 已知一次函数y=kx+b的图象经过点A(2,3)和点B(-3,-1),求该函数的解析式。
答案:一、1.C 2.A 3.A 4.A 5.B二、6.90 7.(0,-2) 8.5 9.75 10.21三、11.(3,2) 12.交点坐标为(0,1)和(-1,0) 13.证明:∵AD是BC的中线,∴BD=DC,∴△ABD≌△ACD(SAS),∴∠ADB=∠ADC,∴∠ABE=∠ACE,∴BE=EC 14.证明:V=长×宽×高=abc四、15.三角形的面积S=(底×高)/2=(10×6.5)/2=32.5cm² 16.将点A、B的坐标代入函数解析式,得到方程组:3=2k+b,-1=-3k+b,解得k=1,b=1,所以函数的解析式为y=x+1。
浙江省嘉兴市2023学年中考数学最后冲刺模拟试卷(含答案解析)

浙江省嘉兴市2023年中考数学最后冲刺模拟测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在测试卷卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在测试卷卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.“a是实数,20a ”这一事件是()A.不可能事件B.不确定事件C.随机事件D.必然事件2.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.35B.725C.45D.24253.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁4.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个5.下列计算正确的是()A.(﹣8)﹣8=0 B.3+=3C.(﹣3b)2=9b2D.a6÷a2=a36.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±207.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.8.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是()A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度9.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 210.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8 B.﹣8 C.﹣12 D.12 11.如图是一个由4个相同的长方体组成的立体图形,它的主视图是()A.B.C.D.12.二次函数y=ax2+bx+c(a≠0)的图象如图,a,b,c的取值范围()A.a<0,b<0,c<0 B.a<0,b>0,c<0C.a>0,b>0,c<0 D.a>0,b<0,c<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在反比例函数y=10x(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为2,4,6,8,…分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,…,S n,则S1+S2+S3+…+S n=_____(用含n的代数式表示)14.如图,AB是圆O的直径,AC是圆O的弦,AB=2,∠BAC=30°.在图中画出弦AD,使AD=1,则∠CAD的度数为_____°.15.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积是_____平方米.16.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是_____.17.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.18.如果x y 10+-=,那么代数式2y x y x x x ⎛⎫--÷ ⎪⎝⎭的值是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)若两个不重合的二次函数图象关于y 轴对称,则称这两个二次函数为“关于y 轴对称的二次函数”. (1)请写出两个“关于y 轴对称的二次函数”;(2)已知两个二次函数21y ax bx c =++和22y mx nx p =++是“关于y 轴对称的二次函数”,求函数12y y +的顶点坐标(用含,,a b c 的式子表示).20.(6分)如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.21.(6分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.22.(8分)如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.23.(8分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20 15 12 12B库25 20 10 8若从甲库运往A库粮食x吨,(1)填空(用含x的代数式表示):①从甲库运往B库粮食吨;②从乙库运往A库粮食吨;③从乙库运往B库粮食吨;(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?24.(10分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.请直接写出y与x之间的函数关系式和自变量x的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?25.(10分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.26.(12分)如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=32交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.27.(12分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【答案解析】a是实数,|a|一定大于等于0,是必然事件,故选D.2、A【答案解析】由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.【题目详解】∵△ABC中,AC=BC,过点C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=63105 BDBC==,故选:A.【答案点睛】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.3、A【答案解析】根据方差的概念进行解答即可.【题目详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【答案点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.4、B【答案解析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【题目详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【答案点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.5、C【答案解析】选项A,原式=-16;选项B,不能够合并;选项C,原式=;选项D,原式=.故选C.6、B【答案解析】根据完全平方式的特点求解:a2±2ab+b2.【题目详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【答案点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.7、C【答案解析】测试卷解析:左视图如图所示:故选C.8、C【答案解析】Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可【题目详解】∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,∴DO=BC=2,CO=3,∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;故选:C.【答案点睛】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化9、D【答案解析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x 轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【题目详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a=-321=32,D选项正确.故选D.【答案点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.10、D【答案解析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【题目详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故选D.【答案点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.11、A【答案解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.12、D【答案解析】测试卷分析:根据二次函数的图象依次分析各项即可。
小升初数学考前冲刺模拟卷(通用版,含答案) (3)

小升初数学考前冲刺模拟卷学校:___________姓名:___________班级:___________考号:___________一、选择题(共10分,每小题2分)1.一个长方体的底面是边长为5厘米的正方形,它的表面积是210平方厘米,它的体积是()立方厘米.A.160B.40C.200D.3602.如何表示25的意义?下面表示错误的是()A.B.表示有2个15C.D.表示2除以5的商3.一辆由甲地开往乙地的火车,一共有4000个座位,现在车上共有乘客3800人,这辆火车此次的就座率是().A.95%B.105.3%C.5%4.一种最简真分数,分子与分母的积是70,这样的分数有()。
A.3个B.4个C.6个D.无数个5.下列各式中是方程的是().A.3a+5.3b=12B.36÷6x>6C.25÷5=5二、填空题(共22分,每小题2分)6.______千米是30千米的13;50比40多______%7.某种产品,现在每件成本37.4元,比原来降低了15%,原来每件成本是元.8.五(1)班的人数在40和50之间,做操时站3行或4行都正好没有剩余,这个班的人数是________.9.学校篮球场的长是28米,宽是15米,把这个篮球场画在一张图纸上,长是5.6厘米,这张图纸的比例尺是( ),在这张图纸上这个篮球场的宽应画( )厘米。
10.甲数是乙数的23,甲数和乙数的比是( ),甲数比乙数少( ). 11.把10克盐和100克水混合,盐和水的比是( )。
12.甲数和乙数的比是2∶5,甲数比乙数少( )%。
13.()5158==( )4020÷=∶( )=( )16÷。
14.按照规律填一填。
23、33、43、______、 ______、______。
14、22、30、______、______、______。
15.的分数单位是 ,它至少再添上 个这样的单位就成了整数. 16.1339724852人=( )亿人≈( )亿人。
数学(新高考)2022届高考考前冲刺卷(三)教师版

(新高考)2022届高考考前冲刺卷数 学 (三)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1A =,则集合{},B x y x A y A =-∈∈中元素的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】C【解析】由集合{}0,1A =,{} ,B x y x A y A =-∈∈,根据,x A y A ∈∈,所以1,0,1x y -=-,所以B 中元素的个数是3,故选C . 2.在复平面内,复数5i 2i +对应的点坐标为( )A .()1,2B .()1,2-C .()1,2-D .()1,2--【答案】A 【解析】5i 5i(2i)5(12i)12i 2i (2i)(2i)5-+===+++-,∴在复平面内对应的点坐标为()1,2, 故选A .3.用斜二测画法画水平放置的ABC △的直观图,得到如图所示的等腰直角三角形A B C '''.已知点O '是斜边B C ''的中点,且2O A ''=,则ABC △的面积为( )A .42B .82C .22D .62【答案】B【解析】由斜二测画法可知该三角形ABC 为直角三角形,90ABC ∠=︒, 根据直观图中平行于x 轴的长度不变,平行于y 轴的长度变为原来的一半, 因为2O A ''=,所以4BC =,42AB =,所以三角形ABC 的面积为1442822ABC S =⨯⨯=△,故选B .4.已知函数3()3x xf x x a a -⎛⎫=⋅-⎪⎝⎭,则“1a =”是“函数()f x 为偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】函数()f x 定义域为R ,函数()f x 为偶函数,则x ∀∈R ,331()()(3)(3)(33)()0x x xx x x f x f x x a x a x a a a a-----=-⋅--⋅-=-+-=, 而(33)x x x --+不恒为0,因此,10a a-=,解得1a =-或1a =, 所以“1a =”是“函数()f x 为偶函数”的充分不必要条件,故选A .5.已知数列{}n a 满足2112333.3..3n n a a a a n -++++=(n ∈N *),则n a =( )A .13nB .-113nC .13nD .113n + 【答案】C【解析】由题设,2112333 (33)n n a a a a n-++++=①, 则221231133 (33)n n n a a a a ---++++=(2)n ≥②, ①-②得:1113333n n n n a --=-=(2)n ≥, 所以13n n a =(2)n ≥,此卷只装订不密封班级 姓名 准考证号 考场号 座位号由①知113a =也满足上式,故13n n a =(n ∈N *),故选C .6.已知一组数据1x ,2x ,3x ,…,10x 的标准差为2,将这组数据1x ,2x ,3x ,…,10x 中的每个数先同时减去2,再同时乘以3,得到一组新数据,则这组新数据的标准差为( ) A .2 B .4C .6D .32【答案】C【解析】因为数据1x ,2x ,3x ,…,10x 的标准差为2,所以方差为4. 由题意知,得到的新数据为136x -,236x -,336x -,…,1036x -, 这组新数据的方差为24336⨯=,标准差为6,故选C .7.如图,1F 、2F 分别是双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,过1F 的直线l 与C 的左、右两支分别交于点A 、B 两点,若2ABF △为以2F 为直角顶点的等腰直角三角形,则双曲线C 的离心率为( )A .4B .7C .233D .3【答案】D【解析】由题意,2ABF △为等腰直角三角形, 设22AF BF m ==,1AF n =,则2AB m =,由双曲线的定义,可得212AF AF a -=,122BF BF a -=,可得222m n a m n m a-=⎧⎪⎨+-=⎪⎩,解得22m a =,()221n a =-,在12AF F △中,由余弦定理可得222121212212cos F F AF AF AF AF F AF =+-∠,即()()()222224221222221222c a a a a ⎛⎫⎡⎤=-+-⨯-⨯⨯- ⎪ ⎪⎣⎦⎝⎭, 整理得223c a =,即2223c e a==,所以3e =, 故选D .8.已知关于x 的方程22ln (2)x x x k x +=++在1,2⎡⎫+∞⎪⎢⎣⎭上有两解,则实数k 的取值范围为( )A .ln 21,15⎛⎤+ ⎥⎝⎦ B .9ln 21,105⎛⎤+ ⎥⎝⎦C .(]1,2D .(]1,e【答案】B【解析】由已知可得22ln 2x x x k x +-=+在1,2⎡⎫+∞⎪⎢⎣⎭上有两解,令22ln ()2x x x f x x +-=+,1,)2[x ∈+∞, 则问题转化为函数()y f x =与y k =在1[,)2+∞上有两个交点,而2222(2ln 1)(2)(2ln )32ln 4()(2)(2)x x x x x x x x x f x x x --+-+-+--'==++, 令2()32ln 4g x x x x =+--,则22232(21)(2)()23x x x x g x x x x x+--+'=+-==, 因为1,)2[x ∈+∞,所以()0g x '≥恒成立,所以()g x 在1[,)2+∞上单调递增,又(1)0g =,所以当1)[1,2x ∈时,()0g x <,则()0f x '<;当[1,)x ∈+∞时,()0g x '≥,则()0f x '≥,所以()f x 在1[,1)2上单调递减,在[1,)+∞上单调递增,所以min ()(1)1f x f ==,又1112ln 129ln 29ln 2422()()1254210522f +-==+=++, 作出函数()f x 的大致图象如图示:要使得22ln 2x x x k x +-=+在1,2⎡⎫+∞⎪⎢⎣⎭上有两解,实数k 的取值范围为9ln 21,105⎛⎤+ ⎥⎝⎦,故选B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.一个质地均匀的正四面体表面上分别标有数字1,2,3,4,抛掷该正四面体两次,记事件A 为“第一次向下的数字为偶数”,事件B 为“两次向下的数字之和为奇数”,则下列说法正确的是( ) A .()13P A =B .事件A 和事件B 互为对立事件C .()12P B A =D .事件A 和事件B 相互独立【答案】CD【解析】对于A ,()2142P A ==,可得A 错误; 对于B ,事件B 第一次向下的数字为偶数,第二次向下的数字为奇数, 就可以使得两次向下的数字之和为奇数,可知事件A 和事件B 不是对立事件, 可得B 错误;对于C ,由221()444P AB =⨯=,可得()1()14|1()22P AB P B A P A ===,可得C 正确;对于D 选项,由()2222144442P B =⨯+⨯=,可得()()()P A P B P AB =,可知事件A 和事件B 相互独立,可得D 正确, 故选CD .10.已知函数()()2sin 23cos sin cos f x x x x x =+-,则下列结论正确的是( )A .()f x 的图象关于直线712x π=对称B .()f x 在,42ππ⎡⎤⎢⎥⎣⎦上的值域为[]1,2 C .若()()122f x f x ==,则122x x k π-=,k ∈ZD .将()f x 的图象向右平移6π个单位得()2cos2g x x =-图象【答案】BD【解析】()2223sin cos sin cos 3sin 2cos 22sin 26f x x x x x x x x π⎛⎫=+-=-=- ⎪⎝⎭,对于A :令()721262k k ππππ⨯-=+∈Z ,可得12k =∉Z , 所以直线712x π=不是()f x 的图象的对称轴,故选项A 不正确; 对于B :当,42x ππ⎡⎤∈⎢⎥⎣⎦时,52,636x πππ⎡⎤-∈⎢⎥⎣⎦,1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,所以()[]2sin 21,26f x x π⎛⎫∈ ⎪⎭=-⎝,故选项B 正确;对于C :()f x 的最小正周期为22T ππ==, 所以若()()122f x f x ==,则12x x k π-=,k ∈Z ,故选项C 不正确; 对于D :将()f x 的图象向右平移6π个单位得 ()2sin 22sin 22cos 2662g x x x x πππ⎡⎤⎛⎫⎛⎫=--=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,故选项D 正确,故选BD .11.如图,正方体1111ABCD A B C D -的棱长为1,点P 是11B CD △内部(不包括边界)的动点,若BD AP ⊥,则线段AP 长度的可能取值为( )A .233B .65C .62D .52【答案】ABC【解析】在正方体AC 1中,连接AC ,A 1C 1,1111AC B D O =,如图,BD ⊥AC ,BD ⊥AA 1,则BD ⊥平面ACC 1A 1, 因AP ⊥BD ,所以AP ⊂平面ACC 1A 1, 又点P 是△B 1CD 1内部(不包括边界)的动点,连接CO ,平面B 1CD 1平面ACC 1A 1=CO ,所以点P 在线段CO 上(不含点C ,O ), 连接AO ,在等腰△OAC 中,62,2AC AO CO ===,而底边AC 上的高为1,腰OC 上的高1233AC h OC ⋅==,从而有2323AP ≤<,66,52都符合,52不符合,故选ABC .12.若存在正实数x ,y ,使得等式24(3e )(ln ln )0x a y x y x +--=成立,其中e 为自然对数的底数,则a 的取值可能是( ) A .1e - B .31eC .21eD .2【答案】ACD【解析】由题意,a 不等于0,由24(3e )(ln ln )0x a y x y x +--=,得24(3e )ln 0y ya x x+-=,令(0)y t t x =>,则24ln 3e ln t t t a-=-,设2()ln 3e ln g t t t t =-,则23e ()1ln g t t t'=+-, 因为函数()g t '在(0,)+∞上单调递增,且2(e )0g '=,所以当20e t <<时,()0g t '<;当2e t >时,()0g t '>, 则()g t 在2(0,e )上单调递减,在2(e ,)+∞上单调递增, 从而22min ()(e )4e g t g ==-,即244e a -≥-,解得21ea ≥或0a <, 故21(,0),e a ⎡⎫∈-∞+∞⎪⎢⎣⎭,故选ACD .第Ⅱ卷(非选择题)三、填空题:本大题共4小题,每小题5分.13.已知向量12=+a e e ,213=-b e e ,其中1e ,2e 为单位向量,向量1e ,2e 的夹角为120°,则⋅=a b __________. 【答案】1-【解析】由21111cos1202⋅=⨯⨯︒=-e e ,有221212231131⋅=-⋅-=+-=-e e e e a b , 故答案为1-.14.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,记ABC △外接圆半径为R ,且()222sin sin (2)sin R A B a c C -=-,则角B 的大小为________.【答案】4π(或45︒) 【解析】由正弦定理2sin sin sin a b cR A B C ===,故2sin R A a =,2sin R B b =,即()222sin sin (2)sin sin sin (2)sin R A B a c C a A b B a c C -=-⇔-=-22222(2)2a b a c c a c b ac ⇔-=-⇔+-=,故2222cos 22a cb B ac +-==, 又(0,)B π∈,故4B π=,故答案为4π.15.将字母a ,A ,b ,B ,c ,C 排成一列,则仅有一组相同字母的大小写相邻的排法种数为__________.【答案】288【解析】首先讨论Aa 相邻,剩下的4个字母排列有如下情况: bcBC 、cbCB 、bCBc 、CbcB 、BcbC 、cBCb 、BCbc 、CBcb 共8种可能,任取8种中的一种与Aa 组合,共有125210C A =种,此时Aa 相邻共有10880⨯=种,bcCB ,bCcB ,BcCb ,BCcb ,CbBc ,CBbc ,cbBC ,cBbC ,8种情况,任取8种中的一种与Aa 组合,共有222A =种,此时Aa 相邻共有2816⨯=种,所以Aa 相邻共有96种;同理,Bb 相邻共有96种,Cc 相邻共有96种,所以共有288种, 故答案为288.16.如图,点P 是半径为2的圆O 上一点,现将如图放置的边长为2的正方形ABCD (顶点A 与P 重合)沿圆周逆时针滚动.若从点A 离开圆周的这一刻开始,正方形滚动至使点A 再次回到圆周上为止,称为正方形滚动了一轮,则当点A 第一次回到点P 的位置时,正方形滚动了________轮,此时点A 走过的路径的长度为__________.【答案】3,(22)π+【解析】正方形滚动一轮,圆周上依次出现的正方形顶点为B C D A →→→, 顶点两次回到点P 时,正方形顶点将圆周正好分成六等分, 由4和6的最小公倍数:342612⨯=⨯=, 所以到点A 首次与P 重合时,正方形滚动了3轮. 这一轮中,点A 路径A A A A ''→'→→是圆心角为6π,半径分别为2,22,2的三段弧,故路径长(22)(2222)63l ππ+=⋅++=,∴点A 与P 重合时总路径长为(22)π+. 故答案为3,(22)π+.四、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)ABC △内角A ,B ,C 所对的边分别为a ,b ,c ,已知(cos cos )b c a B C +=+. (1)求A ;(2)若sin sin 2sin A C B +=,求sin sin B C +. 【答案】(1)2π;(2)75. 【解析】(1)在ABC △中,由正弦定理及(cos cos )b c a B C +=+, 得sin sin sin (cos cos )B C A B C +=+,于是得sin()sin()sin cos sin cos A C A B A B A C +++=+,化简整理得cos sin cos sin 0A C A B +=,即cos (sin sin )0A C B +=, 而sin 0,sin 0B C >>,则cos 0A =, 又0A π<<,所以2A π=.(2)因为sin sin 2sin A C B +=,由正弦定理得2a c b +=,则21c ba a+=, 由(1)知,在ABC Rt △中,2BAC π∠=,222b c a +=,即221b c a a ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,于是解得43,55b c a a ==, 显然有sin ,sin b c B C a a ==,即43sin ,sin 55B C ==,则7sin sin 5B C +=,所以7sin sin 5B C +=.18.(12分)已知等差数列{}n a 的前n 项和为n S ,又对任意的正整数,m n ,都有2n ma a n m-=--,且530S =. (1)求数列{}n a 的通项公式; (2)设22n a n b =,求数列{}n b 的前n 项和n T .【答案】(1)122n a n =-;(2)()656426612(6)n n n n T n --⎧-≤=⎨+>⎩.【解析】(1)设等差数列{}n a 的公差为d ,因为2n m a a n m -=--,所以112(1)(1)a da n n m d md +--=--=--, 又530S =,即1545(2)302a ⨯+⨯-=,解得110a =,所以122n a n =-.(2)由(1)知122n a n =-,令602n an =-≥,得6n ≤,当6n ≤时,0n a ≥,从而122554662662121222222642222112n n a a n nn a n T ---⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=++⋅⋅⋅==++-=++=--,当6n >时,671254222262012222222222n n a a a a a n T ---=++⋅⋅⋅+++⋅⋅⋅+=++++++652(12)6361212n n ---=+=+-,综上得()656426612(6)n n n n T n --⎧-≤=⎨+>⎩. 19.(12分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,AB =2,BC =1,2PC PD ==,E 为PB 中点.(1)求证:PD //平面ACE ; (2)求二面角E AC D --的余弦值;(3)在棱PD 上是否存在点M ,使得AM ⊥BD ?若存在,求PMPD的值;若不存在,说明理由.【答案】(1)证明见解析;(2)66-;(3)存在,12.【解析】(1)设BD 交AC 于点F ,连接EF . 因为底面ABCD 是矩形,所以F 为BD 中点. 又因为E 为PB 中点,所以EF //PD , 因为PD ⊄平面ACE ,EF ⊂平面ACE , 所以PD //平面ACE .(2)取CD 的中点O ,连接PO ,FO .因为底面ABCD 为矩形,所以BC ⊥CD .因为PC =PD ,O 为CD 中点,所以PO ⊥CD ,OF ∥BC ,所以OF ⊥CD . 又因为平面PCD ⊥平面ABCD ,PO ⊂平面PCD ,平面PCD ∩平面ABCD =CD , 所以PO ⊥平面ABCD .如图,建立空间直角坐标系O −xyz ,则()1,1,0A -,C (0,1,0),B (1,1,0),P (0,0,1),111,,222E ⎛⎫⎪⎝⎭,设平面ACE 的法向量为(,,)x y z =m ,(1,2,0)AC =-,131(,,)222AE =-,20131222AC x y AE x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩m m , 令1y =,则2x =,1z =-,所以(2,1,1)=-m , 平面ACD 的法向量为(0,0,1)OP =,6cos ,6||||OP OP OP ⋅<>=-⋅m m m ,如图可知二面角E −AC −D 为钝角,所以二面角E −AC −D 的余弦值为66-.(3)假设存在棱PD 上的点M ,使得AM ⊥BD ,设,01PM PD λλ=<<,又()0,1,0D -,则(1,2,0)BD =--,(1,1,1)AP =-,()0,1,1PD =--,()1220AM BD AP PM BD AP BD PD BD λλ∴⋅=+⋅=⋅+⋅=-+=,解得12λ=, 故存在棱PD 上的点M ,使得AM ⊥BD ,12PM PD =.20.(12分)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(1)将去年的消费金额超过3200元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2人,求至少有1位消费者,其去年的消费金额超过4000元的概率;(2)针对这些消费者,该健身机构今年欲实施入会制.规定:消费金额为2000元、2700元和3200元的消费者分别为普通会员、银卡会员和金卡会员.预计去年消费金额在(]0,1600、(]1600,3200、(]3200,4800内的消费者今年都将会分别申请办理普通会员、银卡会员和金卡会员.消费者在申请办理会员时,需一次性预先缴清相应等级的消费金额.该健身机构在今年年底将针对这些消费者举办消费返利活动,预设有如下两种方案:方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励.其中,普通会员、银卡会员和金卡会员中的“幸运之星”每人分别奖励500元、600元和800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.【答案】(1)1933;(2)方案2投资较少,理由见解析.【解析】(1)记“在抽取的2人中至少有1位消费者在去年的消费超过4000元”为事件A.由图可知,去年消费金额在(]3200,4000内的有8人,在(]4000,4800内的有4人,消费金额超过3200元的“健身达人”共有8412+=(人),从这12人中抽取2人,共有212C种不同方法,其中抽取的2人中至少含有1位消费者在去年的消费超过4000元,共有112844C C C+种不同方法,所以()112844212C C C19C33P A+==.(2)方案1按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”,则“幸运之星”中的普通会员、银卡会员、金卡会员的人数分别为820257100+⨯=,25352515100+⨯=,12253100⨯=,按照方案1奖励的总金额为1750015600380014900ξ=⨯+⨯+⨯=(元).方案2设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,200,300.由题意,每摸球1次,摸到红球的概率为1215C2C5P==,所以()302101333232810C C5555125Pη⎛⎫⎛⎫⎛⎫⎛⎫==+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()12233236200C55125Pη⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,()0333328300C55125Pη⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,所以η的分布列为:η0 200 300P81125361258125数学期望为81368020030076.8125125125E η=⨯+⨯+⨯=(元), 按照方案2奖励的总金额为()22860212376.814131.2ξ=+⨯+⨯⨯=(元), 因为由12ξξ>,所以施行方案2投资较少.21.(12分)已知椭圆()2222:10x y E a b a b +=>>的离心率为32,P 为椭圆E 上一点, Q 为圆222x y b +=上一点,PQ 的最大值为3(P ,Q 异于椭圆E 的上下顶点).(1)求椭圆E 的方程;(2)A 为椭圆E 的下顶点,直线AP ,AQ 的斜率分别记为1k ,2k ,且214k k =,求证:直线PQ 过定点,并求出此定点的坐标.【答案】(1)2214x y +=;(2)证明见解析,定点(0,1). 【解析】(1)解:由椭圆E 的离心率为32,可得32c a =,又由PQ 的最大值为3,可得3a b +=,可得222332a b ca abc +=⎧⎪⎪=⎨⎪=+⎪⎩,解得2,1,3a b c ===,所以椭圆E 的方程为2214x y +=.(2)解:由(1)可得点A 的坐标为(0,1)-, 因为直线,AP AQ 的斜率分别记为1k ,2k ,且214k k =,可得直线AP 的方程为11y k x +=,直线AQ 的方程为2114y k x k x +==,联立方程组122114y k x x y =-⎧⎪⎨+=⎪⎩,整理得2211(41)80k x k x +-=,解得0x =或121841k x k =+, 将121841k x k =+代入11y k x =-,可得2111221184114141k k y k k k -=⋅-=++, 即2112211841(,)4141k k P k k -++;联立方程组122411y k x x y =-⎧⎨+=⎩,整理得2211(161)80k x k x +-=,解得0x =或1218161k x k =+, 将1218161k x k =+代入141y k x =-,可得2121161161k y k -=+,即21122118161(,)161161k k Q k k -++, 则()22112222221111112111122112121111614116141(161)(41)(161)(41)888(224141)16141812PQk k k k k k k k k k k k k k k k k k k ---++-+-+-==--+=-+=⨯-, 所以直线PQ 的方程为21122111418141441k k y x k k k ⎛⎫--=-- ⎪++⎝⎭, 即2211222111111414112111441414414k k y x x x k k k k k k -+=-++=-+=-++++,此时直线过定点(0,1),即直线PQ 恒过定点(0,1).22.(12分)已知()()ln 1f x x ax a =++∈R ,()f x '为()f x 的导函数. (1)若对任意0x >都有()0f x ≤,求a 的取值范围;(2)若120x x <<,证明:对任意常数a ,存在唯一的()012,x x x ∈,使得()()()12012f x f x f x x x -'=-成立.【答案】(1)(],1-∞-;(2)证明见解析. 【解析】(1)由()0f x ≤,得ln 1ax x ≤--,即ln 1x a x+≤-, 令()ln 1x g x x +=-,则()2ln xg x x'=, ∴当()0,1x ∈时,()0g x '<;当()1,x ∈+∞时,()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()min 11g x g ∴==-,1a ∴≤-,即a 的取值范围为(],1-∞-.(2)设()()()()1212f x f x h x f x x x -'=--,将问题转化为()h x 在区间()12,x x 上有唯一的零点,由()()()()1211221212ln ln 1f x f x x ax x ax h x f x a x x x x x -+--'=-=+---,知()h x 在区间()12,x x 上单调递减,故函数()h x 在区间()12,x x 上至多有1个零点,()1122122211121121211ln ln ln ln 1111ln x ax x ax x x x x h x a x x x x x x x x x x ⎛⎫+---=+-=-=-+ ⎪---⎝⎭, ()1122121222122121221ln ln ln ln 1111ln x ax x ax x x x x h x a x x x x x x x x x x ⎛⎫+---=+-=-=-+ ⎪---⎝⎭,由(1)知:当1a =-时,ln 10x x -+≤(当且仅当1x =时取等号),120x x <<,211x x ∴>,2211ln 10x xx x ∴-+<, 又120x x -<,即1210x x <-,()10h x ∴>, 120x x <<,1201x x ∴<<,1122ln 10x xx x ∴-+<,即2112ln 10x x x x +->, 又120x x -<,即1210x x <-,()20h x ∴<, 由函数零点存在定理知:()h x 在区间()12,x x 上有唯一的零点,即存在唯一的()012,x x x ∈,使得()()()12012f x f x f x x x -'=-成立.。
2021-2022学年人教版九年级数学冲刺试卷含答案

2021-2022学年人教新版中考数学冲刺试卷一.选择题(共8小题,满分24分,每小题3分)1.的相反数是()A.3B.C.﹣3D.2.如图是由5个完全相同的小正方体组成的几何体,则该几何体的主视图是()A.B.C.D.3.下列计算正确的是()A.b3•b3=2b3B.x16÷x4=x4C.2a2+3a2=6a4D.(a5)2=a104.某班期末进行定点投篮测试,规定每人投5次,下面是该班30名男同学的投篮统计:进球数(个)012345人数(人)587442则下列有关测试成绩的结论正确的是()A.平均数是2B.中位数是3C.众数是8D.以上都不对5.不等式4x<3x+1的解集在数轴上表示正确的是()A.B.C.D.6.如图,△ABC内接于⊙O,∠A=45°.若BC=,则的长为()A .πB .πC .2πD .2π7.某工程队承接了60万平方米的绿化工程,由于情况有变,….设原计划每天绿化的面积为x 万平方米,列方程为,根据方程可知省略的部分是( )A .实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务B .实际工作时每天的工作效率比原计划提高了20%,结果延误30天完成了这一任务C .实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务D .实际工作时每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务 8.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE ⊥BF ;②S △BCF =5S △BGE ;③QB =QF ; ④tan ∠BQP =.A .1B .2C .3D .4二.填空题(共8小题,满分24分,每小题3分)9.2019新型冠状病毒(2019﹣nCoV ),2020年1月12日被世命名.科学家借助比光学显微镜更加厉害的电子显微镜发现新型冠状病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示为 . 10.在实数范围内分解因式:2x ﹣6= .11.如图,点D 在△ABC 的BC 边上,且CD =2BD ,点E 是AC 边的中点,连接AD ,DE ,假设可以随意在图中取点,那么这个点取在阴影部分的概率是 .12.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A、B,小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D②分别以C,D为圆心,以大于,CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F,若∠ABP=70°,则∠AFB=.13.若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为.14.如图,在△ABC中,∠B=60°,∠EDC=∠BAC,且D为BC中点,DE=CE,则AE:AB的值为.15.已知关于x的一次函数y=kx+2k﹣7,当﹣1≤x≤3时函数图象与x轴有交点,则k的取值范围是.16.如图,在平面直角坐标系中,已知点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t >0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是.三.解答题(共2小题,满分16分,每小题8分)17.先化简,再求值:(﹣1)÷,其中x是不等式组的整数解.18.如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC,过点O 作EF⊥BD,交AD于点E,交BC于点F.(1)求证:四边形ABCD为平行四边形;(2)连接BE,若∠BAD=100°,∠DBF=2∠ABE,求∠ABE的度数.四.解答题(共4小题,满分40分,每小题10分)19.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按A、B、C、D四个等级进行统计(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下).并将统计结果绘制成两个如图所示的不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了名学生;(2)在扇形统计图中,A级所在的扇形圆心角是;(3)请把条形统计图补充完整;(4)若该校七年级有800名学生,请根据统计结果估计全校七年级体育测试中B级和C 级学生各约有多少名.20.小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至3/层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率.(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?并说明理由.3层2层1层车库21.如图,某渔船在完成捕捞作业后准备返回港口C,途经某海域A处时,港口C的工作人员监测到点A在南偏东30°方向上,另一港口B的工作人员监测到点A在正西方向上.已知港口C在港口B的北偏西60°方向,且B、C两地相距120海里.(1)求出此时点A到港口C的距离(计算结果保留根号);(2)若该渔船从A处沿AC方向向港口C驶去,当到达点A'时,测得港口B在A'的南偏东75°的方向上,求此时渔船的航行距离(计算结果保留根号).22.如图,在Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x<0)的图象上,直线BC⊥x轴,垂足为D,连接OB,OC.(1)若OB=4、∠BOD=60°,求k的值;(2)若tan∠ABC=2,求直线OC的解析式.五.解答题(共2小题,满分20分,每小题10分)23.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE=6,求的值.24.龙华区某学校组织400名师生春游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)7045租金(元/辆)600480(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(不要求写出x的取值范围)(2)如何租车能保证所有的师生可以参加春游且租车费用最少,最少费用是多少元?六.解答题(共1小题,满分12分,每小题12分)25.(1)如图1,等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,B,E,D三点在同一直线上,求证:∠BDC=90°;(2)如图2,等腰△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且∠BDC =90°,求证:∠ADB=45°;(3)如图3,等边△ABC中,D是△ABC外一点,且∠BDC=60°,①∠ADB的度数;②DA,DB,DC之间的关系.七.解答题(共1小题,满分14分,每小题14分)26.若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“完美四边形”.(1)在“平行四边形、梯形、菱形、正方形”中,一定不是“完美四边形”的有;(2)如图1,“完美四边形”A BCD内接于⊙O,AC与BD相交于点P,且对角线AC 为直径,AP=1,PC=5,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“完美四边形”ABCD的四个顶点A(﹣3,0)、C(2,0),B在第三象限,D在第一象限,AC与BD交于点O,直线BD的解析式为y =x,且四边形ABCD的面积为15,若二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:依据只有符号不同的两个数互为相反数得:的相反数是.故选:D.2.解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A.3.解:A、b3•b3=b6,故本选项不合题意;B、x16÷x4=x12,故本选项不合题意;C、2a2+3a2=5a2,故本选项不合题意;D、(a5)2=a10,故本选项符合题意;故选:D.4.解:由表知,平均数为×(0×5+1×8+2×7+3×4+4×4+5×2)=,故A选项错误;中位数为=2,故B选项错误;众数为1,故C选项错误;故选:D.5.解:4x<3x+1,移项得:4x﹣3x<1,合并同类项得:x<1,在数轴上表示为:故选:C.6.解:连接OB、OC,∵∠A=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的长为=π,故选:A.7.解:设原计划每天绿化的面积为x万平方米,∵所列分式方程为﹣=30,∴为实际工作时间,为原计划工作时间,∴省略的条件为:实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务.故选:C.8.解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故①正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S△BCF =5S△BGE,故②正确.根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正确;∵QF=QB,PF=1,则PB=2,在Rt△BPQ中,设QB=x,∴x2=(x﹣1)2+4,∴x=,∴QB=,PQ===,∴tan∠BQP==,故④错误;故选:C.二.填空题(共8小题,满分24分,每小题3分)9.解:数据0.000000125用科学记数法表示为1.25×10﹣7.故答案为:1.25×10﹣7.10.解:2x﹣6=2(x﹣3).故答案为:2(x﹣3).11.解:设阴影部分的面积是x,∵点E是AC边的中点,=2x,∴S△ACD∵CD=2BD,∴S=3x,△ACD则这个点取在阴影部分的概率是=.故答案为:.12.解:∵MN∥PQ,∴∠NAF=∠BFA,由题意得:AF平分∠NAB,∴∠NAF=∠BAF,∴∠BFA=∠BAF,∵∠ABP=∠BFA+∠BAF,∴∠ABP=2∠BFA=70°,∴∠AFB=70°÷2=35°,故答案为:35°.13.解:根据题意得△=(﹣4)2﹣4k=0,解得k=4.故答案为4.14.解:∵DE=CE∴∠EDC=∠C,∵∠EDC=∠BAC,∴∠EDC=∠BAC=∠C,∵∠B=60°,∴△ABC及△DCE是等边三角形,∵D为BC中点,∴DE是△ABC的中位线,∴AE:AB=1:2.故答案为:1:2.15.解:当x=﹣1时,y=﹣k+2k﹣7=k﹣7;当x=3时,y=3k+2k﹣7=5k﹣7.当k>0时,,解得:≤k≤7;当k<0时,,不等式组无解,舍去.∴k的取值范围是≤k≤7.故答案为:≤k≤7.16.解:如图,连接AP,∵点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t>0),∴AB=(1+t)﹣1=t,AC=1﹣(1﹣t)=t,∴AB=AC,∵∠BPC=90°,∴AP=BC=AB=t,要t最小,就是点A到⊙D上的一点的距离最小,∴点P在AD上,∵A(0,1),D(3,3),∴AD==,∴t的最小值是AP=AD﹣PD=﹣1,故答案为﹣1.三.解答题(共2小题,满分16分,每小题8分)17.解:(﹣1)÷=[]=()=﹣=﹣,由得,﹣1≤x<2.5,∵x是不等式组的整数解,x(x+1)(x﹣1)≠0,∴x=2,当x=2时,原式=﹣=﹣2.18.(1)证明:∵AD∥BC,∴∠OAD=∠OCB,在△AOD和△COB中,,∴△AOD≌△COB(ASA),∴AD=CB,又∵AD∥BC,∴四边形ABCD为平行四边形;(2)解:设∠ABE=x,则∠DBF=2x,由(1)得:四边形ABCD为平行四边形,∴OB=OD,∵EF⊥BD,∴BE=DE,∴∠EBD=∠EDB,∵AD∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB=∠DBF=2x,∵∠BAD+∠ABE+∠EBD+∠EDB=180°,∴100°+x+2x+2x=180°,解得:x=16°,即∠ABE=16°.四.解答题(共4小题,满分40分,每小题10分)19.解:(1)学校在七年级各班共随机调查了23÷46%=50名学生,故答案为:50;(2)360°×(1﹣46%﹣24%﹣10%)=360°×20%=72°,即在扇形统计图中,A级所在的扇形圆心角是72°,故答案为:72°;(3)A等级的学生有:50×(1﹣46%﹣24%﹣10%)=50×20%=10(人),补充完整的条形统计图如右图所示;(4)B级学生有:800×46%=368(名),C级学生有:800×24%=192(名),即估计全校七年级体育测试中B级和C级学生各约有368名、192名.20.解:(1)根据题意画图如下:共有9种等可能的情况数,其中甲、乙二人在同一层楼出电梯的有3种,则甲、乙二人在同一层楼出电梯的概率是=.(2)∵两人在相邻楼层出电梯的概率是,∴小亮获胜的概率为,∴小芳获胜的概率为,∵>,∴该游戏不公平.21.解:(1)如图所示:延长BA,过点C作CD⊥BA延长线于点D,由题意可得:∠CBD=30°,BC=120海里,则CD=BC=60海里,∵cos∠ACD==cos30°=,即=,∴AC=40(海里),答:此时点A到军港C的距离为40海里;(2)过点A′作A′N⊥BC于点N,如图:由(1)得:CD=60海里,AC=40海里,∵A'E∥CD,∴∠AA'E=∠ACD=30°,∴∠BA′A=45°,∵∠BA'E=75°,∴∠ABA'=15°,∴∠2=15°=∠ABA',即A′B平分∠CBA,∴A'E=A'N,设AA′=x,则AE=AA',A'N=A′E=AE=x,∵∠1=60°﹣30°=30°,A'N⊥BC,∴A'C=2A'N=x,∵A'C+AA'=AC,∴x+x=40,解得:x=60﹣20,∴AA'=(60﹣20)海里,答:此时渔船的航行距离为(60﹣20)海里.22.解:(1)在Rt△BOD中,BD=OB sin∠BOD=4×=2,OD=OB=2,故点B的坐标为(﹣2,2),将点B的坐标代入函数表达式得:2=,解得k=﹣4;(2)∵tan∠ABC=2,故设AC=2t,则BC=t,设点B的坐标为(m,n),则点A的坐标为(m﹣2t,n﹣t)、点C(m,n﹣t),将点A、B的坐标代入函数表达式得:(m﹣2t)(n﹣t)=mn,解得t=m+n,则点C的坐标为(m,﹣m),设直线OC的表达式为y=rx,将点C的坐标代入上式并解得:﹣m=rm,解得r=﹣,故直线OC的表达式为y=﹣x.五.解答题(共2小题,满分20分,每小题10分)23.证明:(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)连接BE,AD,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE=6,∴AB=3AE=6,AE=2,∴CE=4AE=8,∴BE=,∴.24.解:(1)由题意,得y=600x+480(7﹣x),化简,得y=120x+3360,即y(元)与x(辆)之间的函数表达式是y=120x+3360;(2)由题意,得70x+45(7﹣x)≥400,解得,x≥.∵y=120x+3360,x为整数,∴x=4时,租车费用最少,最少为:y=120×4+3360=3840(元),即租甲种客车4辆,乙种客车3辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3840元.六.解答题(共1小题,满分12分,每小题12分)25.(1)证明:如图1,设BD与AC交于点F,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠ABE+∠AFB=90°,∠AFB=∠CFD,∴∠ACD+∠CFD=90°,∴∠BDC=90°;(2)如图2,过A作AE⊥AD交BD于E,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,∵∠BAC=∠BDC=90°,∠AFB=∠CFD,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AE=AD,∴∠ADE=∠AED=45°;(3)①如图3,在形内作∠DAE=60°,AE交BD于E点,与(2)同理△ABE≌△ACD,∴AE=DA,∴△ADE是等边三角形,∴∠ADE=60°;②∵BE=DC,∴DB=BE+DE=DA+DC.七.解答题(共1小题,满分14分,每小题14分)26.解:(1)∵菱形、正方形的对角线互相垂直,∴菱形、正方形不是“完美四边形”.故答案为:菱形、正方形;(2)过点O作OH⊥BD于点H,连接OD,如图1:∴∠OHP=∠OHD=90°,BH=DH=BD,∵AP=1,PC=5,∴⊙O直径AC=AP+PC=6,∴OA=OC=OD=3,∴OP=OA﹣AP=3﹣1=2,∵四边形ABCD 是“完美四边形”,∴∠OPH =60°,在Rt △OPH 中,sin ∠OPH ==, ∴OH =OP =,在Rt △ODH 中,由勾股定理得:DH ===, ∴BD =2DH =2.(3)过点B 作BM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N ,如图2:∴∠BMO =∠DNO =90°,∵四边形ABCD 是“完美四边形”,∴∠COD =60°,∴直线BD 解析式为y =x ,∵二次函数的图象过点A (﹣3,0)、C (2,0),即与x 轴交点为A 、C , ∴设二次函数解析式为y =a (x +3)(x ﹣2), 联立,整理得:ax 2+(a ﹣)x ﹣6a =0,∴x B +x D =﹣,x B •x D =﹣6,∴(x B ﹣x D )2=(x B +x D )2﹣4x B •x D =(﹣)2+24, ∵S 四边形ABCD =S △ABC +S △ACD =AC •BM +AC •DN =AC (BM +DN ) =AC (y D ﹣y B )=AC (x D ﹣x B)=(x D﹣x B),∵四边形ABCD的面积为15,∴(x D﹣x B)=15,∴x D﹣x B=6,∴(﹣)2+24=36,解得:a1=,a2=,∴a 的值为或.21。
2023年中考数学第三次模拟考试金卷6

2023年中考数学模拟试卷(三)一、精心选一选,相信自己的判断!(本大题共8小题,每小题3分,满分24分)1.若21a -=,则a 的值是( )A .12-B .12C .2D .2- 2.2021年11月6日,台积电宣称2025年将量产2纳米芯片,2纳米就是0.000000002米,数据0.000000002用科学记数法表示是( )A .9210⨯B .9210-⨯C .80.210-⨯D .8210-⨯3.如图,下列几何体的左视图不是矩形的是( )A .B .C .D . 4.下列计算正确的是( ) A .3412a b ab +=B .()2222a b a b ab --=++C 422=D .21b b ÷= 5.已知直线MN PQ ∥,将一块含45°角的直角三角板ABC 按如图方式放置,其中直角顶点A 在直线MN 上,斜边BC 与直线PQ 交于B C 的中点D ,连接AD .若120∠=︒,则NAD ∠的度数为( )A .70°B .65°C .45°D .75°6.如图,四边形ABCD 内接于⊙O ,AB =CD ,A 为BD 弧的中点,∠BDC =60°,则∠ADB 等于( )A .40°B .50°C .60°D .70°7.如图,在△ABC 中,∠C =90°,∠A =30°,以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点M ,N ;再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .则下列说法中不正确的是( )A .BP 是∠ABC 的平分线B .AD =BDC .S △CBD ∶S △ABD =1∶3 D .CD =12BD 8.如图是抛物线y =ax 2+bx +c(a≠0)的部分图象,其顶点坐标为(1,n),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①4a -2b +c >0;②3a +b <0;③b 2=4a(c -n);④一元二次方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确结论的个数是( )A.①②③B.②③④C.①③④D.①②③④二、细心填一填,试试自己的身手!(本大题共8小题,每小题3分,满分24分)9.不等式x<2x-1的解集是 .10.实数范围内因式分觯:x4-4= .11.现有两个不透明的袋子,一个装有2个红球、1个黄球,另一个装有1个红球、2个黄球,这些球除颜色外完全相同,从两个袋子中各摸出1个球,摸出的两个球颜色相同的概率是.12.如图,在Rt∆ABC中,∠AC B=90°,∠B=30°,AC=1,CD是中线,将∆ADC沿AC翻折得到∆AEC,则四边形AECD的周长为 .(第12题图) (第14题图) (第16题图) 13.已知圆锥的母线长为5cm,侧面积为15c m2,则这个圆锥的底面圆半径为cm14.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为 m(结果保留整数, )15.已知y=√(x−5)2-x+4,当分别取1,2,3,…,2023时,所对应值的总和是________.16.在平面直角坐标系中,已知A(4,8)、P(2,0),B为y轴上的动点,以AB为边构造△ABC,使点C在x轴上,∠BAC=90°.M为BC的中点,则PM的最小值为.三.用心做一做,显显自己的能力!(本大题共8道小题,满分72分)17.(6分)计算:|1﹣√3|-(−13)−1 +√−273-2cos30°18.(7分)某一景点改造工程需要限期完成,甲工程队独做可提前一天完成,乙工程队独做需延期6天,现由两个工程队合做4天后,余下的乙工程队独做,正好如期完成,求工程限期为多少天?19.(8分)某校为了解七年级学生对“预防新冠病毒知识”的掌握情况,从七年级随机抽取了 50 名学生进行测试,并对测试成绩(百分制)进行整理、描述和分析,部分信息如下:a测试成绩频数分布表分数50x≤<6060x≤<7070x≤<8080x≤<9090x≤<100x y频数 6 10 11 15 m b 成绩在7080x ≤< 这一组的是:70、72、74、75、76、76、77、77、77、78、79。
2020年浙江省中考数学黄金冲刺模拟试题(附答案)

浙江省中考数学黄金冲刺模拟试题考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应的位置上. 3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑. 5.本次考试不得使用计算器.卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分) 1. 2016的相反数是( ▲ ) A . 2016B .2016-C .12016D . 12016-2. 下列运算正确的是( ▲ )A .2233a a -=B .235()a a =C .3a 69a a = D .222(2)4a a =3.下列图案中,既是中心对称图形又是轴对称图形的是( ▲ ) 4.已知12x y =⎧⎨=⎩是关于x y ,的二元一次方程3x ay -=的一个解,则a 的值为( ▲ ) A .1 B .1- C .2 D .2-5.今年是猴年,在“猴年马月”和“猴头猴脑”这两个词语的八个汉字中,任选一个汉字是“猴”字的概率是 ( ▲ )A .18 B . 38C .58D .786.如图,某登山运动员从营地A 沿坡角为30°的斜坡AB 到达山顶B , 如果AB =600m ,那么他实际上升的高度BC 为( ▲ )A .3003mB .1200 mC .300 mD .2003m 7.把不等式组240,63x x -⎧⎨->⎩≥的解集表示在数轴上,正确的是( ▲ )8.如图,圆弧形石拱桥的桥顶到水面的距离CD 为6m ,桥拱半径OC 为4m ,则水面宽AB为( ▲ )A .B .C .D .2 3 0 1 2 3 0 2 3 0 1 1 .. . .. .. 1 .B . A .C .D . 第6题图.x O AMN M y 第15题图 A .3m B .32 m C .43m D .63m 9.某几何体的三视图如图所示,其中主视图和左视图都是腰为13cm ,底为10cm 的等腰三 角形,则这个几何体的侧面积是 ( ▲ )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 210.已知顶点为(-3,-6)的抛物线2y ax bx c =++经过点(-1,-4),则下列结论中错误的是( ▲ )A .24b ac > B .关于x 的一元二次方程24ax bx c ++=-的两根为-5和-1 C .2ax bx c ++≥-6 D .若点(-2,m ),(-5,n ) 在抛物线上,则m n >卷 Ⅱ说明:本卷共有2大题,14小题,共90分,请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题 (本题有6小题,每小题4分,共24分) 11.分解因式:21a -= ▲ .12.如图,三角板的直角顶点在直线l 上,且∠1=55°,则∠2的度数是 ▲ .13.若一组数据2,-1,0,2,-1,a 的众数为2,则这组数据的平均数为 ▲ . 14.如图,在□ABCD 中,已知AD =8cm ,AB =6cm ,DE 平分∠ADC 交BC 边于点E ,则BE 等于 ▲ .15.如图,一次函数3y kx =+分别与x ,y 轴交于点N ,M ,与反比例函数xy 3=(x >0)的图象交于点A ,若:2:3AM MN =,则k = ▲ . 16.如图,在平面直角坐标系中,直线334y x =-+与x 轴交于点A ,与y 轴交于点B .点Q 在直线AB 上,点P 在x 轴上,且∠OQP =90°.(1)当点P 与点A 重合时,点Q 的坐标为 ▲ ; (2)设点P 的横坐标为a ,则a 的取值范围是 ▲ .三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程)俯视图左视图主视图第9题图第8题图第12题图l A C D 第14题图 E O A B y x 第16题图A C DB O .第21题图17.(本题6分) 计算:01sin 301223⎛⎫︒-- ⎪⎝⎭.18.(本题6分) 解方程:3122x x =-+.19.(本题6分) 学校植物园沿路护栏的纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加cm d ,如图所示,已知每个菱形图案的边长为3cm ,其中一个内角为60°.(1)求一个菱形图案水平方向的对角线长.(2)若26d =,则该纹饰要用231个菱形图案,求纹饰的长度L .20.(本题8分)为了解永康市某中学八年级学生的视力水平,从中抽查部分学生的视力情况, 绘制了如下统计图:(1)本次调查的样本容量是 ▲ ;(2)请补全条形统计图,并求扇形统计图中“视力正常”的圆心角度数; (3)该校八年级共有200位学生,请估计该校八年级视力正常的学生人数.21.(本题8分) 如图,DC 是⊙O 的直径,点B 在圆上,直线AB 交CD 延长线于点A ,且 ∠ABD =∠C .(1)求证:AB 是⊙O 的切线; (2)若AB =4cm ,AD =2cm ,求tan A 的值和DB 的长.22.(本题10分)某电信公司提供的移动通讯服务的收费标准有两种套餐如下表:永康市某中学八年级部分学生视力情况扇形统计图. 永康市某中学八年级部分学生视力情况条形统计图.. . . 129 63 人数(人)12 6 10 .第20题图 轻度近视 中度近视 25% 重度近视 视力正常30%60° …… dLB CD设每月通话时间为x 分种,A ,B 两种套餐每月话费分别为y 1,y 2元.y 1,y 2关于x 的函数图象如图所示. (1)表格中的a = ▲ ,b = ▲ ;(2)通话时间超过每月免费通话时间后, 求y 1,y 2关于x 的函数关系式,并写出相应 的取值范围;(3)已知甲乙两人分别使用A ,B 两种套餐, 他们的通话时间都是t 分钟(t >150),但话费 相差5元,求两人的通话时间.23.(本题10分)如图,在平面直角坐标系中,A (0,3),B (4,0),P 为线段OB (不包括端点)上的一个动点,将△AOP 沿AP 对折,O 的对称点记为(1)求PE +PB 的长; (2)求△BEP 周长的最小值;(3)过A 作AP 的垂线交PE 的延长线于点Q ,在点P 的 运动过程中,点Q 到x 轴的距离是否发生变化?如果不变, 请求出该距离;如果变化,请说明理由.24.(本题12分)如图,在平面直角坐标系中,点A 的坐标是(0,3),点C 在x 轴负半轴上,有∠CAO =30°,点B 是抛物线193922-+=x x y 上的动点.将△ABC 绕点A 逆时针旋转60°得到△ADE ,点B ,C 对应点分别是D ,E .(1)试写出点C ,E 的坐标;(2)当点B 在第二象限时,如图②,若直线BD ⊥x 轴,求△ABD 的面积;(3)在点B 的运动过程中,能否使得点D 在坐标轴上?若能,求出所有符合条件的点B 的第24题图 图①参考答案及评分标准一. 题号 1 2 3 4 5 6 7 8 9 10 答案 BCBBBCACBD评分标准选对一题给3分,不选,多选,错选均不给分11.(1)(1)a a -+ 12.35° 13.23 14. 2 15.10316.(1)36482525(,)(2)312a a -≥或≤ 三、解答题 (本题有8小题,共66分) 17.(本题6分) 原式=123212-+-…………4分 =3232-………2分 18.(本题6分) 解:3(2)2x x +=-…2分 362x x +=- 4x =-……2分经检验:原方程的解是4x =-……2分19.(本题6分)(1)菱形图案水平方向的对角线长为230cos 310o ⨯⨯=30cm …3分 (2)6010)1231(2630=-⨯+=L cm ……3分20.(本题8分)解:(1)40 ……2分(2)40×30%=12(人), 图略……2分 视力正常的圆心角度数=1236040⨯=108°……2分(3)20030%60⨯=人……2分 21.(本题8分) (1)证明:连结OB∵OB =OD ∴∠ODB =∠OBD ……1分 ∵DC 是⊙O 的直径 ∴∠DBC =90° ∴∠CDB +∠C =90°…1分 ∵∠ABD =∠C ∴∠OBD +∠ABD =90°……1分即∠OBA =90°∴OB ⊥AB ∴AB 是⊙O 的切线……1分 (2)设半径为r ,根据勾股定理得:2222)4r r +=+( ∴3r =………1分∴tanA =43…1分由△ADB ∽△ACB 得12DB AD BC AB ==……1分 ∵DC =6 ∴DB =655……1分22.(本题10分) (1)a = 20 , b = 150 ;……2分(2)当100x >时……1分 1200.4(100)0.420y x x =+-=-……1分 当150x >时…1分 2300.5(150)0.545y x x =+-=-…1分 (3)当125y y -=即(0.420)(0.545)5x x ---=时……1分200x =…1分 当215y y -=即(0.545)(0.420)5x x ---=时…1分300x =…1分 答:两人的通话时间为200分钟和300分钟.ACD BO.(第21题)23. (1)由折叠得OP =PE …1分∴4PE PB OP PB OB +=+==…2分(2)当点E 在线段AB 上时△PEB 的周长最小…1分 由折叠得,AE =AO =3,EP =OP 在Rt △AOB中5AB ==,2EB AB AE =-=∴△PEB 的周长=6EP PB EB OB BE ++=+=……2分(3)点Q 到x 轴距离不变……1分 延长QA 交x 轴于点D ,作QF ⊥x 轴于F ∵AQ ⊥AP ∴∠QAP =∠DAP =90°∵∠DP A =∠EP A ,AP =AP ∴△DAP ≌△QAP ∴AD =AQ ∴12AD DQ = ∵AO ⊥x 轴,QF ⊥x 轴 ∴AO ∥QF ∴△DAO ≌△D QF ∴12AO DA QF DQ == ∴QF =2AO =6 ∴点Q 到x 轴的距离为6………………………3分 24.(本题12分)(1)(C ………2分E …2分(2)过点A 作AF ⊥BD 于点F ,如图1∠=,AD AB Θ 设BF =x ,则AF x BD ⊥Θ轴 (,3-∴x x B 把()3,3+-x x B 代入193922-+=x x y 得: ()()313933922+=--+-x x x 解得:17,1721+-=+=x x (舍去)………………………2分321,2722+=+==∴AF x BD()()212383212722121+=++⨯=⨯=∴∆AF BD S ABD ………2分(3)当点D 在y 轴上时,如图2 直线AB 与y 轴的夹角为60°可求得直线AB 的解析式为:333+=x y 令2231399x x x +=+-得: 1x =-2x = ()1,321-∴B ,()6,332B当点D 在x 轴上时,如图3 , 过点B 作BG ⊥x 轴于点G ,由AOB ∆∽DOC ∆得: ∠BCD =∠BAD =60°∴设()x x B 3,3--∴()()x x x 313933922=---+--∴23933,2393321-=+=x x∴⎪⎪⎭⎫ ⎝⎛+--21339,239353B ,⎪⎪⎭⎫ ⎝⎛-+-21339,239354B 综上所述,当点D 在坐标轴上时,点B 的坐标为()1,321-B ,()6,332B ,⎪⎪⎭⎫ ⎝⎛+--21339,239353B ,⎪⎪⎭⎫ ⎝⎛-+-21339,239354B ………每个点1分。
湖南省株洲市第四中学2025届高三冲刺模拟数学试卷含解析

湖南省株洲市第四中学2025届高三冲刺模拟数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.等差数列{}n a 中,已知51037a a =,且10a <,则数列{}n a 的前n 项和n S *()n N ∈中最小的是( )A .7S 或8SB .12SC .13SD .14S2.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( ) A .()1,+∞B .13,8⎛⎤-∞ ⎥⎝⎦C .13,8⎛⎫-∞ ⎪⎝⎭D .13,8⎛⎫+∞⎪⎝⎭3.已知函数f (x )=223,1ln ,1x x x x x ⎧--+≤⎨>⎩,若关于x 的方程f (x )=kx -12恰有4个不相等的实数根,则实数k 的取值范围是( ) A.12⎛⎝ B.12⎡⎢⎣C.12⎛ ⎝⎦D.12⎛ ⎝⎭4.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知23C π=,1c =.当,a b 变化时,若z b a λ=+存在最大值,则正数λ的取值范围为 A .(0,1)B .(0,2)C .1(,2)2D .(1,3)5.设双曲线22221x y a b-=(a>0,b>0)的右焦点为F ,右顶点为A,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C分别作AC ,AB 的垂线交于点D .若D 到直线BC的距离小于a ( ) A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(2,0)(0,2)-D .(,2)(2,)-∞-+∞6.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( ) A .多1斤 B .少1斤C .多13斤 D .少13斤 7.设a=log 73,13b log 7=,c=30.7,则a ,b ,c 的大小关系是( )A .a b c <<B .c b a <<C .b c a <<D .b a c <<8.已知集合U =R ,{}0A y y =≥,{}1B y y x ==+,则UAB =( )A .[)0,1B .()0,∞+C .()1,+∞D .[)1,+∞ 9.若62a x x ⎛⎫+ ⎪⎝⎭的展开式中6x 的系数为150,则2a =( ) A .20B .15C .10D .2510.若函数2()xf x x e a =-恰有3个零点,则实数a 的取值范围是( ) A .24(,)e +∞ B .24(0,)e C .2(0,4)eD .(0,)+∞11.为得到的图象,只需要将的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位12.若31nx x ⎫⎪⎭的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( ) A .85B .84C .57D .56二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
2009 智轩考研数学一极点冲刺金卷
( 23) (本题满分 11 分)设 X 1 , X 2 , X 3 , X 4 为 N ( 0, s 2 ) 的简单随机样本,
2 2 Y = 2 X 12 + 2 X 2 + X 32 + X 4 +
X1 - X 2 X 32 + X 42
,求 EY 和 DY 。
【 】 【 】
( 7 ) 已知随机变量 X , Y
( A) 1 (C ) e
1 2e
相互独立, X ~ U ( 0, 2 ) , Y ~ E (1) ,则 P { X + Y > 1} =
( B) 1- e ( D)
2
2e
【 】
( 8)
设 X 的分布函数为 F ( x ) ,则 D é ë F ( X )ù û =
解:利用技巧: E é ëc
2
2
2 ( n )ù û = n, D é ë c ( n )ù û = 2n;
n Eé ët ( n ) ù û = 0, D é ët ( n ) ù û = n -1 ( n ³ 2)
æX X i ~ N ( 0, s ) Þ ç i ès
ö æ Xi ö 2 2 2 ÷ ~ N ( 0, 1) Þ ç ÷ ~ c (1) Þ X i ~ s c (1) s ø è ø
( A) ①
( B) ②
(C ) ③
( D ) ②③
【 】
( 5) 设 A 为 n 阶实对称矩阵, A* 为其伴随矩阵,则下列命题正确的是
1
2009 智轩考研数学一极点冲刺金卷
( A ) A正定为A* 正定的充分但非必要条件 ( B ) A正定为A* 正定的充分必要条件 ( C ) A正定为A* 正定的既非充分又非必要条件 ( D ) A正定为A* 正定的必要但非充分条件
( A) (C )
1 2 4 45
(B)
1 12
( D ) 无法确定
得分
评卷人
二、填空题:9~14 小题,每小题 4 分,共 24 分。请将答案写在在答题纸指定位置上。
( 9 ) 设 f ( x ) 在 [ -1, 1] 上连续,则 lim
x ®0
3
1 + f ( x ) sin x - 1 3x - 1
2 î y = ln(1 - t ) - sin y
( A ) x = 0是 y = f ( x )的极小值点 ( C ) x = 0不是 y = f ( x )的驻点
( B ) x = 0是 y = f ( x )的极大值点 ( D ) 存在x = 0的小邻域, 在其中y = f ( x ) 单调
é3 2 2ù é1 0 0 ù ê ú ú 4 ( 6 ) 设 A = ê0 1 1 ú , B = ê ê0 0 0 ú ,且 AX + 2 B = BA + 2 X ,则 X = ê ê ë0 0 3 ú û ë0 0 -1ú û
é1 0 ( A) ê ê ê ë0 é1 (C ) ê ê0 ê ë0 2 0 0 0 0 0 6ù -1ú ú -1ú û 0ù 0ú ú 1ú û é1 0 ( B) ê ê ê ë0 é1 ( D) ê ê2 ê ë6 2 -2 ù 0 1ú ú 0 1ú û 0 0ù 0 0ú ú 1 1ú û
( -1) n 2 (12 ) 级数 å n =1 ( n + 1) !
¥ n
= ___________。
2
2009 智轩考研数学一极点冲刺金卷
1 1 ö * (13) 设 A 是 3 阶矩阵, A = ,则 æ ç A ÷ - ( 2 A ) = ______。 4 è3 ø
-1
X æ 1ö (14 ) 设 X ~ B ç 3, ÷ , Y ~ U ( 0, 3) , X , Y 独立,则 0 è 3ø 1
2009 智轩考研数学一极点冲刺金卷 绝密★启用前 2009 年全国硕士研究生入学统一考试
数学(一)试卷【模拟三】
考生注意:本试卷共二十三题,满分 150 分,考试时间为 180 分钟。 一、选择题:1~8 小题,每小题 4 分,共 32 分。在每小题给出的四个选项中,只有一 得分 评卷人 个符合要求,请将所选项前的字母填在答题纸指定位置上,本卷为题后的括号里。
2
=1
òò ( x + y - z ) dS 的值。
2 S
3
2009 智轩考研数学一极点冲刺金卷
(17 )
(本题满分 10 分)设函数 f ( x ) 在 [ 0, 1] 上具有二阶连续导数,证明:存在 x , h Î ( 0, 1) ,使得
f ¢¢ (h ) æ 1 ö f ¢¢ ( x ) 1 = é f ( 0 ) + f (1) ù ÷+ ë û ò f ( x ) dx = f ç 24 2 12 è2ø
é B Dù ,其中 B 为 r ´ r 可逆矩阵, C 为 s ´ s 可逆矩阵,推导求出 A-1 。 ú ëO C û
5
2009 智轩考研数学一极点冲刺金卷
ì x1 + 2 x2 + x3 = 3 ( 21)(本题满分 11 分)已知线性方程组 ï í2 x1 + ( a + 4 ) x2 - 5 x3 = 6 有无穷多个解,又知某一 3 阶矩阵 B 的 ï x + 2 x - ax = 3 2 3 î 1
2 2
2
æ X - X2 ö æ X3 ö æ X4 ö 2 X 1 - X 2 ~ N ( 0, 2s 2 ) Þ ç 1 ÷ ~ N ( 0, 1) ; ç s ÷ + ç s ÷ ~ c ( 2 ) 2s ø ø è ø è è é X1 - X 2 2 Þ EY = E ê 2 X 12 + 2 X 22 + X 32 + X 4 + ê X 32 + X 42 ë ù ú ú û
= ___________。
(10 ) 设 j ( x, y ) =
x - y f ( x, y ) 在 ( 0, 0 ) 点可微,则 f ( 0, 0 ) = ___________。
(11) 设 y ( x ) 是 y( 4) - y¢¢ = 0 的通解,且 y ( x ) 是关于 x 的 3 阶无穷小,则 y ( x ) = _________。
【 】( 3)来自积分òa + 2p
a
cos x × ln ( 2 + cos x )dx 的值
( A ) 与a无关且恒为正 ( C ) 恒为零
( B ) 与a无关且恒为负 ( D ) 与a有关
【 】
( 4)
下列命题中正确的是
①级数
å an x n 的收敛域为 ( - R, R ) ,则 å
n =0 ¥
ò 在 ( 0, 0 ) 点可微,求 I = lim
x ®0+
x2
0
dt ò
t
x
f ( t , s ) ds
x4 4
。
1- e
(16 ) (本题满分 10 分)设曲面 S 是由抛物面 z = x 2 + y 2 在点 ( 0, 1, 1) 处的切平面被柱面 x 2 + ( y - 1)
所截下的部分,试计算曲面积分 I =
é1ù ê ú 特征值为 1, - 1, 0 , 且分别对应的特征向量为 2a , ê ú ê ë -1ú û
é a ù ê a + 3ú , ê ú ê ú a + 2 ë û
é a - 2ù ê -1 ú , 5 ê ú 求矩阵 B 和行列式 E - 2 B 的值。 ê ë a + 1ú û
( 22 ) (本题满分 11 分)甲乙二人各自独立对同一试验重复两次,每次实验成功率甲为 0.7 ,乙为 0.6 ,求 ( a ) 二人成功次数相同的概率 P1 ; ( b ) 甲比乙成功次数多的概率 P2 和甲比乙成功次数少的概率 P3 。
é ù ê ú X1 - X 2 ê ú é X -X ù ê ú 2 2 2 2 2s 1 2 ú = 0+ E ê =Eé ú= Eé ët ( 2 ) ù û=0 ë2 X1 + 2 X 2 + X 3 + X 4 ù û+Eê 2 2 2 2 ê ú X + X X X ê æ 3ö æ 4ö ú 3 4 û ë +ç ÷ ê ç s ÷ ès ø ú è ø ê ú 2 ë û 2 2 2 2 2 2 2 4 Þ DY = D é ët ( 2 ) ù û = 20s + 2 ë2 X1 + 2 X 2 + X 3 + X 4 ù û + 2 - 1 = 10 D é ës c (1) ù û+Dé
4
2009 智轩考研数学一极点冲刺金卷
计算 (19 )(本题满分 10 分)
I=
xdydz + ydzdx + zdxdy , a > 0, b > 0, c > 0. 取单位球面外侧。 2 2 2 3/ 2 ( ax + by + cz ) 2 2 2 x + y + z =1
òò
( 20 ) (本题满分 11 分)设 A = ê
得分 评卷人
X -1 Y 0
1 -2 > 0 的概率为______。 1
三、解答题:15~23 小题,共 94 分。请将解答写在在答题纸指定位置上。解答应写出 文字说明、证明过程或演算步骤。
(本题满分 10 分) 设 f ( x, y ) 定义在区域 0 £ x £ 1, (15)
0 £ y £ 1 上的二元函数,f ( 0, 0 ) = 0 , 且 f ( x, y )