第十讲辅助线的常见做法

合集下载

初中数学作辅助线的方法

初中数学作辅助线的方法

初中数学作辅助线的方法在数学中,辅助线是指在解题过程中,为了更加清晰地理解和解答问题,而额外添加的辅助线条。

辅助线能够帮助我们识别几何形状的性质、简化题目、发现问题的特点,进而解决问题。

下面将介绍一些初中数学中常用的辅助线的方法。

1.直线的辅助线:1.1利用等角性质:当一道题目中出现两条或多条直线之间存在相等角度的关系时,可以通过画一条平行于其中一条直线的辅助线,从而使问题更加清晰。

例如,当一道题目中有两条平行线上辅助线之间的交角等于已知夹角时,我们可以通过画一条与两条线垂直的辅助线,从而找到问题的解决方法。

1.2利用中点性质:当一道题目中出现一个直线段上存在中点的情况时,可以通过连接这个中点和其它的点,并利用中点将辅助线分成两等分的方式,简化问题。

例如,当一道题目中需要证明一个线段平分另一个线段时,可以通过在两个线段的中点之间画一条辅助线,从而将问题转化为证明两个等腰三角形。

2.圆的辅助线:2.1利用相切性质:当一道题目中出现一个圆和另一个圆间存在相切的情况时,可以通过在两个圆的相切点处引出切线,并连接相切点和圆心的辅助线来简化问题。

例如,当一道题目中有两个圆相切于一个点,需要求证两个圆的半径之比时,可以通过连接两个圆心之间的辅助线,并利用切线及其垂直性质来求解。

2.2利用内接性质:当一道题目中出现一个圆内接于一个图形的情况时,可以通过在圆和图形的交点处引出辅助线,并利用内接四边形的特点来简化问题。

例如,当一道题目中有一个圆内切于一个正方形,需要证明半径与正方形边长之比时,可以通过连接正方形的对角线并利用内接四边形的性质来证明。

3.三角形的辅助线:3.1利用中位线性质:当一道题目中有一个三角形的中位线时,可以通过连接三角形的中位线两端点与对应边上其他点的辅助线,来简化问题。

例如,当一道题目中需要证明两个三角形形状相似时,可以通过连接两个三角形的中位线,然后利用垂直性质来证明。

3.2利用高线性质:当一道题目中有一个三角形的高线时,可以通过连接三角形的高线两端点与对应边上其他点的辅助线,来简化问题。

初中数学常见辅助线的做法

初中数学常见辅助线的做法

初中数学常见辅助线的做法
初中数学常见辅助线的做法
在初中数学中,辅助线是解题过程中常用的工具。

通过适当地引入辅助线,可以使问题更加清晰明了,从而更容易解决。

本文将介绍几种常见的辅助线做法。

1.平移法
平移法是一种常用的辅助线做法。

它的基本思想是将图形沿某个方向平移,使得问题更加清晰。

例如,在解决一个三角形的问题时,我们可以平移其中的一条边,使得三角形更加规则,从而更容易解决问题。

2.垂线法
垂线法也是一种常用的辅助线做法。

它的基本思想是引入垂线,将原问题转化为更简单的问题。

例如,在解决一个三角
形的问题时,我们可以引入垂线,将三角形分成两个直角三角形,从而更容易解决问题。

3.对称法
对称法是一种常用的辅助线做法。

它的基本思想是通过引入对称轴,将原问题转化为更简单的问题。

例如,在解决一个图形的问题时,我们可以引入对称轴,将图形分成对称的两部分,从而更容易解决问题。

4.相似法
相似法是一种常用的辅助线做法。

它的基本思想是通过找到相似的图形,将原问题转化为更简单的问题。

例如,在解决一个三角形的问题时,我们可以找到一个相似的三角形,从而更容易解决问题。

总之,辅助线是解决初中数学问题的常用工具。

通过灵活运用各种辅助线做法,我们可以更加轻松地解决各种数学问题。

数学中构造辅助线的方法

数学中构造辅助线的方法

数学中构造辅助线的方法
在数学中,构造辅助线是一种常用的解题方法,可以帮助我们更好地理解和解决各种几何问题。

以下是一些常用的构造辅助线的方法:
1.中点、中线段、延长线:如果条件中给出了中点或中线段,可以通过构造延长线来构造辅助线。

例如,过中点作已知线段或直线的平行线,或者过中点作已知线段的垂直平分线等。

2.角平分线、垂直、中线:如果条件中给出了角平分线、垂直或中线,可以通过构造相应的辅助线。

例如,过角平分线上的点作角平分线的垂线,或者过中点作已知直线的垂直平分线等。

3.直角三角形斜边上的中点:如果条件中给出了直角三角形斜边上的中点,可以通过构造辅助线将直角三角形转化为等腰三角形。

例如,过斜边中点作直角边的平行线,或者过斜边中点作斜边的垂线等。

4.等腰三角形底边上的垂直平分线:如果条件中给出了等腰三角形底边上的垂直平分线,可以通过构造辅助线将等腰三角形转化为直角三角形。

例如,过垂直平分线上的点作底边的平行线,或者过垂直平分线上的点作顶角的角平分线等。

5.等边三角形的高、角平分线、中线:如果条件中给出了等边三角形的高、角平分线或中线,可以通过构造辅助线将等边三角形转化为直角三角形。

例如,过高上的点作底的垂直平分线,或者过角平分线上的点作底边的平行线等。

这些方法都是一些常见的构造辅助线的技巧,对于不同的几何问题,需要灵活运用不同的方法来构造辅助线和解决问题。

初中数学辅助线的做法总结

初中数学辅助线的做法总结

初中数学辅助线的做法总结一、加法与减法辅助线1.相差减一法:对于计算两个数之差的问题,我们可以使用相减法,即将两个数按位相减,并将每一位之差写在下方。

为了更加清晰,可以在个位上方画一条水平线,表示个位数。

例如:45-23,画线表示为:4-233—2.加减齐次法:当计算加法或减法的时候,两个数位数不同,我们可以借助辅助线将两数齐次,使问题更易解。

例如:34+20,可以在个位上方画一条辅助线,表示个位数相加得4,十位数不变。

+0-----3.补充法:当计算减法时,被减数小于减数,我们可以通过补充的方式,使被减数增加一个数位,将问题转化为一个正常的减法。

例如:36-47,可以在个位上方画一条辅助线,表示个位数不够减,需要向十位借1,并在个位上加10,即变成36+10=46-47,再进行减法运算。

-136+10-47-------1二、乘法与除法辅助线1.竖式计算法:对于较复杂的乘法运算,我们可以使用竖式计算法,将乘法运算拆分为多个小的乘法运算。

例如:36×25,可以将25拆分成20和5,然后依次与36相乘,最后相加。

36×20-----72+180-----9002.倍数计算法:当计算除法时,我们可以利用倍数的性质,将除法问题转化为乘法问题。

分为两种情况:一是被除数为倍数的情况,二是除数为倍数的情况。

例如:115÷5,可以找到被除数和除数都是5的倍数,115÷5=(100+10+5)÷5=20+2+1=233.分数的乘法与除法:对于计算分数的乘除法,我们可以利用分数的定义和简化规则,将计算转化为整数的运算。

例如:(8/5)×(7/3),可以将其转化为整数相乘,然后再进行约分。

8×7=565×3=15所以结果为56/15,再进行约分。

三、几何问题的辅助线1.直角三角形辅助线:解决直角三角形的问题时,可以在直角处画一条垂线,以辅助解题。

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结
在初中数学中,做辅助线是解题的重要方法之一。

以下总结了几
种常见的做辅助线的方法:
1. 对称性辅助线法:当一个图形或方程式具有对称性时,可以
画出一条对称轴或一些对称线,从而利用对称性来简化问题。

例如,
在求三角形的中线长度相等定理时,可以描绘出三角形的垂直平分线,并在中点处作垂线,得到两个相等的直角三角形。

2. 垂线辅助线法:当一个角、线段或线段的垂线很难直接操作时,可以画出一条垂线,将问题转化为一个直角三角形问题。

例如,
在求一条线段的垂线长度时,可以先画出一条垂线与该线段相交,并
组成一个直角三角形。

3. 平移辅助线法:当一个几何图形或方程式涉及到平移时,可
以通过向图形或方程式添加平移线或平移量来使问题变得简单。

例如,在证明平行四边形对角线平分的定理时,可以平移一个平行四边形,
使其成为一个重合的平行四边形,从而使问题变得简单。

4. 分割辅助线法:当一个图形或方程式很复杂时,可以通过将
其分解成几个简单的部分来解题。

例如,在求多边形面积时,可以将
多边形分割成几个三角形或梯形,并将它们的面积相加,从而得到多
边形的面积。

总之,做辅助线的方法不只有以上四种,还可以根据具体问题的
不同情况选用其他的方法。

需要注意的是,在使用辅助线时,要注意
画出清晰的图形,并理解各种辅助线的作用,才能有效地解决问题。

几何证明题辅助线基本方法

几何证明题辅助线基本方法

几何证明题辅助线基本方法几何证明题是数学中的一种重要题型,需要通过逻辑推理和几何知识来证明给定的几何关系。

在解决几何证明题时,辅助线是一种常用的策略,可以帮助我们简化问题、构建更简洁的证明过程。

本文将介绍几何证明题中常用的辅助线基本方法。

1. 平行辅助线法当我们需要证明两条线段平行时,可以在图形中引入一条辅助线来构建平行关系。

具体步骤如下:1. 观察图形,找到可能存在平行关系的线段。

2. 在相应的位置引入一条辅助线。

3. 利用平行线的性质进行推理,证明所需的平行关系。

2. 相等辅助线法当我们需要证明两个线段相等时,可以通过引入一条相等的辅助线来简化证明过程。

具体步骤如下:1. 观察图形,找到可能具有相等关系的线段。

2. 在相应的位置引入一条相等的辅助线。

3. 利用等边、等角等性质进行推理,证明所需的相等关系。

3. 垂直辅助线法当我们需要证明两条线段垂直时,可以通过引入一条垂直的辅助线来简化证明过程。

具体步骤如下:1. 观察图形,找到可能具有垂直关系的线段。

2. 在相应的位置引入一条垂直的辅助线。

3. 利用垂直线的性质进行推理,证明所需的垂直关系。

4. 同位角辅助线法当我们需要证明两条直线的同位角相等时,可以通过引入同位角的辅助线来简化证明过程。

具体步骤如下:1. 观察图形,找到可能存在同位角的直线。

2. 在相应的位置引入同位角的辅助线。

3. 利用同位角的性质进行推理,证明所需的同位角相等关系。

5. 其他辅助线方法除了上述介绍的常用辅助线方法外,还可以根据具体的几何证明题目选择其他辅助线的方法。

例如,可以利用中位线、角平分线、内切圆、外接圆等辅助线,根据题目要求灵活运用。

综上所述,几何证明题辅助线基本方法包括平行辅助线法、相等辅助线法、垂直辅助线法、同位角辅助线法等。

通过合理引入辅助线,可以帮助我们简化问题、构建更简洁的证明过程,提高解题效率。

在实际解题中,我们需要综合运用不同的辅助线方法,根据题目要求灵活选择适合的策略。

初中数学三角形辅助线技巧

初中数学三角形辅助线技巧

初中数学三角形辅助线技巧
在解决初中数学中的三角形问题时,添加辅助线是一种常见的策略。

以下是一些常见的三角形辅助线添加技巧:
1. 中点连线:如果已知三角形的一个中点,可以通过连接这个中点到其他顶点来找到新的等腰三角形或平行四边形,从而简化问题。

2. 平行线:通过作平行线,可以构造新的平行四边形或相似三角形,从而利用这些图形的性质来解决问题。

3. 延长线:在某些情况下,延长线可以帮助我们找到新的角或线段,从而利用这些信息解决问题。

4. 作高:在直角三角形中,可以通过作高来找到新的线段或角,从而找到解决问题的线索。

5. 作角平分线:角平分线可以将一个角分为两个相等的角,从而帮助我们找到新的等腰三角形或平行线。

6. 构造全等三角形:通过添加辅助线,可以构造两个或多个全等的三角形,从而利用全等三角形的性质解决问题。

7. 倍长中线:在已知中点的情况下,可以通过倍长中线来找到新的等腰三角形或平行四边形。

8. 构造相似三角形:通过添加辅助线,可以构造两个相似的三角形,从而利用相似三角形的性质解决问题。

以上技巧并非一成不变,需要根据具体的问题和条件灵活运用。

在解决三角形问题时,多思考、多实践是提高解题能力的关键。

初中数学辅助线做法(附辅助线记忆歌诀)

初中数学辅助线做法(附辅助线记忆歌诀)

初中数学辅助线做法(附辅助线记忆歌诀)夏夏之前在辅导一个初中的孩子时发现,她在做代数题的时候,还算轻松。

比如求一元二次方程的解,求二次函数的解析式,这样的题目按照基本的公式和步骤做起来还比较轻松。

是一到几何图形题就有点困难。

比如解关于平行四边形的问题,她可以把关于平行四边形的性质和判定都说出来,可是就是不知道怎么做题。

后来我总结了一下,出现这种情况一个很大的原因是,她没法把问题和条件之间建立起联系。

那么这个联系在哪里呢,对于很多图形题来说,是辅助线,有时候图形题做上辅助线就会豁然开朗了。

今天给大家整理总结了一些,希望能帮到你萌哦!1、三角形中常见辅助线的添加1. 与角平分线有关的(1)可向两边作垂线。

(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4)遇到中点,考虑中位线或等腰等边中的三线合一。

3. 与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °2、四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

(1)利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.3. 和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.(1)作菱形的高(2)连结菱形的对角线4. 与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线5. 与梯形有关的辅助线的作法和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形(2)作梯形的高,构造矩形和直角三角形(3)作一对角线的平行线,构造直角三角形和平行四边形(4)延长两腰构成三角形(5)作两腰的平行线等3、圆中常见辅助线的添加1. 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期第十讲
知识提要:熟练掌握全等三角形的五种判定方法SAS,ASA,AAS,SSS,以及HL,学会两种重要的辅助线添加方法:“倍长中线法”、“截长补短法”。

1、如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是?
B C
2、如图,在△ABC中,AC=5,AB=12,则中线AD的取值范围是?
B C
3、如图,AD为△ABC的中线,且AD为△ABC的角平分线。

求证:AD⊥BC
C
B
4、如图,AD为△ABC的中线,求证:AB+A C>2AD。

A
B
D C
5、如图,△ABC中,∠ACB=60°,AD、CE分别分别平分∠BAC,∠ACB,判断AC的长与AE+CD的大小关系并证明。

B C
6、如图,在△ABC中,∠ACB=2∠B,∠1=∠2,判断AB的长与AC+CD的大小关系并证明。

B C
7、如图,在△ABC 中,D 是BC 边的中点。

E 是AD 上一点,BE=AC ,BE 的延长线交AC 于点F ,求证:∠AEF=∠EAF 。

F E
D
C
B A
8、AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF >EF 。

F
E
D C
B
A
4
321
9、如图,在正方形ABCD 中,E 为AB 边上的中点,G 、F 分别为AD ,BC 边上的点,若AG=1,BF=2, ∠GEF=90°,则GF 的长为 。

E
F
G
C
A
B
D
10、如图,△ABC和△BDE都是等边三角形,且A、D、E在一条直线上,若BE=2,CE=4,AE= 。

B
C
E
11、如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E,求证:BD=2CE。

12、如图,已知点C是∠MAN的平分线上一点,CE⊥AB于E,
B、DF分别在AM、AN上,且2AE=AD+AB。

问:∠1与∠2的关系?并证明
M
第十讲家庭作业
1.如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 平分∠BAE 。

E D
C
B A
2.如图,△ABC 中,E 、F 分别在AB 、AC 上,D E ⊥DF ,D 是中点,试比较BE +CF 与EF 的大小。

F
E
D
C
B
A
3、如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 中点,E F ∥AD 交CA 的延长线于点F ,交EF 于点G ,若BG=CF ,求证:AD 为△ABC 的角平分线。

G
F
E D
C
B
A。

相关文档
最新文档