27.2.1相似三角形的判定(1)

合集下载

人教版九年级数学下册27.2.1相似三角形的判定第1课时平行线分线段成比例优秀教学案例

人教版九年级数学下册27.2.1相似三角形的判定第1课时平行线分线段成比例优秀教学案例
人教版九年级数学下册27.2.1相似三角形的判定第1课时平行线分线段成比例优秀教学案例
一、案例背景
本节内容为人教版九年级数学下册第27章第2节第1课时,主要学习相似三角形的判定——平行线分线段成比例定理。该定理是初中学段几何知识的重要组成部分,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。
在课程开始之前,学生已经掌握了相似三角形的概念、性质以及判定方法。在此基础上,通过引入平行线分线段成比例定理,使学生能够更深入地理解相似三角形的本质,提高解题技能。
2.问题提出:在此过程中,我会提出问题:“如果给你一个建筑设计图,你如何判断窗户的布局是否合理?”从而引出本节课的主题——相似三角形的判定。
3.情景创设:利用多媒体手段,展示两个相似的三角形,让学生直观地感受相似三角形的特征,为学习平行线分线段成比例定理做好铺垫。
(二)讲授新知
1.平行线分线段成比例定理:我会用生动的语言和形象的比喻,讲解平行线分线段成比例定理的含义,让学生理解并掌握定理。
本节课的内容与实际生活密切相关,便于学生感知数学与生活的紧密联系。同时,通过探讨平行线分线段成比例定理的证明过程,激发学生的探究欲望,培养其创新精神及合作意识。
在教学过程中,我将以生动形象的语言、贴近实际的生活实例,引导学生掌握平行线分线段成比例定理,并能够运用该定理解决实际问题。从而使学生在轻松愉快的氛围中,提高数学素养,感受数学之美。
2.讨论过程:在讨论过程中,我会引导学生关注相似三角形的性质和判定方法,鼓励学生提出自己的观点,培养其批判性思维。
3.成果分享:每个小组选派一名代表,向全班同学分享讨论成果,让大家在交流中共同进步。
(四)总比例定理在判断相似三角形中的重要性,使学生巩固所学知识。
5.教学策略的运用:运用情景创设、问题导向、小组合作等多种教学策略,使学生在轻松愉快的氛围中学习,提高其数学素养。

27.2.1_相似三角形的判定(复习)

27.2.1_相似三角形的判定(复习)

b 1 B
D
四、中考透视
1、如图正方形边长是2,BE=CE,MN=1。线段MN 的两端在CD、AD上滑动,当DM为多长时,△ABE 与以D、M、N为顶点的三角形相似。
A
N
D
M
A
N
D
M
B
E
C
B
E
C
2、已知在△ABC中,∠C=90o ,AC=8cm,BC=6cm, 点P从点A出发,沿AC以3厘米/秒的速度向点C移动, 点Q从点B出发,沿BA以4厘米/秒的速度向点A移动。 如果P、Q分别从A、B 同时出发,移动时间为t秒 (0<t<2.5)。 当t为何值时,以Q、A、P为顶点的三角 形与△ ABC相似?
1、已知如图,DC∥AB,AC、BD相交于点 O,AO=BO,DF=FB 求证:DE2=EC· EO 证明: ∵OA=OB ∴∠3=∠2 ∵DF=FB ∴∠1=∠2 ∵DC∥AB ∴∠3=∠4 ∴∠1=∠4 又∵∠DEO=∠DEC ∴△DEO∽ △CED ∴ DE/CE = EO/DE ∴DE2=EC· EO
B
E F C
O D
明理由。
A
巩固提高:
2.如图,在□ABCD中,已知E是 AB的中点,在AD上截取AF=FD, AG EF交AC于G,求 的值.
AC
A E B G
F
D
C
1 、 在△ ABC 与△ AB C 中,有下列条 件: BC AC AB BC ① AB B C ;② ; B C ③∠ AC A=∠ C ④∠ A C =∠ 。如果从中任取两个条件 组 成 一 组 , 那 么 能 判 断 △ ABC∽△ AB C 的共有( )组。 A、1 B 、2 C、3 D、4

新人教版初中数学九年级下册精品教案27.2.1 第1课时 平行线分线段成比例

新人教版初中数学九年级下册精品教案27.2.1 第1课时 平行线分线段成比例

27.2.1 相似三角形的判定第1课时 平行线分线段成比例1.了解相似比的定义;(重点)2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似;(重点)3.应用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.(难点)一、情境导入如图,在△ABC 中,D 为边AB 上任一点,作DE ∥BC ,交边AC 于E ,用刻度尺和量角器量一量,判断△ADE 与△ABC 是否相似.二、合作探究探究点一:相似三角形的有关概念如图所示,已知△OAC ∽△OBD ,且OA =4,AC =2,OB =2,∠C =∠D ,求:(1)△OAC 和△OBD 的相似比;(2)BD 的长.解析:(1)由△OAC ∽△OBD 及∠C =∠D ,可找到两个三角形的对应边,即可求出相似比;(2)根据相似三角形对应边成比例,可求出BD 的长.解:(1)∵△OAC ∽△OBD ,∠C =∠D ,∴线段OA 与线段OB 是对应边,则△OAC 与△OBD 的相似比为OA OB =42=21; (2)∵△OAC ∽△OBD ,∴AC BD =OA OB ,∴BD =AC ·OB OA =2×24=1. 方法总结:相似三角形的定义既是相似三角形的性质,也是相似三角形的判定方法.探究点二:平行线分线段成比例定理【类型一】 平行线分线段成比例的基本事实如图,直线l 1、l 2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,直线l 4、l 5交于点O ,且l 1∥l 2∥l 3,已知EF ∶DF =5∶8,AC =24.(1)求CB AB的值; (2)求AB 的长.解析:(1)根据l 1∥l 2∥l 3推出CB AB =EF DE ;(2)根据l 1∥l 2∥l 3,推出EF DF =BC AC =58,代入AC =24求出BC 即可求出AB . 解:(1)∵l 1∥l 2∥l 3,∴CB AB =EF DE .又∵DF ∶DF =5∶8,∴EF ∶DE =5∶3,∴CB AB =53; (2)∵l 1∥l 2∥l 3,EF ∶DF =5∶8,AC =24,∴EF DF =BC AC =58,∴BC =15,∴AB =AC -BC =24-15=9.方法总结:运用平行线分线段成比例定理时,一定要注意正确书写对应线段的位置.【类型二】 平行线分线段成比例的基本事实的推论如图所示,已知△ABC 中,DE ∥BC ,AD =2,BD =5,AC =5,求AE 的长.解析:根据DE ∥BC 得到AD AB =AE AC,然后根据比例的性质可计算出AE 的长. 解:∵DE ∥BC ,∴AD AB =AE AC ,即22+5=AE 5,∴AE =107. 方法总结:解题的关键是深入观察图形,准确找出图形中的对应线段,正确列出比例式.探究点三:相似三角形的引理【类型一】 利用相似三角形的引理判定三角形相似如图,在▱ABCD 中,E 为AB 延长线上的一点,AB =3BE ,DE 与BC 相交于点F ,请找出图中所有的相似三角形,并求出相应的相似比.解析:由平行四边形的性质可得:BC ∥AD ,AB ∥CD ,进而可得△EFB ∽△EDA ,△EFB ∽△DFC ,再进一步求解即可.解:∵四边形ABCD 是平行四边形,∴BC ∥AD ,AB ∥CD ,∴△EFB ∽△EDA ,△EFB ∽△DFC ,∴△DFC ∽△EDA ,∵AB =3BE ,∴相似比分别为1∶4,1∶3,3∶4.方法总结:求相似比不仅要找准对应边,还需要注意两个三角形的先后顺序.【类型二】 利用相似三角形的引理求线段的长如图,已知AB ∥EF ∥CD ,AD 与BC 相交于点O .(1)如果CE =3,EB =9,DF =2,求AD 的长;(2)如果BO ∶OE ∶EC =2∶4∶3,AB =3,求CD 的长.解析:(1)根据平行线分线段成比例可求得AF =6,则AD =AF +FD =8;(2)根据平行线AB ∥CD 分线段成比例知BO ∶OE =AB ∶EF ,结合已知条件求得EF =6;同理由EF ∥CD推知EF 与CD 之间的数量关系,从而求得CD =10.5.解:(1)∵CE =3,EB =9,∴BC =CE +EB =12.∵AB ∥EF ,∴FO AF =EO EB ,则FO EO =AF EB.又∵EF ∥CD ,∴FO FD =EO EC ,则FO EO =FD EC ,∴AF EB =FD EC ,即AF 9=23,∴AF =6,∴AD =AF +FD =6+2=8,即AD 的长是8;(2)∵AB ∥CD ,∴BO ∶OE =AB ∶EF .又∵BO ∶OE =2∶4,AB =3,∴EF =6.∵EF ∥CD ,∴OE OC =EF CD .又∵OE ∶EC =4∶3,∴OE OC =47,∴EF CD =47,∴CD =74EF =10.5,即CD 的长是10.5.方法总结:运用平行线分线段成比例的基本事实的推论一定要找准对应线段,以防解答错误.三、板书设计1.相似三角形的定义及有关概念;2.平行线分线段成比例定理及推论;3.相似三角形的引理.本节课宜采用探究式教学,教师在教学中是学生学习的组织者、引导者、合作者和共同研究者.鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.上课时教师只在关键处点拨,在不足时补充.教师与学生平等地交流,创设民主、和谐的学习氛围.。

27.2.1相似三角形的判定

27.2.1相似三角形的判定

∵AB=2,BC=2 2,AC=2 5,FE=2,DE= 2,
DF= 10,

DABE=
2= 2
2,BECF=2 2 2=
2,DACF=2
5= 10
2.
∴ DABE=BECF=DACF,∴△ABC∽△DEF.
感悟新知
知识点 5 边角关系判定三角形相似定理
知5-讲
1. 相似三角形的判定定理:两边成比例且夹角相等的两个
感悟新知
知识点 1 相似三角形
知1-讲
1. 定义:如果在两个三角形中,三个角分别相等,三条边 成比例,那么这两个三角形相似.
感悟新知
如图27.2-1,在△ ABC 和△ A′B′C′中,
知1-讲
∠ A= ∠ A′,∠ B= ∠ B′,∠ C= ∠ C′, △ABC
AB BC AC k,
↔ ∽△A′B′C′.
感悟新知
知2-练
3-1. 如图,l1 ∥ l2 ∥ l3,AB=3,AD=2,DE=4,EF=9, 求BC,BF 的长.
感悟新知
解:∵ l1∥l2∥l3, ∴ ABBC=ADDE.

AB=3,AD=2,DE=4,

3 BC
=24,
解得 BC=6.
知2-练
∵ l1∥l2∥l3,

BF EF

AB AC
第27章 相似
27.2 相似三角形
27.2.1 相似三角形的判定
学习目标
1 课时讲解
2 课时流程
逐点 导讲练
相似三角形 平行线分线段成比例 平行线截三角形相似的定理 三边关系判定三角形相似定理 边角关系判定三角形相似定理 角的关系判定三角形相似定理 直角三角形相似的判定

27.2.1相似三角形判定(20141219 SSS、SAS)

27.2.1相似三角形判定(20141219 SSS、SAS)

A’B’=12cm,B’C’=18cm,A’C’=21cm.
AB BC AC = = , 例2.如图已知, AD DE AE
试说明∠BAD=∠CAE. A D B E C
1.图中的两个三角形是否相似?
2如图在正方形网格上有 、如图在正方形网格上有△A C A1 B1C1和A C 1B 1和 2 B21 2, △A 它们相似吗?如果相似 ,求出相似比;如果 2B2C2,它们相似吗?如果相似,求 出相似比;如果不相似,请说明理由。 不相似,请说明理由。
探究3
边S 角A 边S
A
AB AC 已知: A B AC k ,
∠A =∠A′ . 求证:△ABC∽△A′B′ C′. A′
B
C
你能证明吗? C′
B′
AB AC , A A '. 已知:在ABC和A' B' C '中, A' B ' A'C ' 求证: △ ABC ∽△ A ' B ' C '.
1.定义判定法 2.平行判定法 比较复杂,烦琐 只能在特定的图形里面使用
3.边边边判定法(SSS) 4.边角边判定法(SAS)
不经历风雨,怎么见彩虹 没有人能随随便便成功!
证明:在线段A ' B(或它的延长线 ' 上)截取A ' D AB,过点D再作 DE ∥ B' C ' 交A' C ' 交于点E,可得 B A' DE ∽A ' B ' C '.
C D E A
A'
AB AC , A ' D AB. 又 A ' B ' A 'C '

相似三角形的判定1

相似三角形的判定1

27.2.1相似三角形的判定一、教材分析:相似三角形的判断是人教版九年级下册数学27.2.1相似三角形第1课时的内容,这是学生在学习相似图形和相似多边形的概念后,开始对相似三角形判断方法展开深入研究。

本节内容,先掌握平行线分线段成比例这一基本事实,然后在三角形中的转化运用,用来证明三角形相似。

这一过程中,学生体会数学中的化归思想及数形结合思想,学生可以提高分析问题、解决问题的能力。

同时,平行线判定三角形相似在相似三角形判定方法中起着承上启下的作用,是后面学习相似三角形判定的基石。

二、学情分析:学生刚开始学习相似图形和相似多边形,对相似图形(相似三角形)的判定还处于感性阶段,能用来判定相似的方法只有定义法。

所以每一个知识要点的形成过程,学生必须参与,环环相扣,学生才能了解平行线分线段成比例基本事实,从而来理解平行线判定三角形相似的定理。

三.教学目标(1)知识与能力:1.了解相似三角形的概念,掌握平行线分线段成比例这一基本事实.2.经历利用平行线判定三角形相似的证明过程,掌握利用平行线判定三角形相似的方法.(2)过程与方法:1.通过平行线分线段成比例这一基本事实在三角形中的转化,体会数学中的化归思想及数形结合思想.2.通过平行线判定三角形相似及利用相似三角形的性质解决问题,提高学生分析问题、解决问题的能力.(3)情感态度与价值观:1.通过观察、测量、归纳平行线分线段成比例定理,培养学生动手操作能力及直觉思维.2.探究利用平行线判定三角形相似的证明,培养学生合情分析及严谨推理能力,提高逻辑思维能力.3.在探究活动中通过小组合作交流,培养学生共同探究的合作意识及探索实践的良好习惯.四.教学重难点重点1.掌握平行线分线段成比例基本事实.2.能利用平行线判定三角形相似.难点探索利用平行线判定三角形相似的方法五.教学准备:三角板,多媒体课件.几何画板动画六.教学过程复习提问,导入新课(1)什么是相似多边形?相似多边形有什么性质?【师生活动】学生独立回答,教师点评.通过复习相似多边形的概念及性质,让学生用类比法得到相似三角形的概念及性质,为本节课的学习做好铺垫.一、认识相似三角形思考并回答:(1)类比相似多边形的概念,你能说出相似三角形的概念吗?(2)如果相似比是1,那么这两个三角形是什么关系?(3)△ABC与△A'B'C'的相似比为k,那么△A'B'C'与△ABC的相似比是多少?(4)类比相似多边形的性质,说出相似三角形的性质,并用几何语言表示.【师生活动】学生思考回答,教师对每个问题点评后展示课件,规范数学语言. (课件展示)(1)定义:三个角分别相等,三条边成比例,我们就说这两个三角形相似.对应边的比就叫做两个三角形的相似比.(2)表示:△ABC与△A'B'C'相似记作“△ABC∽△A'B'C'”,读作“△ABC相似于△A'B'C'”.注意:对应顶点写在对应的位置上.(3)相似比为1时,这两个三角形全等,所以全等三角形是相似三角形的特例.(4)△ABC与△A'B'C'的相似比为k,那么△A'B'C'与△ABC的相似比是.(5)性质:相似三角形的对应角相等,对应边成比例.【几何语言】如图所示,△A1B1C1∽△ABC,∴∠A1=∠A,∠B1=∠B,∠C1=∠C;[设计意图]通过复习相似多边形的定义和性质,迁移到相似三角形的定义和性质,让学生体会类比思想在数学中的应用,帮助学生建立新旧知识之间的联系,体会事物之间由一般到特殊,由特殊到一般之间的联系.二、平行线分线段成比例基本事实【动手操作】任意画两条直线l1,l2,再画三条与l1,l2都相交的平行线l3,l4,l5,分别度量l3,l4,l5在l1上截得的线段AB,BC,AC和在l2上截得的线段DE,EF,DF的长度.(1)根据度量的长度,你得到哪些成比例线段?尝试写出来.(2)这些成比例线段在图中的位置有什么关系?(3)对于任意一组平行线,截得的对应线段成比例吗?(4)你能用语言概括你得到的结论吗?【师生活动】学生动手独自测量思考,写出比例式,小组合作交流答案,学生展示后教师点评.【课件展示】两条直线被一组平行线所截,所得的对应线段成比例.[设计意图]通过动手操作,测量或计算得出平行线分线段成比例这一基本事实,体会从特殊到一般的探索过程,激发学生的求知欲,培养学生分析问题的能力.三、平行线分线段成比例转化到三角形中活动1如图所示,l1∥l2∥l3,当两条被截直线的交点在直线l1或l2上时,你能得到哪些比例式?(教师动画演示,将图(1)中的直线平移到图(2)的位置,让学生直观感受平行线分线段成比例基本事实仍然成立)【师生活动】学生观察教师演示动画,小组交流结果,教师点评结论.活动2(1)如图所示,△ABC中,DE∥BC,且DE分别交AB,AC(或AB,AC的反向延长线)于点D,E,那么比例式=成立吗?(2)你能用语言叙述图中的结论吗?(3)用几何语言如何描述这一结论?【师生活动】学生小组合作交流,共同探究结论,教师及时点拨,师生共同归纳结论.【课件展示】平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.几何语言[设计意图]通过动画演示将平行线分线段成比例基本事实转化到三角形中,学生易直观形象地得出结论,同时通过学生讨论交流,培养学生的合作意识及语言表达能力.四、利用平行线证明三角形相似 问题如图所示,在△ABC 中,DE ∥BC ,且DE 分别交AB ,AC 于点D ,E ,△ADE 与△ABC 相似吗?如何证明?教师引导回答问题:(1)要证明三角形相似,需要哪些条件?(∠A =∠A ,∠ADE =∠B ,∠AED =∠C ,对应边成比例) (2)你能证明这些角对应相等吗? (由两直线平行,同位角相等可得) (3)如何证明AD:AB=AE:AC 吗? (由平行线分线段成比例事实易得)(4)DE 不在BC 边上,用什么方法将DE 转化到BC 边上呢? (过E 作EF ∥AB,交BC 于点F) (5)你能证明DE :BC=AE:AC 吗? (由平行线分线段成比例事实易得)(6)你能写出△ADE ∽△ABC 的证明过程吗?(7)尝试用语言叙述上述结论,并用几何语言表示你的结论.【师生活动】学生在教师问题的引导下,思考后小组交流,小组代表板书过程,教师在巡视过程中帮助有困难的学生,对学生板书点评,规范书写过程. 证明:在△ADE 和△ABC 中,∠A =∠A. ∵DE ∥BC,∴∠ADE=∠B,∠AED=∠C. 过E 作EF ∥AB,交BC 于点F,∵DE ∥BC,EF ∥AB,∴.AC AEABAD =BCBFAC AE =∵四边形DBFE 是平行四边形,∴DE=BF.BC DEAC AE AB AD ==∴∴△ADE ∽△ABC.【课件展示】平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.【几何语言】如图所示,在△ABC 中,∵DE ∥BC ,∴△ADE ∽△ABC. 【追问】当DE 与BA 和CA 的延长线相交时,上述结论还成立吗?(教师总结归纳利用平行线证明三角形相似的基本图形:“A ”型和“X ”型)[设计意图]通过教师设计的小问题,层层深入,达到分析问题的目的,学生易于理解和掌握,提高学生分析问题的能力,同时培养学生归纳总结的能力,加深对平行线证明三角形相似的判定方法的理解.[知识拓展](1)相似三角形与全等三角形的联系与区别:全等三角形的大小相等,形状相同,而相似三角形的形状相同,大小不一定相等,所以全等三角形是相似三角形的特例,相似比是1∶1的两个相似三角形是全等三角形.(2)相似三角形的传递性:如果△ABC ∽△A'B'C',△A'B'C'∽△A ″B ″C ″,那么△ABC ∽△A ″B ″C ″.(3)在应用平行线分线段成比例这个基本事实时,找准被平行线截得的对应线段,被截线段不一定平行,当“上比下”的值为1时,说明这些平行线间的距离相等. (4)符合平行线证明三角形相似的图形有两个,我们称为“A ”型和“X ”型,如图所示,若DE ∥BC ,则△ADE ∽△ABC.七、课堂检测如图,已知DE ∥ BC,AE=50cm,EC=30cm,BC=70cm, ∠BAC=450,∠ACB=400. (1)求∠AED 和∠ADE 的大小;(2)求DE 的长.八、课堂小结 知识小结1.相似三角形的概念、表示:三个角分别相等,三条边成比例,△ABC ∽△A'B'C'.2.平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.3.平行线分线段成比例在三角形中的应用:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.4.平行线证明三角形相似:“A ”型和“X ”型.平行于三角形一边的直线和其他两ADFER边相交,所构成的三角形与原三角形相似.方法小结1.通过平行线分线段成比例这一基本事实在三角形中的转化,体会数学中的化归思想及数形结合思想.2.通过平行线判定三角形相似及利用相似三角形的性质解决问题,提高自己分析问题、解决问题的能力.3.探究利用平行线判定三角形相似的证明,培养自己合情推理及演绎推理能力,提高逻辑思维能力.4.在探究活动中通过小组合作交流,培养自己共同探究的合作意识及探索实践的良好习惯.九、板书设计1.相似三角形的概念、表示2.平行线分线段成比例的基本事实3.平行线证明三角形相似:“A”型和“X”型十、教学反思本节课是三角形的判定的第1课时,通过复习相似多边形的概念,学生用类比法易得到相似三角形的概念及表示方法,降低了学习概念的难度.以动手操作为主探究平行线分线段成比例这一事实,学生经历动手操作、观察、计算、比较、讨论、归纳等教学活动,人人参与课堂,积极展示,学生成为课堂的主人,在积极思维中经历知识的形成过程,然后通过动画展示,学生直观形象地观察到这一基本事实在三角形中的应用,体会数学中的转化思想,为平行线证明相似做好铺垫.最后在教师的引导下完成定理的证明,培养学生逻辑思维能力和严谨的学习精神.本节课在探究平行线分线段成比例基本事实后,将这一基本事实转化到三角形中应用,得到三角形中的两个推论,课容量较大,在前面概念及基本事实的探究活动中耽误时间长,后面的探究活动教师设计的小问题较多,造成完不成课时任务,后面的处理过于仓促,有头重脚轻的感觉,学生对本节课的重点把握不准,在以后的教学中要注重时间的安排,突出课时重点.。

初中人教版数学九年级下册27.2.1核心素养【教学设计】《相似三角形的判定》

初中人教版数学九年级下册27.2.1核心素养【教学设计】《相似三角形的判定》

《27.2.1相似三角形的判定(1)》教学模式介绍:数学的核心素养包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。

这些数学学科素养既相对独立,又互相交融,是一个有机的整体。

核心素养下的教学设计是利用设计好的核心问题在课堂中培养学生的数学核心素质,重视学生在学习活动中的主体地位,让学生在积极参与学习活动的过程中得到发展。

教师创设情境设计问题,或通过富有启发性的讲授,或引导学生独立思考、自主探索、合作交流,组织学生操作实验、观察现象、提出猜想、推理论证等,有效地启发学生思考,使学生成为学习的主体,学会学习。

课堂教学中,要注重让学生理解和掌握数学的基础知识和基本技能,让学生感悟数学思想,积累数学活动经验,在学习数学和应用数学的过程中,发展数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等数学学科核心素养,让学生能与他人建立良好关系,有效地管理自己的学习、生活,能够发掘自身潜力,战胜学习数学中的困难,让学生能够适应未来社会、进行终身学习,实现全面发展。

设计思路说明:“相似三角形的判定”是在学习了相似图形之后,有了相似图形、相似多边形的基础,学生不难理解相似三角形的基本性质及相似比的有关规定。

教学中结合相似多边形也不难知道相似三角形的对应角相等,对应边的比例相等。

在用符号“∽”表示两个三角形相似时,应注意把表示对应顶点的字母写在对应位置,以便相对容易找出对应角和对应边。

全等是相似的特殊情形(相似比为1),这一点有必要让学生明白。

判断两个三角形相似的三个定理之间有内在的关联。

于是我们用测量的方法来直接归纳出结论,为了达到比较好的效果,我们设计了几道题目进行巩固。

随后利用平行线分线段成比例定理引出其推论,进而得到三角形相似的预备定理。

我们把重点放在证明预备定理上,因为其方法是非常重要的。

最后,再总结结论,拓展练习,以巩固知识的掌握程度。

教材分析本节课内容属于《全日制义务教育数学课程标准2011版》中的“图形与几何”,相似图形是现实生活中广泛存在的现象,探索并证明相似三角形的判定定理。

初中数学 27.2.1 相似三角形的判定同步练习

初中数学 27.2.1 相似三角形的判定同步练习

ABDCHG EFADEEABDC27.2.1 相似三角形的判定(一)A组1.如图27-2-1,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A.1对B.2对C.3对D.4对图27-2-1 图27-2-22.如图27-2-2,在△ABC中,DE//BC,且AD:DB=2:1,那么DE:BC等于()A.2:1B.1:2C.2:3D.3:23.如图27-2-3,在□ABCD中,F、H分别是BC、AD上任一点,EF平行AB,HG平行CD,则图中共有相似三角形的对数是()A.2B.3C.4D.5图27-2-3 图27-2-44.如图27-2-4,在△ABC中,DE//BC,AD:CD=1:3,BE=6cm,则AE= cm.5.如图,在□ABCD中,E、F分别是AB、BC的中点,连接AC、EF.求证:△BEF∽△ACD.6.已知:如图,试用两种不同的方法在△ABC内部作一个三角形,使其与△ABC相似,且相似比为14.7.如图,物AB与其所成像A’B’平行,孔心O到蜡烛头A的距离是36cm,到蜡烛头的像A’的距离是12cm,你知道像长是物长的几分之几吗?你是怎样知道的?8.如图,AD与BC交于点O,且AB ∥ CD。

①已知BO:OC=1:3,CD=6cm,求AB的长。

②已知BO:BC=1:3,CD=6cm,求AB的长。

③已知BO:OC=1:3,AD=8cm,求OA的长。

C DA BOOABB’A’PC AGFB 组1.如图27-2-5,已知DE ∥BC ,EF ∥AB ,则下列比例式,错误..的是 ( ) A.AD AE =ABACB.CE EA =CFFBC.DE AD =BC BD D.EF CF=AB CB图27-2-5 图27-2-62.如图27-2-6,在△ABC 中,DG ∥A C ,EF ∥BC ,则图中与△PDE 相似三角形的个数是( ) A.1B.2C.3D.43.如图,AB 是⊙O 的直径,C 、D 是圆上两点,且弧AC=弧BD ,射线AC 与射线BD 交于点E ,求证:△ECD∽△ABE.4.已知:如图,AB=AD ,AC=AE ,FG ∥DE.试说出与所有△ABC 相似的三角形,并说明理由.E OD C BADB CG FE5.如图,△ABC 中,AD ⊥BC ,D 是垂足,E 是BC 中点,FE ⊥BC 交AB 于F ,BD =6,DC =4,AB =8,求BF 长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AE DE AC BC
AD AE DE AB AC BC
B
结论:平行于三角形一边的直线和其他两边相
交(或两边的延长线相交),所构成的三角形与
原三角形相似。
观察图2(2)中的三角形,从而得到图3 (2),在∆BCF中,AD‖CF,分别交CB、FB 的延长于点A、D,∆ABE与∆ACF还相似吗? 由此,你又能得到什么结论呢? l2 l1 D D A A l
AB DE AC DF
BC EF AC DF
左上 右上 ( = ), 全部 全部 左下 右下 ( = ). 全部 全部
B
E F
l3 l4
C
l5
思考:
如果把图1中的l2移动与直线l1相交,交点A 刚好落到l3上,如图2所得的对应线段还成比例 吗?依据是什么? A l1
l2 D
E
l2 l1
l3 l4
3
B C
E
F
Байду номын сангаасl4
l5
B
C
图3(2)
F
图2(2)
如图,在△ABC 中,DE∥BC,DE 分别交AB, AC 于点 D,E, △ADE 与△ABC 有什么关系? 归纳: 平行于三角形一边的直线和其他两边相交(或
两边的延长线相交),所构成的三角形与原三角
形相似。
A D B
A型
E
D
A
E C
B
X型
C
例题讲解
F B
A(D)
l3 l4 F
B C
E
图1
l5
C
l5
图2(1)
思考
如果把图1中l1 , l2两条直线移动且相交,交点A刚 落到l4上,如图2(2)所得的对应线段还成比例吗? 依据是什么? A
B C
l1
l2
D l 3
E l4 F
D
l2 B
A
l1
l3
E
l4
l5
C
F
图2(2)
图1
l5
将图形简化后,你有什么发现? 由此,你能得出什么结论? 平行于三角形一边的直线截其他两边(或两 边的延长线)所得的对应线段成比例. l D B A l
【例1】 如图,在△ABC中,DE∥BC, AC=4 ,AB=3,EC=1.求AD和BD.
A
解∵AC=4,EC=1, ∴AE=3. ∵ DE∥BC, AD AE . ∴ AB AC ∴AD=2.25,
D
B
E
C
∴BD=0.75.
基础闯关
相信你能过关!
A
1、如图:DE∥BC, 下列各式是否正确 AD = —— AE AD = —— AE ( ) D A: —— B: —— AB AC ( ) BD CE AD AE AD AB = = —— —— —— —— C: AC ( ) D: ( ) B AB AE AC AE 2 2、如图:DE∥BC, —— = — AC 5 AD 求: ——= AB 2 — 5 —— B E A C D E
F
如图,DE//BC, △ADE与△ABC有什么关系?说明 理由.
相似 理由:在△ADE与△ABC中 ∠A= ∠A ∵ DE//BC∴∠ADE=∠B, ∠AED=∠C
AE BF 过E作EF//AB交BC于F 则 AC BC
∵四边形DBFE是平行四边形
A E
C
AD AE AB AC D
∴DE=BF F ∴△ADE∽△ABC
左上 右上 ( = ), 左下 右下 左下 右下 ( = ). 左上 右上
B
E F
l3 l4
C
l5
归纳
平行线分线段成比例的基本事实:两条直线 被一组平行线所截,所得的对应线段成比例. 注意: ① 定理的条件是“两条直线被一组平行线所 截”; ② 是“对应线段成比例”, l2 l1 D A 注意“对应”两字.
C
3、如图, 已知DE∥BC,DF∥AC,请找出图中 所有的相似三角形,并说明理由。
1. DE∥BC Δ ADE∽Δ ABC 2.DF∥AC Δ DBF∽Δ ABC 3. Δ ADE∽Δ ABC Δ ADE∽Δ DBF Δ DBF∽Δ ABC B
D
A
E
F
C
三角形相似 具有传递
性!
4、如图已知 DE∥BC,AE=50cm,EC=30cm, BC=70cm,∠BAC=450,∠ACB=400. (1)求∠AED和∠ADE的大小; E (2)求DE的长.
记作: △ABC∽△ A'B'C' 读作: △ABC相似于△ A'B'C'
注意
B
A' A/
B/
在写两个三角形相似时应 把表示对应顶点的字母写在对 应的位置上。
用符号语言表示:

C
∠A= ∠A' 、∠B= ∠B' 、 ∠C=C'
A
C'
AB BC CA A'B ' B 'C ' C 'A' ∴ △ABC∽△A'B'C'
B
(相似三角形的定义可以作为 三角形相似的一种判定方法)
A'
B'
△ABC∽△A'B'C' △ABC与△A'B'C'的
C
3cm
C'
相似比k1 =? BC 1 B' C' 2 △A'B'C'与△ABC的 相似比k2 =? B' C' 2 BC 1
A
B
6cm
A'
B'
三角形的前后次序不同,所得 相似比不同。
27.2.1相似三角形的判定(1)
探索新知
根据相似多边形的概念,你能给相似 三角形下定义吗? 相似三角形:我们把三个角分别相等,三条 边成比例的两个三角形叫做相似三角形。 阅读课文P29,理解什么是相似三角形? 如何表示两个相似三角形? A′ A
B′
B
C
C′
△ABC与△ A'B'C'相似
C
A C/
等等.
A B C
l1
l2 D
E F
l3
l4
l5
归纳
平行线分线段成比例的基本事实:两条直线 被一组平行线所截,所得的对应线段成比例. 注意: ① 定理的条件是“两条直线被一组平行线所 截”; ② 是“对应线段成比例”, l2 l1 D A 注意“对应”两字.
AB DE BC EF
BC EF AB DE
三角形相似的判定方法 1、定义法: 三个角分别相等,三边成比例的两三角 形相似。 2、平行线法:
平行于三角形一边的直线和其他两边相交(或两 边的延长线相交),所构成的三角形与原三角形相 似。
课堂小结
A
E A
B
D
D
B
E C
C
相等吗? 除此之外,还有 其它对应线段成比 例吗? C
A
B
l1
l2
D
E F
思 考 :
l3
l4
l5
事实上,当l3 // l4 // l5时,可以得到
AB DE BC EF
BC EF AB DE

BC EF , AC DF
AB DE 还可以得到 AC DF
想一想:通过 探究,你得到 了什么规律呢?
l1
E
l
A
D
l
l1 l2
E C
l2
l3
B
C
l3
观察图2(1)中的三角形,从而得到图3 (1),在∆ACF中,BE‖CF,且BE分别交AC、 AF于点B、E,∆ABE与∆ACF有什么关系? 如何证明∆ABE与∆ACF相似呢? l2 l1
B C A(D) E F A
l3
l4
l5 C
B
E
图2(1)
图 3( 1)
探索新知 任意画两条直线l1、l2,再画三条与l1、l2相交的
平行线l3、l4 、l5。请分别度量l3 , l4, l5在l1 上截得 的两条线段AB, BC和在l2 上截得的两条线段DE, EF的长度, AB: BC与DE:EF相等吗?任意平移 l5 , 再量度AB, BC, DE, EF的长度, 它们的比值还
解: (1) DE ∥ BC △ADE∽△ABC ∠AED=∠C=400. A 在△ADE中, ∠ADE=1800-400-450=950. △ADE∽△ABC (2)
C

D
B
AE DE ,即
50 DE . AC BC 50 30 70 50 70 所以, DE 43.75( cm). 50 30
相关文档
最新文档