等差数列的前n项和公式推导及例题解析

合集下载

等差数列前n项和的推导公式

等差数列前n项和的推导公式

等差数列前n项和的推导公式等差数列前n项和的推导公式,听起来是不是有点复杂?这个东西就像我们生活中的许多事情,简单却又充满了乐趣。

想象一下,咱们去超市买东西,每次都能找到一些折扣。

假如你要买一堆苹果,第一天买了一个,第二天又买了一个,再加上还有其他的。

嘿,等差数列就这么来了!说白了,它就是每次加上一个固定的数字,像是你每天都要喝的那杯咖啡,始终是那么多。

前n项和又是什么呢?简单来说,就是把这些数字加起来,比如说,你第一天买了一个苹果,第二天又加了一个,第三天又来了一个……你知道的,时间长了,苹果就越来越多。

数数看,你每天加的这一个,算下来就成了一个小山堆。

我们想要知道这些苹果加起来到底有多少,这时候,前n项和就派上用场了。

我们先来看看公式。

等差数列的前n项和,通常是用S_n来表示。

你可能会问,这个S_n到底是什么呢?它的公式是这样的:S_n = n/2 × (a_1 + a_n)。

这里的n是你加了多少天,a_1是第一天的苹果数量,而a_n就是第n天的苹果数量。

咋样?听起来是不是不那么复杂?举个例子,假如第一天你买了1个苹果,第二天买了2个,第三天买了3个……一直往下加。

那你就会发现,你买的苹果越来越多,像是人气不断飙升的网红一样。

每一天都在增加,真的是“天天向上”。

现在,我们来算算前n项和吧。

假设你想知道前5天的苹果总数。

第一天是1个,第二天是2个,第三天是3个,第四天是4个,第五天是5个。

把它们加起来,1 + 2 + 3 + 4 + 5,这个和就是15。

哦,天哪,真的是一大堆苹果!你看,这个过程就是等差数列的魅力所在。

再回到公式,S_n = n/2 × (a_1 + a_n)。

把数据代进去,n是5,a_1是1,a_n是5。

所以你就可以算出S_5 = 5/2 × (1 + 5),结果出来是15。

是不是特别简单?等差数列的魅力还不止于此,想想看,生活中我们总是喜欢把事情做得简单明了。

等差数列的前n项和公式推导与例题解析

等差数列的前n项和公式推导与例题解析

等差数列的前n 项和·例题解析一、等差数列前n 项和公式推导:(1) Sn=a1+a2+......an-1+an 也可写成Sn=an+an-1+......a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)=n(a1+an)所以Sn=[n (a1+an )]/2 (公式一)(2)如果已知等差数列的首项为a1,公差为d ,项数为n ,则 an=a1+(n-1)d 代入公式公式一得Sn=na1+ [n(n+1)d]/2(公式二)二、对于等差数列前n 项和公式的应用【例1】 等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.解 依题意,得10a d =140a a a a a =5a 20d =1251135791++++++101012()-⎧⎨⎪⎩⎪ 解得a 1=113,d=-22.∴ 其通项公式为a n =113+(n -1)·(-22)=-22n +135∴a 6=-22×6+135=3说明 本题上边给出的解法是先求出基本元素a 1、d ,再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出a n而直接去求,所列方程组化简后可得++相减即得+,a2a9d=28a4d=25a5d=3 6111⎧⎨⎩即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.解由已知,第一个数列的通项为a n=3n-1;第二个数列的通项为b N=5N-3若a m=b N,则有3n-1=5N-3即=+ n N 213 () N-若满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以N=1,4,7,…,40 n=1,6,11,…,66∴两数列相同项的和为2+17+32+…+197=1393【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,则a,b,c的值分别为[ ]A .1,3,5B .1,3,7C .1,3,99D .1,3,9解 C 2b =a 5a b =3a 由题设+⇒又∵ 14=5a +3b ,∴ a =1,b =3∴首项为1,公差为2又+∴+·∴=S =na d 2500=n 2 n 50n 1n n n n ()()--1212 ∴a 50=c=1+(50-1)·2=99∴ a =1,b =3,c =99【例4】 在1和2之间插入2n 个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为9∶13,求插入的数的个数.解 依题意2=1+(2n +2-1)d①前半部分的和=++②后半部分的和′=+·+·-③S (n 1) d S (n 1)2(d)n+1n+1()()n n n n ++1212由已知,有′化简,得解之,得④S S n nd n nd nd nd n n ++=+++-=+-=111121229131222913()()()() nd =511 由①,有(2n +1)d=1⑤由④,⑤,解得,d =111n =5 ∴ 共插入10个数.【例5】 在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .解 S (m n)a (m n)(m n 1)d (m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212且S m =S n ,m ≠n∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d (m n)a (m n)(m n 1)=011112122d 即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212∴S m+n =0【例6】 已知等差数列{a n }中,S 3=21,S 6=64,求数列{|a n |}的前n 项和T n .分析 n S =na d a n 11等差数列前项和+,含有两个未知数,n n ()-12d ,已知S 3和S 6的值,解方程组可得a 1与d ,再对数列的前若干项的正负性进行判断,则可求出T n 来.解 d S na d 3a 3d =21ba 15d =24n 111设公差为,由公式=+得++n n ()-⎧⎨⎩12 解方程组得:d =-2,a 1=9∴a n =9+(n -1)(n -2)=-2n +11由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112其余各项为负.数列{a n }的前n 项和为:S 9n (2)=n 10n n 2=+--+n n ()-12∴当n ≤5时,T n =-n 2+10n当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50即-+≤-+>∈T =n 10n n 5n 10n 50 n 6n *n 22⎧⎨⎪⎩⎪N说明 根据数列{a n }中项的符号,运用分类讨论思想可求{|a n |}的前n 项和.【例7】 在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34得4a 1+38d =34又=+×S 20a d 20120192=20a 1+190d=5(4a 1+38d)=5×34=170解法二 S =(a +a )202=10(a a )20120120×+ 由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17S 20=170【例8】 已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得(a 2d)(a bd)12 a 3d a 5d = 4 1111++=-①+++-②⎧⎨⎩由②,有a 1=-2-4d ,代入①,有d 2=4再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得:a 4+a 6=a 3+a 7 即a 3+a 7=-4又a 3·a 7=-12,由韦达定理可知:a 3,a 7是方程x 2+4x -12=0的二根解方程可得x 1=-6,x 2=2∵ d >0 ∴{a n }是递增数列∴a 3=-6,a 7=2d =a =2a 10S 1807120--a 373,=-,= 【例9】 等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若S T n n a b n n =+231100100,则等于 [ ]A 1B C D ....23199299200301 分析 n S =n(a +a )n n 1n 该题是将与发生联系,可用等差数列的前项和公式把前项和的值与项的值进行联系.a b S T n n n n 1001002312=+ 解法一 ∵,∴∴S n a a T n b b S T a a b b a a b b n n n n n n n n n n n n =+=+=++++=+()()11111122231∵2a 100=a 1+a 199,2b 100=b 1+b 199∴××选.a b a b 100100199199=a b =21993199+1=199299C 11++解法二 利用数列{a n }为等差数列的充要条件:S n =an 2+ bn∵S T n n n n =+231可设S n =2n 2k ,T n =n(3n +1)k∴∴××a b S S T T n k n k n n k n n kn n n n a b n n n n n n =--=--+---+=--=--=--=--1122100100221311311426221312100131001199299()()()[()] 说明 该解法涉及数列{a n }为等差数列的充要条件S n =an 2+bn ,由已知,将和写成什么?若写成,+,S T n n n n =+231S T S =2nk T =(3n 1)k n n n n k 是常数,就不对了.【例10】 解答下列各题:(1)已知:等差数列{a n }中a 2=3,a 6=-17,求a 9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列{a n }中,a 4+a 6+a 15+a 17=50,求S 20;(4)已知:等差数列{a n }中,a n =33-3n ,求S n 的最大值.分析与解答(1)a =a (62)d d =562+-=---1734a 9=a 6+(9-6)d=-17+3×(-5)=-32(2)a 1=19,a n+2=89,S n+2=1350∵∴+×+S =(a +a )(n +2)2n 2=2135019+89=25 n =23a =a =a 24d d =3512n+21n+2n+2251 故这几个数为首项是,末项是,公差为的个数.211112*********23 (3)∵a 4+a 6+a 15+a 17=50又因它们的下标有4+17=6+15=21∴a 4+a 17=a 6+a 15=25S =(a +a )2020120××210250417=+=()a a (4)∵a n =33-3n ∴a 1=30S =(a +a )n 2n 1n ·×=-=-+=--+()()633232632322123218222n n n n n ∵n ∈N ,∴当n=10或n=11时,S n 取最大值165.【例11】 求证:前n 项和为4n 2+3n 的数列是等差数列.证设这个数列的第n项为a n,前n项和为S n.当n≥2时,a n=S n-S n-1∴a n=(4n2+3n)-[4(n-1)2+3(n-1)]=8n-1当n=1时,a1=S1=4+3=7由以上两种情况可知,对所有的自然数n,都有a n=8n -1又a n+1-a n=[8(n+1)-1]-(8n-1)=8∴这个数列是首项为7,公差为8的等差数列.说明这里使用了“a n=S n-S n-1”这一关系.使用这一关系时,要注意,它只在n≥2时成立.因为当n=1时,S n-1=S0,而S0是没有定义的.所以,解题时,要像上边解答一样,补上n=1时的情况.【例12】证明:数列{a n}的前n项之和S n=an2+bn(a、b为常数)是这个数列成为等差数列的充分必要条件.证由S n=an2+bn,得当n≥2时,a n=S n-S n-1=an2+bn-a(n-1)2-b(n-1)=2na+b-aa1=S1=a+b∴对于任何n ∈N ,a n =2na +b -a且a n -a n-1=2na +(b -a)-2(n -1)a -b +a=2a(常数)∴{a n }是等差数列.⇐若{a n }是等差数列,则S na d =d n(a d)=d 2n 11=+··+-n n n n n n a d ()()()-++-1212221 若令,则-,即d d 22=a a =b 1 S n =an 2+bn综上所述,S n =an 2+bn 是{a n }成等差数列的充要条件. 说明 由本题的结果,进而可以得到下面的结论:前n 项和为S n =an 2+bn +c 的数列是等差数列的充分必要条件是c =0.事实上,设数列为{u n },则:充分性=+是等差数列.必要性是等差数列=+=. c =0S an b {u } {u }S an bn c 0n 2n n n n 2⇒⇒⇒⇒【例13】 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d按题意,则有S na d m S ma d n (m n)a d =n m n 1m 11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212 即+-∴··a d =11m n S m n a m n m n d m n a m n d m n ++=++++-=+++-+12121211()()()()() =-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)Am Bm n An Bn m 22+=①+=②⎧⎨⎪⎩⎪①-②,得A(m 2-n 2)+B(m -n)=n -m∵m ≠n ∴ A(m +n)+B=-1故A(m +n)2+B(m +n)=-(m +n)即S m+n =-(m +n)说明 a 1,d 是等差数列的基本元素,通常是先求出基本元素,再解决其它问题,但本题关键在于求出了+=-,这种设而不a d 11m n +-12解的“整体化”思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设S x =Ax 2+Bx .(x ∈N)【例14】 在项数为2n 的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n 之值是多少?解 ∵S 偶项-S 奇项=nd∴nd=90-75=15又由a 2n -a 1=27,即(2n -1)d=27nd 15 (2n 1)d 27n =5=-=∴⎧⎨⎩【例15】 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.根据题意:+×,=+×S =17a d S 9a d 1719117162982∵a 1=25,S 17=S 9 解得d =-2∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩ ∵a 1=25,S 9=S 17∴×+××+×,解得-9252d=1725d d=29817162∴a n=25+(n-1)(-2)=-2n+27∴-+≥-++≥≤≥∴2n2702(n1)270n13.5n12.5n=13⎧⎨⎩⇒⎧⎨⎩即前13项和最大,由等差数列的前n项和公式可求得S13=169.解法三利用S9=S17寻找相邻项的关系.由题意S9=S17得a10+a11+a12+…+a17=0而a10+a17=a11+a16=a12+a15=a13+a14∴a13+a14=0,a13=-a14∴a13≥0,a14≤0∴S13=169最大.解法四根据等差数列前n项和的函数图像,确定取最大值时的n.∵{a n}是等差数列∴可设S n=An2+Bn二次函数y=Ax2+Bx的图像过原点,如图3.2-1所示∵S9=S17,∴对称轴x=9+172=13∴取n=13时,S13=169最大。

求数列前N项和的七种方法(含例题和答案)

求数列前N项和的七种方法(含例题和答案)

求数列前N 项和的七种方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+ ,即前n 项和为中间项乘以项数。

这个公式在很多时候可以简化运算。

等比数列前n 项和:q=1时,1n S na = ()1111nn a q q S q-≠=-,,特别要注意对公比的讨论。

[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.解:由212loglog3log1log3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n=1-n21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n nS n S n f =64342++n n n =nn 64341++=50)8(12+-n n 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ……………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………. ② (设制错位)①-②得 nn n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- 再利用等比数列的求和公式得:nn n x n xxx S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n xn S nn n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn 前n 项的和.解:由题可知,{nn 22}的通项是等差数列{2n}的通项与等比数列{n21}的通项之积设nn n S 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n n S ………………………………②①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n nn n S (错位相减)1122212+---=n n n ∴ 1224-+-=n n n S3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S ……..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin)2cos 2(sin)1cos 1(sin 2222222++⋅⋅⋅++++=S =89∴ S =44.54. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa an ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aaaS n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aaaS n n (分组) 当a =1时,2)13(nn n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11nn a a a n-+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk nk nk ∑∑∑===++1213132 (分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n =2)2()1(2++n n n练习:求数列∙∙∙+∙∙∙),21(,,813,412,211nn 的前n 项和。

等差数列及其前n项和知识点总结、经典高考题解析

等差数列及其前n项和知识点总结、经典高考题解析

等差数列及其前n项和【考纲说明】1、理解等差数列的概念,学习等差数列的基本性质.2、探索并掌握等差数列的通项公式与前n项和公式.3、体会等差数列与一次函数的关系.4、本部分在高考中占5-10分左右.【趣味链接】高斯7岁那年,父亲送他进了耶卡捷林宁国民小学,读书不久,高斯在数学上就显露出了常人难以比较的天赋,最能证明这一点的是高斯十岁那年,教师彪特耐尔布置了一道很繁杂的计算题,要求学生把1到100的所有整数加起来,教师刚叙述完题目,高斯即刻把写着答案的小石板交了上去。

彪特耐尔起初并不在意这一举动,心想这个小家伙又在捣乱,但当他发现全班唯一正确的答案属于高斯时,才大吃一惊。

而更使人吃惊的是高斯的算法,他发现:第一个数加最后一个数是101,第二个数加倒数第二个数的和也是101,……共有50对这样的数,用101乘以50得到5050。

这种算法是教师未曾教过的计算等级数的方法,高斯的才华使彪特耐尔十分激动,下课后特地向校长汇报,并声称自己已经没有什么可教高斯的了。

【知识梳理】一、等差数列的相关概念1、等差数列的概念如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.通常用字母d表示。

2、等差中项如果a , A, b成等差数列,那么A叫做a与b的等差中项.即:或2A=a,b2推广:2耳=a n-1 ' a n 1(n - 2)= 2a n 1 =久'a n 23、等差数列通项公式若等差数列、a n』的首项是印,公差是d,则a n= ◎■ n -1 d .a — a推广:a n =a m(n - m)d ,从而d n m。

n — m4、等差数列的前n项和公式n3i Qi n n T等差数列的前n 项和的公式:① S n:②S n = nad .2 25、等差数列的通项公式与前 n 项的和的关系s n = 14=(o (数列{a n }的前n 项的和为% =旦+a2+||| +K).5 -乳,n- 2二、等差数列的性质 1、 等差数列与函数的关系当公差d = 0时,(1) 等差数列的通项公式 a n =31 - (n -1)d =dn -印-d 是关于n 的一次函数,斜率为d ; (2) 前n 和s n 二na 1 -卫d n 2 raLgin 是关于n 的二次函数且常数项为 0。

等差数列前n项和公式的推导方法

等差数列前n项和公式的推导方法

等差数列前n项和公式的推导方法等差数列,是数学里一个超基础但又特别有趣的概念。

说简单点,它就是每一项跟前一项的差一样的那种数列。

比如说,2、5、8、11、14,这就是一个等差数列,因为每一项之间差的都是3。

今天,我们就来聊聊如何推导出这个等差数列前n项和的公式,弄明白它的背后那些“玄机”。

1. 了解等差数列的基本概念1.1 等差数列的定义等差数列就是每一项和前一项之间有一个固定的差,这个差叫做“公差”。

这就像是你在走路,每一步的长度都是一样的,那你走了10步,走过的总距离就是步长乘以步数。

1.2 举个例子假设你在玩一个有趣的游戏,每次你得到的奖励都比上一次多10元,第一轮你获得10元,第二轮20元,第三轮30元,依此类推。

那么你的奖励就是一个等差数列,公差就是10元。

2. 推导等差数列前n项和的公式2.1 简单的逻辑推导我们要算前n项和,首先得知道每一项的值。

拿前面的例子来说,第n项的值就是第一项加上(n1)乘以公差。

公式就是这样的:( a_n = a_1 + (n1) cdot d )。

如果你跟着这个公式算,结果是一样的。

2.2 推导过程的趣味假如我们要算前n项的和,可以用一种超级简单的办法来搞定。

先假设你有一个等差数列,然后把它从头到尾写出来,像这样:```S_n = a_1 + a_2 + a_3 + ... + a_n。

```然后,把这些数列的项从后往前也写一遍:```S_n = a_n + a_{n1 + a_{n2 + ... + a_1。

```把这两个式子一加,发现每对数加起来都是一样的,就是 (a_1 + a_n),所以总和是:```2S_n = n cdot (a_1 + a_n)。

```于是,前n项的和 (S_n) 就是:```S_n = frac{n cdot (a_1 + a_n){2。

```是不是很有趣?就是这么简单,一看就懂了!3. 公式的应用实例3.1 实际应用你可能在生活中遇到各种各样的情况,比如说你在参加一个比赛,每一轮的分数都比上一轮高一些。

等差数列前n项和公式推导是什么

等差数列前n项和公式推导是什么
1从通项公式可以看出an是n的一次函数d0或常数函数d0nan排在一条直线上由前n项和公式知sn是n的二次函数d0或一次函数d0a10且常数项为0
的知识点,也是一个十分常见的考点。下面是由店铺编辑为大家整理的“等差数列前n项和公 式推导”,仅供参考,欢迎大家阅读本文。 等差数列求和公式
推导过程 (1)从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是 n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 (2)从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=a(k)+a(n-k+1),(类 似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。。。=p(k)+p(n-k+1)),k∈{1,2,…,n}。 (3)若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)*a(n),S(2n+1)= (2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)*k-S(n-1)*k…成等差数列,等等。若m+n=2p,则 a(m)+a(n)=2*a(p)。

求数列前n项和的七种方法

求数列前n项和的七种方法

求数列前n项和的七种方法-CAL-FENGHAI.-(YICAI)-Company One1求数列前N 项和的七种方法1. 公式法等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。

这个公式在很多时候可以简化运算。

等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。

其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ……………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1 解:S n =1+5x+9x 2+······+(4n-3)x n-1 ① ①两边同乘以x ,得 x S n =x+5 x 2+9x 3+······+(4n-3)x n ②①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ nx )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n当x ≠1时,S n = 1 1-x [ 4x(1-x n ) 1-x +1-(4n-3)x n ] 3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S = 4. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得3211123nnnn k k k S k k k ====++∑∑∑ (分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++22(1)(1)(21)(1)222n n n n n n n ++++=++ (分组求和) =2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211nn 的前n 项和。

等差数列前n项和公式的推导及简单应用

等差数列前n项和公式的推导及简单应用

§2.3 等差数列的前n 项和第1课时 等差数列前n 项和公式的推导及简单应用学习目标 1.掌握等差数列前n 项和公式及其获取思路.2.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个.3.能用a n 与S n 的关系求a n .知识点一 等差数列前n 项和公式思考 高斯用1+2+3+…+100=(1+100)+(2+99)+…+(50+51)=101×50迅速求出了等差数列前100项的和.但如果是求1+2+3+…+n ,不知道共有奇数项还是偶数项怎么办? 答案 不知道共有奇数项还是偶数项导致不能配对.但我们可以采用倒序相加来回避这个问题: 设S n =1+2+3+…+(n -1)+n , 又S n =n +(n -1)+(n -2)+…+2+1,∴2S n =(1+n )+[2+(n -1)]+…+[(n -1)+2]+(n +1), ∴2S n =n (n +1), ∴S n =n (n +1)2.梳理 等差数列的前n 项和公式知识点二 a 1,d ,n ,a n ,S n 知三求二思考 在等差数列{a n }中,若已知d ,n ,a n ,如何求a 1和S n?答案 利用a n =a 1+(n -1)d 代入d ,n ,a n ,可求a 1,利用S n =n (a 1+a n )2或S n =na 1+n (n -1)2d可求S n .梳理 (1)两个公式共涉及a 1,d ,n ,a n 及S n 五个基本量,它们分别表示等差数列的首项,公差,项数,项和前n 项和.(2)依据方程的思想,在等差数列前n 项和公式中已知其中三个量可求另外两个量,即“知三求二”.知识点三 数列中a n 与S n 的关系思考 已知数列{a n }的前n 项和S n =n 2,怎样求a 1,a n ? 答案 a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 又当n =1时也适合上式,所以a n =2n -1,n ∈N *. 梳理 对于一般数列{a n },设其前n 项和为S n ,则有a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.特别提醒:(1)这一关系对任何数列都适用.(2)若由a n =S n -S n -1(n ≥2)中令n =2求得a 1与利用a 1=S 1求得的a 1相同,则说明a n =S n -S n -1(n ≥2)也适合n =1的情况,数列的通项公式用a n =S n -S n -1表示.若由a n =S n -S n -1(n ≥2)中令n =2求得的a 1与利用a 1=S 1求得的a 1不相同,则说明a n =S n -S n -1(n ≥2)不适合n =1的情况,数列的通项公式采用分段形式.1.若数列{a n }的前n 项和为S n ,则a n =S n -S n -1,n ∈N *.(×)2.等差数列的前n 项和,等于其首项、第n 项的等差中项的n 倍.(√)类型一 等差数列前n 项和公式的应用 命题角度1 等差数列基本量的计算例1 已知一个等差数列{a n }的前10项的和是310,前20项的和是1 220,由这些条件能确定这个等差数列的前n 项和的公式吗? 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题 解 方法一 由题意知S 10=310,S 20=1 220,将它们代入公式S n =na 1+n (n -1)2d ,得到⎩⎪⎨⎪⎧ 10a 1+45d =310,20a 1+190d =1 220,解方程组得⎩⎪⎨⎪⎧a 1=4,d =6.∴S n =n ×4+n (n -1)2×6=3n 2+n .方法二 ∵S 10=10(a 1+a 10)2=310,∴a 1+a 10=62,①∵S 20=20(a 1+a 20)2=1 220,∴a 1+a 20=122,②②-①,得a 20-a 10=60, ∴10d =60,∴d =6,a 1=4. ∴S n =na 1+n (n -1)2d =3n 2+n .反思与感悟 (1)在解决与等差数列前n 项和有关的问题时,要注意方程思想和整体思想的运用.(2)构成等差数列前n 项和公式的元素有a 1,d ,n ,a n ,S n ,知其三能求其二. 跟踪训练1 在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n . 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题解由⎩⎨⎧a n=a 1+(n -1)d ,S n=na 1+n (n -1)2d ,得⎩⎨⎧a 1+2(n -1)=11,na 1+n (n -1)2×2=35,解方程组得⎩⎪⎨⎪⎧ n =5,a 1=3或⎩⎪⎨⎪⎧n =7,a 1=-1.命题角度2 实际应用例2 某人用分期付款的方式购买一件家电,价格为1 150元,购买当天先付150元,以后每月的这一天都交付50元,并加付欠款利息,月利率为1%.若交付150元后的一个月开始算分期付款的第一个月,则分期付款的第10个月该交付多少钱?全部贷款付清后,买这件家电实际花费多少钱?考点 等差数列的前n 项和应用题 题点 等差数列前n 项和应用题解 设每次交款数额依次为a 1,a 2,…,a 20, 则a 1=50+1 000×1%=60, a 2=50+(1 000-50)×1%=59.5, …a 10=50+(1 000-9×50)×1%=55.5, 即第10个月应付款55.5元.由于{a n }是以60为首项,以-0.5为公差的等差数列, 所以有S 20=60+(60-19×0.5)2×20=1 105,即全部付清后实际付款1 105+150=1 255.反思与感悟 建立等差数列的模型时,要根据题意找准首项、公差和项数或者首项、末项和项数.跟踪训练2 甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m. (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇? 考点 等差数列的前n 项和应用题 题点 等差数列前n 项和应用题解 (1)设n 分钟后第1次相遇,由题意,得2n +n (n -1)2+5n =70,整理得n 2+13n -140=0.解得n =7,n =-20(舍去).所以第1次相遇是在开始运动后7分钟. (2)设n 分钟后第2次相遇,由题意, 得2n +n (n -1)2+5n =3×70,整理得n 2+13n -420=0. 解得n =15,n =-28(舍去).所以第2次相遇是在开始运动后15分钟. 类型二 由S n 与a n 的关系求a n例3 已知数列{a n }的前n 项和为S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么? 考点 a n 与S n 关系 题点 由S n 公式求a n解 根据S n =a 1+a 2+…+a n -1+a n 可知 S n -1=a 1+a 2+…+a n -1(n >1,n ∈N *), 当n >1时,a n =S n -S n -1=n 2+12n -⎣⎡⎦⎤(n -1)2+12(n -1) =2n -12,①当n =1时,a 1=S 1=12+12×1=32,也满足①式.∴数列{a n }的通项公式为a n =2n -12.∵a n +1-a n =2(n +1)-12-⎝⎛⎭⎫2n -12=2, 故数列{a n }是以32为首项,2为公差的等差数列.引申探究若将本例中前n 项和改为S n =n 2+12n +1,求通项公式.解 当n ≥2时,a n =S n -S n -1 =⎝⎛⎭⎫n 2+12n +1-⎣⎡⎦⎤(n -1)2+12(n -1)+1 =2n -12.①当n =1时,a 1=S 1=12+12+1=52不符合①式.∴a n=⎩⎨⎧52,n =1,2n -12,n ≥2,n ∈N *.反思与感悟 已知前n 项和S n 求通项a n ,先由n =1时,a 1=S 1求得a 1,再由n ≥2时,a n =S n -S n -1求得a n ,最后验证a 1是否符合a n ,若符合则统一用一个解析式表示. 跟踪训练3 已知数列{a n }的前n 项和S n =3n ,求a n . 考点 a n 与S n 关系 题点 由S n 公式求a n 解 当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=3n -3n -1=2·3n -1. 当n =1时,代入a n =2·3n -1得a 1=2≠3.∴a n =⎩⎪⎨⎪⎧3,n =1,2·3n -1,n ≥2,n ∈N *.1.已知等差数列{a n }满足a 1=1,a m =99,d =2,则其前m 项和S m 等于( ) A.2 300 B.2 400 C.2 600 D.2 500 考点 等差数列前n 项和 题点 求等差数列的前n 项和 答案 D解析 由a m =a 1+(m -1)d ,得99=1+(m -1)×2, 解得m =50,所以S 50=50×1+50×492×2=2 500.2.记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( ) A.2 B.3 C.6 D.7 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题 答案 B解析 方法一 由⎩⎪⎨⎪⎧S 2=2a 1+d =4,S 4=4a 1+6d =20,解得d =3.方法二 由S 4-S 2=a 3+a 4=a 1+2d +a 2+2d =S 2+4d ,所以20-4=4+4d ,解得d =3. 3.在一个等差数列中,已知a 10=10,则S 19=________. 考点 等差数列前n 项和性质运用 题点 等差数列前n 项和与中间项的关系 答案 190解析 S 19=19(a 1+a 19)2=19(a 10+a 10)2=19a 10 =19×10=190.4.已知数列{a n }满足a 1+2a 2+…+na n =n (n +1)(n +2),则a n =________. 考点 a n 与S n 关系 题点 由S n 公式求a n 答案 3(n +1)解析 由a 1+2a 2+…+na n =n (n +1)(n +2),① 得a 1+2a 2+…+(n -1)a n -1=(n -1)n (n +1),② ①-②,得na n =n (n +1)(n +2)-(n -1)n (n +1) =n (n +1)[(n +2)-(n -1)]=3n (n +1), ∴a n =3(n +1)(n ≥2).又当n =1时,a 1=1×2×3=6也适合上式, ∴a n =3(n +1),n ∈N *. 5.已知等差数列{a n }中:(1)a 1=32,d =-12,S n =-15,求n 及a n ;(2)a 1=1,a n =-512,S n =-1 022,求d . 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题 解 (1)∵S n =n ×32+⎝⎛⎭⎫-12×n (n -1)2=-15,整理得n 2-7n -60=0, 解得n =12或n =-5(舍去), a 12=32+(12-1)×⎝⎛⎭⎫-12=-4.∴n =12,a n =a 12=-4.(2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,解得n =4.又由a n =a 1+(n -1)d ,即-512=1+(4-1)d , 解得d =-171.1.求等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.2.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量.若已知其中三个量,通过方程思想可求另外两个量.在利用求和公式时,要注意整体思想的应用,注意下面结论的运用: 若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *);若m +n =2p ,则a n +a m =2a p .3.由S n 与a n 的关系求a n 主要使用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.一、选择题1.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2,n ∈N *),则数列{a n }的前9项和等于( )A.27B.632 C.45 D.-9考点 等差数列前n 项和 题点 求等差数列前n 项和 答案 A解析 由已知数列{a n }是以1为首项,以12为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27.2.在等差数列{a n }和{b n }中,a 1=25,b 1=75,a 100+b 100=100,则数列{a n +b n }的前100项的和为( ) A.10 000 B.8 000 C.9 000D.11 000考点 等差数列前n 项和 题点 求等差数列的前n 项和答案 A解析 由已知得{a n +b n }为等差数列,故其前100项的和为S 100=100[(a 1+b 1)+(a 100+b 100)]2=50×(25+75+100)=10 000.3.在-20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为( ) A.200 B.100 C.90 D.70 考点 等差数列前n 项和 题点 求等差数列的前n 项和 答案 B解析 S 10=10×(-20+40)2=100.4.在等差数列{a n }中,若a 2+a 8=8,则该数列的前9项和S 9等于( ) A.18 B.27 C.36 D.45 考点 等差数列前n 项和 题点 求等差数列的前n 项和 答案 C解析 S 9=92(a 1+a 9)=92(a 2+a 8)=36.5.在等差数列{a n }中,若S 10=4S 5,则a 1d 等于( )A.12B.2C.14D.4 考点 等差数列前n 项和性质运用 题点 两等差数列和之比与项之比问题 答案 A解析 由题意得10a 1+12×10×9d =4⎝⎛⎭⎫5a 1+12×5×4d , ∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.6.在小于100的自然数中,所有被7除余2的数之和为( ) A.765 B.665 C.763 D.663 考点 等差数列前n 项和 题点 求等差数列的前n 项和 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.7.在等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10等于( )A.-9B.-11C.-13D.-15 考点 等差数列前n 项和 题点 求等差数列的前n 项和 答案 D解析 由a 23+a 28+2a 3a 8=9,得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.8.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18等于( ) A.36 B.35 C.34 D.33 考点 a n 与S n 关系 题点 由S n 公式求a n 答案 C解析 方法一 a 2=S 2-S 1=(22-2×2)-(12-2×1)=1, a 18=S 18-S 17=182-2×18-(172-2×17)=33. ∴a 2+a 18=34.方法二 a 2+a 18=a 1+a 19,S 19=19(a 1+a 19)2=192-2×19,∴a 1+a 19=34,即a 2+a 18=34.二、填空题9.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为________.考点 等差数列的前n 项和应用题 题点 等差数列前n 项和应用题 答案 10解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200. ∴当n =19时,剩余钢管根数最少,为10根.10.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________. 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题 答案 15解析 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15.11.在等差数列{a n }中,a n =2n +3,前n 项和S n =an 2+bn +c (a ,b ,c 为常数),则a -b +c =________.考点 等差数列前n 项和题点 等差数列前n 项和综合问题答案 -3解析 因为a n =2n +3,所以a 1=5,S n =(5+2n +3)n 2=n 2+4n ,与S n =an 2+bn +c 比较,得a =1,b =4,c =0,所以a -b +c =-3.三、解答题12.已知等差数列{a n }的前三项依次为a,4,3a ,前k 项和S k =2 550,求a 及k . 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题 解 设等差数列{a n }的公差为d , 则由题意得⎩⎨⎧ a +3a =2×4,d =4-a ,ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧ a =2,d =2,k =50,(k =-51舍)∴a =2,k =50.13.已知数列{a n }的所有项均为正数,其前n 项和为S n ,且S n =14a 2n +12a n -34. (1)证明:{a n }是等差数列;(2)求数列{a n }的通项公式.考点 a n 与S n 关系题点 由S n 和a n 递推式求通项(1)证明 当n =1时,a 1=S 1=14a 21+12a 1-34, 解得a 1=3或a 1=-1(舍去).当n ≥2时,a n =S n -S n -1=14(a 2n +2a n -3)-14(a 2n -1+2a n -1-3). 所以4a n =a 2n -a 2n -1+2a n -2a n -1,即(a n +a n -1)(a n -a n -1-2)=0.因为a n +a n -1>0,所以a n -a n -1=2(n ≥2).所以数列{a n }是以3为首项,2为公差的等差数列.(2)解 由(1)知a n =3+2(n -1)=2n +1.四、探究与拓展14.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A ,B ,C 三点共线(该直线不过原点O ),则S 200=________.考点 等差数列的前n 项和题点 等差数列前n 项和综合问题答案 100解 因为A ,B ,C 三点共线(该直线不过原点O ),所以a 1+a 200=1,所以S 200=200(a 1+a 200)2=100. 15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 考点 等差数列前n 项和题点 等差数列前n 项和综合问题 解 (1)设等差数列{a n }的公差为d ,且d >0. ∵a 3+a 4=a 2+a 5=22,又a 3a 4=117, ∴a 3,a 4是方程x 2-22x +117=0的两个根. 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13. ∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,∴⎩⎪⎨⎪⎧ a 1=1,d =4,∴a n =4n -3. (2)由(1)知,S n =n ×1+n (n -1)2×4=2n 2-n , ∴b n =S nn +c =2n 2-n n +c . ∴b 1=11+c ,b 2=62+c ,b 3=153+c. ∵{b n }是等差数列,∴2b 2=b 1+b 3,∴2c 2+c =0,∴c =-12(c =0舍去). 经检验,c =-12符合题意,∴c =-12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档