高考数学总复习:第2章《函数、导数及其应用》【1】
2019版高考数学总复习第二章函数、导数及其应用2.4二次函数与幂函数课件文

(3)五种幂函数的性质
函数
特征
y=x
y=x2
性质
定义域
R
R
y=x3 R
值域
R
[0,+∞) R
奇偶性 奇函数 偶函数 奇函数
y=x
1 2
y=x-1
(-∞,
[0,+∞) 0)∪(0,+
∞)
(-∞,
[0,+∞) 0)∪(0,+
∞)
非奇非偶 函数
奇函数
单调性
x∈ [0,+
x∈ (-
增
∞) 时,增 x∈ (- ∞,0]
[自主练透型]
1.(2018·太原模拟)当
0<x<1
时,f(x)=x2,g(x)=x
ห้องสมุดไป่ตู้
1 2
,h(x)=x-2,
则 f(x),g(x),h(x)的大小关系是__h_(_x_)>__g_(x_)_>_f_(x_)___.
解析:分别作出 f(x),g(x),h(x)的图象,如图所示. 可知当 0<x<1 时,h(x)>g(x)>f(x).
答案:A
4
3.(2016·新课标全国卷Ⅲ)已知
a=2
3
,b=4
2 5
,c=25
1 3
,则(
)
A.b<a<c B.a<b<c
C.b<c<a D.c<a<b
4
解析:因为
a=2
3
=16
1 3
,b=4
2 5
=16
1 5
,c=25
1 3
,且幂函数
y=x
1 3
在 R 上单调递增,指数函数 y=16x 在 R 上单调递增,所以 b<a<c.
高考数学一轮总复习第二章函数导数及其应用2.5指数与指数函数课件理

第六页,共42页。
(2)有理数指数幂的性质 ①aras= ar+s (a>0,r,s∈Q); ②(ar)s= ars (a>0,r,s∈Q); ③(ab)r= arbr (a>0,b>0,r∈Q).
第七页,共42页。
2.指数函数的图象与性质
y=ax
a>1
0<a<1
图象
定义域
R
第八页,共42页。
第九页,共42页。
故②正确;③
= = 2;④ 4 -24=2;⑤当 a≠0 时,由(1+a2)m<(1
+a2)n 可知 m<n,当 a=0 时不成立.
答案:②
第十五页,共42页。
3
考点疑难突破
第十六页,共42页。
指数(zhǐshù)幂的化简与求值
计算:
第十七页,共42页。
【解】 (1)原式=
- 51-0 2+1=
第二十页,共42页。
[自 主 演 练]
1.化简 4 16x8y4(x<0,y<0)得( A.2x2y C.4x2y
) B.2xy D.-2x2y
解析: 4 16x8y4=(16x8y4) =[24(-x)8·(-y)4] =
=
2(-x)2(-y)=-2x2y.
答案:D
第二十一页,共42页。
2.(2017 届四川绵阳一诊)计算:2 3×3 1.5×6 12=________. 解析:原式=
【答案】 C
第三十三页,共42页。
角度三 探究指数型函数的性质
(1)函数 y=14x-12x+1 在区间[-3,2]上的值域是________.
(2)函数 f(x)=
的单调减区间为________.
第三十四页,共42页。
【解析】 (1)因为 x∈[-3,2], 所以令 t=12x,则 t∈14,8, 故 y=t2-t+1=t-122+34. 当 t=12时,ymin=34;当 t=8 时,ymax=57. 故所求函数的值域为34,57.
高考数学大一轮总复习 第二章 函数、导数及其应用 2.4 二次函数与幂函数名师课件 文 北师大版

_奇__函__数____
__非__奇__非__偶_ __函__数_____
__奇__函__数___
函数
单调 性
y=x
y=x2
y=x3
在__(_-__∞__,__0_) _
_在__R_上__单___ 上__单__调__递__减__,_ _在__R__上__单__ 调__递__增___ 在__(_0_,__+__∞__)上_ _调__递__增____
2
D.
52-1,2
【解析】 因为函数 y=x21的定义域为[0,+∞), 且在定义域内为增函数,
所以不等式等价于 2mm2++m1≥-01,≥0, 2m+1>m2+m-1。
解 2m+1≥0,得 m≥-12;
- 解 m2+m-1≥0,得 m≤
25-1或 m≥
52-1。
解 2m+1>m2+m-1,得-1<m<2,
1
(2)幂函数 y=x,y=x2,y=x3,y=x2,y=x-1 的图像与性质
函数
y=x
定义域
R
值域
R
奇偶性 _奇__函__数____
y=x2 R
_{_y_|y_≥__0_}_
_偶__函__数Biblioteka __y=x3y=x-1
R
__{x_|_x_≥__0_}_ _{_x_|x_≠__0_}__
R
__{_y|_y_≥__0_} __{_y_|y_≠__0_}_
解析 正确。由幂函数的图像可知。
(6)关于
x
的不等式
ax2+bx+c>0
a>0, 恒成立的充要条件是b2-4ac<0。
( × )解析 错误。当 a=0,b=0,c>0 时也恒成立。ax2+bx+c>0(a≠0)恒
高考数学总复习 第二章 函数、导数及其应用 课时作业9 理(含解析)新人教A版-新人教A版高三全册数

课时作业9 对数与对数函数1.(2019·某某某某统考)函数f (x )=1ln3x +1的定义域是( B )A.⎝ ⎛⎭⎪⎫-13,+∞B.⎝ ⎛⎭⎪⎫-13,0∪(0,+∞)C.⎣⎢⎡⎭⎪⎫-13,+∞ D .[0,+∞)解析:由⎩⎪⎨⎪⎧3x +1>0,ln 3x +1≠0,解得x >-13且x ≠0,故选B.2.(2019·某某某某模拟)设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( B )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:∵a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,∴a >b >c .故选B. 3.已知lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则lg(ab )·⎝ ⎛⎭⎪⎫lg a b 2=( B )A .2B .4C .6D .8解析:由已知,得lg a +lg b =2,即lg(ab )=2. 又lg a ·lg b =12,所以lg(ab )·⎝ ⎛⎭⎪⎫lg a b2=2(lg a -lg b )2=2[(lg a +lg b )2-4lg a ·lg b ]=2×⎝⎛⎭⎪⎫22-4×12=2×2=4,故选B.4.若函数y =a -a x(a >0,a ≠1)的定义域和值域都是[0,1],则log a 37+log a 1123=( D )A .1B .2C .3D .4解析:若a >1,则y =a -a x在[0,1]上单调递减,则⎩⎨⎧a -a =0,a -1=1,解得a =2,此时,log a 37+log a 1123=log 216=4;若0<a <1,则y =a -a x在[0,1]上单调递增,则⎩⎨⎧a -a =1,a -1=0,无解,故选D.5.(2019·某某省际名校联考)已知f (x )满足对∀x ∈R ,f (-x )+f (x )=0,且当x ≤0时,f (x )=1ex +k (k 为常数),则f (ln5)的值为( B )A .4B .-4C .6D .-6解析:易知函数f (x )是奇函数,故f (0)=1e 0+k =1+k =0,即k =-1,所以f (ln5)=-f (-ln5)=-(e ln5-1)=-4.6.(2019·某某某某南雄模拟)函数f (x )=x a满足f (2)=4,那么函数g (x )=|log a (x +1)|的图象大致为( C )解析:∵f (2)=4,∴2a=4,解得a =2,∴g (x )=|log 2(x +1)|=⎩⎪⎨⎪⎧log 2x +1,x ≥0,-log 2x +1,-1<x <0,∴当x ≥0时,函数g (x )单调递增,且g (0)=0;当-1<x <0时,函数g (x )单调递减,故选C.7.已知函数f (x )=e x+2(x <0)与g (x )=ln(x +a )+2的图象上存在关于y 轴对称的点,则实数a 的取值X 围是( A )A .(-∞,e)B .(0,e)C .(e ,+∞)D .(-∞,1)解析:由题意知,方程f (-x )-g (x )=0在(0,+∞)上有解,即e -x-ln(x +a )=0在(0,+∞)上有解,即函数y =e -x与y =ln(x +a )的图象在(0,+∞)上有交点,则ln a <1,即0<a <e ,则a 的取值X 围是(0,e),当a ≤0时,y =e -x与y =ln(x +a )的图象总有交点,故a 的取值X 围是(-∞,e),故选A.8.(2019·某某省级名校模拟)已知函数f (x )=(e x-e-x)x ,f (log 5x )+f (log 15x )≤2f (1),则x 的取值X 围是( C )A.⎣⎢⎡⎦⎥⎤15,1 B .[1,5]C.⎣⎢⎡⎦⎥⎤15,5D.⎝⎛⎦⎥⎤-∞,15∪[5,+∞) 解析:∵f (x )=(e x-e -x)x ,∴f (-x )=-x (e -x -e x )=(e x -e -x)x =f (x ), ∴函数f (x )是偶函数.∵f ′(x )=(e x -e -x )+x (e x +e -x)>0在(0,+∞)上恒成立. ∴函数f (x )在(0,+∞)上单调递增. ∵f (log 5x )+f (log 15 x )≤2f (1), ∴2f (log 5x )≤2f (1),即f (log 5x )≤f (1), ∴|log 5x |≤1,∴15≤x ≤5.故选C.9.函数f (x )=log 2x ·log2(2x )的最小值为-14.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =22时等号成立,因此函数f (x )的最小值为-14.10.(2019·某某质检)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=9__.解析:f (x )=|log 3x |=⎩⎪⎨⎪⎧-log 3x ,0<x <1,log 3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 由0<m <n 且f (m )=f (n ), 可得⎩⎪⎨⎪⎧0<m <1,n >1,log 3n =-log 3m ,则⎩⎪⎨⎪⎧0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3,所以nm=9. 11.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.12.已知函数f (x )=log a (a 2x+t ),其中a >0且a ≠1. (1)当a =2时,若f (x )<x 无解,求t 的取值X 围;(2)若存在实数m ,n (m <n ),使得x ∈[m ,n ]时,函数f (x )的值域也为[m ,n ],求t 的取值X 围.解:(1)∵log 2(22x+t )<x =log 22x,∴22x+t <2x 无解,等价于22x +t ≥2x恒成立, 即t ≥-22x+2x=g (x )恒成立, 即t ≥g (x )max ,∵g (x )=-22x +2x=-⎝⎛⎭⎪⎫2x -122+14,∴当2x=12,即x =-1时,g (x )取得最大值14,∴t ≥14,故t 的取值X 围是⎣⎢⎡⎭⎪⎫14,+∞. (2)由题意知f (x )=log a (a 2x+t )在[m ,n ]上是单调增函数,∴⎩⎪⎨⎪⎧f m =m ,f n =n ,即⎩⎪⎨⎪⎧a 2m +t =a m,a 2n +t =a n,问题等价于关于k 的方程a 2k-a k+t =0有两个不相等的实根,令a k=u >0,则问题等价于关于u 的二次方程u 2-u +t =0在u ∈(0,+∞)上有两个不相等的实根,即⎩⎪⎨⎪⎧ u 1+u 2>0,u 1·u 2>0,Δ>0,即⎩⎪⎨⎪⎧t >0,t <14,得0<t <14.∴t 的取值X 围为⎝ ⎛⎭⎪⎫0,14.13.已知f (x )是定义在(0,+∞)上的函数.对任意两个不相等的正数x 1,x 2,都有x 2f x 1-x 1f x 2x 1-x 2>0,记a =f 30.230.2,b =f 0.320.32,c =f log 25log 25,则( B ) A .a <b <c B .b <a <c C .c <a <bD .c <b <a解析:已知f (x )是定义在(0,+∞)上的函数, 对任意两个不相等的正数x 1,x 2, 都有x 2f x 1-x 1f x 2x 1-x 2>0,故x 1-x 2与x 2f (x 1)-x 1f (x 2)同号, 则x 1-x 2与x 2f x 1-x 1f x 2x 1x 2⎝ ⎛⎭⎪⎫即f x 1x 1-f x 2x 2同号, ∴函数y =f xx是(0,+∞)上的增函数, ∵1<30.2<2,0<0.32<1,log 25>2, ∴0.32<30.2<log 25,∴b <a <c ,故选B.14.设f (x )是定义在R 上的偶函数,且f (2+x )=f (2-x ),当x ∈[-2,0]时,f (x )=⎝⎛⎭⎪⎫22x-1,若在区间(-2,6)内关于x 的方程f (x )-log a (x +2)=0(a >0且a ≠1)恰有4个不同的实数根,则实数a 的取值X 围是( D )A.⎝ ⎛⎭⎪⎫14,1B .(1,4)C .(1,8)D .(8,+∞)解析:依题意得f (x +2)=f (-(2-x ))=f (x -2),即f (x +4)=f (x ),则函数f (x )是以4为周期的函数,结合题意画出函数f (x )在x ∈(-2,6)上的图象与函数y =log a (x +2)的图象,结合图象分析可知.要使f (x )与y =log a (x +2)的图象有4个不同的交点,则有⎩⎪⎨⎪⎧a >1,log a 6+2<1,由此解得a >8,即a 的取值X 围是(8,+∞).15.(2019·某某某某模拟)已知函数f (x )=ln(x +x 2+1),g (x )=f (x )+2 017,下列命题:①f (x )的定义域为(-∞,+∞); ②f (x )是奇函数;③f (x )在(-∞,+∞)上单调递增;④若实数a ,b 满足f (a )+f (b -1)=0,则a +b =1;⑤设函数g (x )在[-2 017,2 017]上的最大值为M ,最小值为m ,则M +m =2 017. 其中真命题的序号是①②③④__.(写出所有真命题的序号) 解析:对于①,∵x 2+1>x 2=|x |≥-x , ∴x 2+1+x >0,∴f (x )的定义域为R ,∴①正确.对于②,f (x )+f (-x )=ln(x +x 2+1)+ln(-x +-x2+1)=ln[(x 2+1)-x 2]=ln1=0.∴f (x )是奇函数,∴②正确. 对于③,令u (x )=x +x 2+1, 则u (x )在[0,+∞)上单调递增. 当x ∈(-∞,0]时,u (x )=x +x 2+1=1x 2+1-x,而y =x 2+1-x 在(-∞,0]上单调递减,且x 2+1-x >0.∴u (x )=1x 2+1-x在(-∞,0]上单调递增,又u (0)=1,∴u (x )在R 上单调递增,∴f (x )=ln(x +x 2+1)在R 上单调递增,∴③正确. 对于④,∵f (x )是奇函数,而f (a )+f (b -1)=0,∴a +(b -1)=0, ∴a +b =1,∴④正确.对于⑤,f (x )=g (x )-2 017是奇函数,当x ∈[-2 017,2 017]时,f (x )max =M -2 017,f (x )min =m -2 017, ∴(M -2 017)+(m -2 017)=0, ∴M +m =4 034,∴⑤不正确. 16.已知函数f (x )=lnx +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=lnx +1x -1>ln mx -17-x恒成立,某某数m 的取值X 围.解:(1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln-x +1-x -1=ln x -1x +1=ln ⎝ ⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ).∴f (x )=lnx +1x -1是奇函数. (2)由于x ∈[2,6]时,f (x )=lnx +1x -1>ln mx -17-x恒成立, ∴x +1x -1>mx -17-x>0, ∵x ∈[2,6],∴0<m <(x +1)(7-x )在x ∈[2,6]上恒成立. 令g (x )=(x +1)(7-x )=-(x -3)2+16,x ∈[2,6],由二次函数的性质可知,x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减, 即x ∈[2,6]时,g (x )min =g (6)=7, ∴0<m <7.故实数m 的取值X 围为(0,7).。
高考数学一轮复习 第2章 函数、导数及其应用 2.11 导数在研究函数中的应用(一)课后作业 文-人

2.11 导数在研究函数中的应用(一)[重点保分 两级优选练]A 级一、选择题1.(2017·某某模拟)函数f (x )=axx 2+1(a >0)的单调递增区间是( )A .(-∞,-1)B .(-1,1)C .(1,+∞) D.(-∞,-1)∪(1,+∞) 答案 B解析 函数f (x )的定义域为R ,f ′(x )=a 1-x 2x 2+12=a 1-x 1+xx 2+12.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1).故选B.2.若函数f (x )=(x 2-2x )e x在(a ,b )上单调递减,则b -a 的最大值为( ) A .2 B. 2 C .4 D .2 2 答案 D解析 f ′(x )=(2x -2)e x +(x 2-2x )e x =(x 2-2)e x,令f ′(x )<0,∴-2<x <2, 即函数f (x )的单调递减区间为(-2,2). ∴b -a 的最大值为2 2.故选D.3.函数f (x )=(x -1)(x -2)2在[0,3]上的最小值为( ) A .-8 B .-4 C .0 D.427答案 B解析 f ′(x )=(x -2)2+2(x -1)(x -2)=(x -2)(3x -4).令f ′(x )=0⇒x 1=43,x 2=2,结合单调性,只要比较f (0)与f (2)即可.f (0)=-4,f (2)=0.故f (x )在[0,3]上的最小值为f (0)=-4.故选B.4.(2017·豫南九校联考)已知f ′(x )是定义在R 上的连续函数f (x )的导函数,满足f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞) 答案 A 解析 设g (x )=f xe2x,则g ′(x )=f ′x -2f xe2x<0在R 上恒成立,所以g (x )在R 上递减,又因为g (-1)=0,f (x )>0⇔g (x )>0,所以x <-1.故选A.5.(2017·某某某某一中期末)f (x )=x 2-a ln x 在(1,+∞)上单调递增,则实数a 的取值X 围为( )A .a <1B .a ≤1 C.a <2 D .a ≤2 答案 D解析 由f (x )=x 2-a ln x ,得f ′(x )=2x -a x, ∵f (x )在(1,+∞)上单调递增,∴2x -a x≥0在(1,+∞)上恒成立,即a ≤2x 2在(1,+∞)上恒成立, ∵x ∈(1,+∞)时,2x 2>2,∴a ≤2.故选D.6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( ) A .a <b <c B .c <a <b C .c <b <a D .b <c <a 答案 B解析 由f (x )=f (2-x )可得对称轴为x =1,故f (3)=f (1+2)=f (1-2)=f (-1). 又x ∈(-∞,1)时,(x -1)f ′(x )<0,可知f ′(x )>0.即f (x )在(-∞,1)上单调递增,f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12,即c <a <b .故选B. 7.若函数f (x )=e -x·x ,则( ) A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确答案 B解析 f ′(x )=-e -x·x +12x·e -x=e -x⎝ ⎛⎭⎪⎫-x +12x =e -x ·1-2x 2x. 令f ′(x )=0,得x =12.当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f ⎝ ⎛⎭⎪⎫12=1e·12=12e.故选B. 8.已知函数f (x )=ax-1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值X 围是( )A .a >2B .a <3C .a ≤1 D.a ≥3 答案 C解析 函数f (x )的定义域是(0,+∞),不等式a x-1+ln x ≤0有解,即a ≤x -x ln x 在(0,+∞)上有解,令h (x )=x -x ln x ,可得h ′(x )=1-(ln x +1)=-ln x ,令h ′(x )=0,可得x =1,当0<x <1时,h ′(x )>0,当x >1时,h ′(x )<0,可得当x =1时,函数h (x )=x -x ln x 取得最大值1,要使不等式a ≤x -x ln x 在(0,+∞)上有解,只要a 小于等于h (x )的最大值即可,即a ≤1.故选C.9.若函数f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则实数a 的取值X 围为( )A .[2,+∞) B.[4,+∞) C .{4} D .[2,4] 答案 C解析 f ′(x )=3ax 2-3,当a ≤0时,f (x )min =f (1)=a -2≥0,a ≥2,不合题意;当0<a ≤1时,f ′(x )=3ax 2-3=3a ⎝⎛⎭⎪⎫x +1a ⎝ ⎛⎭⎪⎫x -1a ,f (x )在[-1,1]上为减函数,f (x )min =f (1)=a -2≥0,a ≥2,不合题意;当a >1时,f (-1)=-a +4≥0,且 f ⎝ ⎛⎭⎪⎫1a =-2a+1≥0, 解得a =4.综上所述,a =4.故选C.10.(2018·某某一模)已知函数f (x )=m ⎝ ⎛⎭⎪⎫x -1x -2ln x (m ∈R ),g (x )=-m x,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值X 围是( )A.⎝⎛⎦⎥⎤-∞,2e B.⎝ ⎛⎭⎪⎫-∞,2eC .(-∞,0]D .(-∞,0) 答案 B解析 由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x 在[1,e]上有解,即m 2<ln xx在[1,e]上有解,令h (x )=ln x x ,则h ′(x )=1-ln xx2,当1≤x ≤e 时,h ′(x )≥0,∴在[1,e]上,h (x )max =h (e)=1e ,∴m 2<1e ,∴m <2e .∴m 的取值X 围是⎝⎛⎭⎪⎫-∞,2e .故选B.二、填空题11.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值X 围为________.答案 [1,+∞)解析 f ′(x )=mx +1x-2≥0对一切x >0恒成立.m ≥-⎝ ⎛⎭⎪⎫1x 2+2x ,令g (x )=-⎝ ⎛⎭⎪⎫1x 2+2x,则当1x =1时,函数g (x )取得最大值1,故m ≥1.12.(2017·西工大附中质检)已知f (x )是奇函数,且当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值是1,则a =________.答案 1解析 由题意,得x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12有最大值-1,f ′(x )=1x -a ,由f ′(x )=0,得x =1a ∈(0,2),且x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,f (x )单调递增,x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0,f (x )单调递减,则f (x )max =f ⎝ ⎛⎭⎪⎫1a =ln 1a -1=-1,解得a =1.13.(2018·东北三校联考)已知定义在R 上的奇函数f (x )的图象为一条连续不断的曲线,f (1+x )=f (1-x ),f (1)=a ,且当0<x <1时,f (x )的导函数f ′(x )满足f ′(x )<f (x ),则f (x )在[2017,2018]上的最小值为________.答案 a解析 由f (1+x )=f (1-x )可得函数f (x )的图象关于直线x =1对称.又f (x )是定义在R 上的奇函数,则f (0)=0,且f (x )的图象关于点(0,0)对称,所以f (x )是以4为周期的周期函数,则f (x )在[2017,2018]上的图象与[1,2]上的图象形状完全相同.令g (x )=f xex,则g ′(x )=f ′x -f xex<0,函数g (x )在(0,1)上递减,则g (x )<g (0)=0,所以f ′(x )<f (x )<0,则函数f (x )在(0,1)上单调递减.又由函数的对称性质可得f (x )在(1,2)上单调递增,则f (x )在[2017,2018]上的最小值为f (2017)=f (1)=a .14.(2018·启东中学调研)已知函数f (x )=e x+a ln x 的定义域是D ,关于函数f (x )给出下列命题:①对于任意a ∈(0,+∞),函数f (x )是D 上的减函数; ②对于任意a ∈(-∞,0),函数f (x )存在最小值;③存在a ∈(0,+∞),使得对于任意的x ∈D ,都有f (x )>0成立; ④存在a ∈(-∞,0),使得函数f (x )有两个零点.其中正确命题的序号是________.(写出所有正确命题的序号) 答案 ②④解析 由f (x )=e x+a ln x ,可得f ′(x )=e x +a x,若a >0,则f ′(x )>0,得函数f (x )是D 上的增函数,存在x ∈(0,1),使得f (x )<0即得命题①③不正确;若a <0,设e x+a x=0的根为m ,则在(0,m )上f ′(x )<0,在(m ,+∞)上f ′(x )>0,所以函数f (x )存在最小值f (m ),即命题②正确;若f (m )<0,则函数f (x )有两个零点,即命题④正确.综上可得,正确命题的序号为②④.B 级三、解答题15.已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x-a >0,即函数f (x )的单调增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a.当0<x <1a 时,f ′(x )=1-axx>0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎥⎤0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a,+∞.综上得,当a ≤0时,f (x )的单调递增区间为(0,+∞),无递减区间;当a >0时,f (x )的单调递增区间为⎝⎛⎦⎥⎤0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞. (2)①当1a≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,∴f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,∴f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,∴当12<a <ln 2时,f (x )的最小值是f (1)=-a ;当ln 2≤a <1时,f (x )的最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a . 16.(2017·某某某某联考)已知函数f (x )=e x-ax ,a >0. (1)记f (x )的极小值为g (a ),求g (a )的最大值; (2)若对任意实数x 恒有f (x )≥0,求a 的取值X 围.解 (1)函数f (x )的定义域是(-∞,+∞),f ′(x )=e x-a ,令f ′(x )>0,得x >ln a , 所以f (x )的单调递增区间是(ln a ,+∞); 令f ′(x )<0,得x <ln a ,所以f (x )的单调递减区间是(-∞,ln a ), 函数f (x )在x =ln a 处取极小值,g (a )=f (x )极小值=f (ln a )=e ln a -a ln a =a -a ln a . g ′(a )=1-(1+ln a )=-ln a ,当0<a <1时,g ′(a )>0,g (a )在(0,1)上单调递增; 当a >1时,g ′(a )<0,g (a )在(1,+∞)上单调递减,所以a =1是函数g (a )在(0,+∞)上唯一的极大值点,也是最大值点,所以g (a )max =g (1)=1.(2)当x ≤0时,a >0,e x-ax ≥0恒成立, 当x >0时,f (x )≥0,即e x-ax ≥0,即a ≤e xx.令h (x )=e x x ,x ∈(0,+∞),h ′(x )=e x x -e x x2=exx -1x 2, 当0<x <1时,h ′(x )<0,当x >1时,h ′(x )>0,故h (x )的最小值为h (1)=e , 所以a ≤e,故实数a 的取值X 围是(0,e].17.(2017·某某湘中名校联考)设函数f (x )=x -1x-a ln x (a ∈R ).(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1和x 2,记过点A (x 1,f (x 1)),B (x 2,f (x 2))的直线的斜率为k ,问:是否存在a ,使得k =2-a ?若存在,求出a 的值;若不存在,请说明理由.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1+1x 2-a x =x 2-ax +1x 2.令g (x )=x 2-ax +1,则方程x 2-ax +1=0的判别式Δ=a 2-4. ①当|a |≤2时,Δ≤0,f ′(x )≥0,故f (x )在(0,+∞)上单调递增.②当a <-2时,Δ>0,g (x )=0的两根都小于0,在(0,+∞)上恒有f ′(x )>0,故f (x )在(0,+∞)上单调递增.③当a >2时,Δ>0,g (x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42,当0<x <x 1时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0, 故f (x )在(0,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减. (2)由(1)知,a >2.因为f (x 1)-f (x 2)=(x 1-x 2)+x 1-x 2x 1x 2-a (ln x 1-ln x 2), 所以k =f x 1-f x 2x 1-x 2=1+1x 1x 2-a ·ln x 1-ln x 2x 1-x 2.又由(1)知,x 1x 2=1.于是k =2-a ·ln x 1-ln x 2x 1-x 2.若存在a ,使得k =2-a .则ln x 1-ln x 2x 1-x 2=1.即ln x1-ln x2=x1-x2.亦即x2-1x2-2ln x2=0(x2>1).(*)再由(1)知,函数h(t)=t-1t-2ln t在(0,+∞)上单调递增,而x2>1,所以x2-1x2-2ln x2>1-11-2ln 1=0.这与(*)式矛盾.故不存在a,使得k=2-a.。
高考数学一轮复习第二章函数导数及其应用2111导数的应用课件理新人教A版

解法一:因为 f(x)=2sinx+sin2x=2sinx(1+cosx),所以[f(x)]2=4sin2x(1 +cosx)2=4(1-cosx)(1+cosx)3,设 cosx=t,则 y=4(1-t)(1+t)3(-1≤t≤1), 所以 y′=4[-(1+t)3+3(1-t)(1+t)2]=4(1+t)2(2-4t),所以当-1<t<21时, y′>0;当21<t<1 时,y′<0。所以函数 y=4(1-t)(1+t)3(-1≤t≤1)在-1,21 上单调递增,在12,1上单调递减,所以当 t=12时,ymax=247;当 t=±1 时, ymin=0。所以 0≤y≤247,即 0≤[f(x)]2≤247,所以-32 3≤f(x)≤32 3,所以 f(x)的最小值为-32 3。
(ⅱ)当 0<2a<1,即 0<a<2 时,由 f′(x)>0,得 0<x<a2或 x>1; 由 f′(x)<0,得a2<x<1。 则函数 f(x)的单调递增区间为0,a2,(1,+∞), 函数 f(x)的单调递减区间为a2,1。 (ⅲ)当2a=1,即 a=2 时,f′(x)≥0 恒成立,则函数 f(x)的单调递增区 间为(0,+∞)。
2.函数的极值与导数
(1)函数的极小值
若函数 y=f(x)在点 x=a 处的函数值 f(a)比它在点 x=a 附近其他点的函数
值 都小
,且 f′(a)=0,而且在点 x=a 附近的左侧 f′(x)<0 ,右
侧 f′(x)>0 ,则 x=a 叫做函数的极小值点,f(a)叫做函数的极小值。
(2)函数的极大值
1.函数 f(x)在区间(a,b)上递增,则 f′(x)≥0,“f′(x)>0 在(a,b)上成 立”是“f(x)在(a,b)上单调递增”的充分不必要条件。
高考数学一轮总复习 第二章 函数、导数及其应用 2.6 对数与对数函数课件 理

D.①②④
13
第十三页,共四十五页。
解析:若 M=N=0,则 logaM,logaN,logaM2,logaN2 无意义,若 logaM2=logaN2, 即 M2=N2,则|M|=|N|,①③④不正确,②正确.
答案:C
14
第十四页,共四十五页。
2.写出下列各式的值: (1)log2 22=________; (2)log53+log513=________; (3)lg 52+2lg 2-12-1=________;
「应用提示研一研」 1.换底公式的两个重要推论
其中 a>0 且 a≠1,b>0 且 b≠1,m,n∈R.
11
第十一页,共四十五页。
2.对数函数的图象与底数大小的比较 如图,作直线 y=1,则该直线与四个函数图象交点的横坐标为相应的底数.故 0 <c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.
12
第十二页,共四十五页。
「基础小题练一练」
1.对于 a>0 且 a≠1,下列结论正确的是( )
①若 M=N,则 logaM=logaN; ②若 logaM=logaN,则 M=N; ③若 logaM2=logaN2,则 M=N; ④若 M=N,则 logaM2=logaN2. A.①③
B.②④
C.②
5+(lg 5+lg 2)·lg 3=lg 5+lg 3=lg 15.
∴x=15.
答案:(1)81
5 (2)4
(3)15
23
第二十三页,共四十五页。
对数函数的图象(tú xiànɡ)及应用
[典 例 导 引] (1)函数 y=2log4(1-x)的图象大致是( )
(2)若不等式(x-1)2<logax 在 x∈(1,2)内恒成立,则实数 a 的取值范围为________.
高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理

第二章 函数(hánshù)、导数及其应用
第九节 函数模型(móxíng)及其应用
第一页,共33页。
栏
考情分析 1
(fēnxī)
目
基础自主(zìzhǔ) 2
3 考点疑难(yí
nán)突破
导
梳理
航
4 课时跟踪检测
第二页,共33页。
1
考情分析
第三页,共33页。
考点分布
考纲要求
第十三页,共33页。
3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品 x 万件时的生产成本为 C(x)=12x2+2x+20(万元).一万件售价是 20 万元,为获取更大 利润,该企业一个月应生产该商品数量为________万件.
解析:利润 L(x)=20x-C(x)=-12(x-18)2+142,当 x=18 时,L(x)有最大值. 答案:18
第三十页,共33页。
指数函数与对数函数模型的应用技巧 (1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会 合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于 1)的一 类函数模型,与增长率、银行利率有关的问题都属于指数函数模型. (2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函 数解析式,再借助函数的图象求解最值问题.
二次函数模型
f(x)=ax2+bx+c (a,b,c 为常数,a≠0)
第六页,共33页。
f(x)=bax+c 指数函数模型
(a,b,c 为常数,b≠0,a>0 且 a≠1)
对数函数模型
f(x)=blogax+c
(a,b,c 为常数,b≠0,a>0 且 a≠1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的基本概念
[典题导入]
有以下判断:
[听课记录]
对 于 (1 ) , 由 于函 数 f ( x ) = 的 定 义域 为
{ x | x ∈ R , 且 x ≠ 0 } , 而 函 数 g ( x ) = 的定义域是R,所以二者不是同一函数;对于(2),若x=1 不是y=f(x)定义域的值,则直线x=1与y=f(x)的图象没 有交点,如果x=1是y=f(x )定义域内的值,由函数定义 可知,直线x=1与y=f(x)的图象只有一个交点,
1.已知f:x→-sin x是集合A(A⊆[0,2π])到集合B= 的一个映射,则集合A中的元素个数最多有 ( ) A.4个 B.5个
C.6个
D.7个
B [当-sin x =0 时 sin x =0,x 可取 0,π,2π; 7π 11π 1 1 当-sin x = 时,sin x =- ,x 可取 , , 2 2 6 6 故集合 A 中的元素最多有 5 个.]
[关键要点点拨]
1.函数与映射的区别与联系
(1)函数是特殊的映射,其特殊性在于集合 A与集合B只 能是非空数集,即函数是非空数集 A 到非空数集 B 的映 射. (2)映射不一定是函数,从A到B的一个映射,A、B若不 是数集,则这个映射便不是函数.
2.定义域与值域相同的函数,不一定是相同函数 如函数y=x与y=x+1,其定义域与值域完全相同,但不 是相同函数;再如函数 y=sin x与y=cos x,其定义域与 值域完全相同,但不是相同函数.因此判断两个函数是否 相同,关键是看定义域和对应关系是否相同. 3.求分段函数应注意的问题 在求分段函数的值 f (x 0 )时,一定要首先判断 x 0 属于定义 域的哪个子集,然后再代入相应的关系式;分段函数的值 域应是其定义域内不同子集上各关系式的取值范围的并 集.
求函数的解析式
2 故 f (x )的解析式是 f (x )=lg (x >1). x -1 (3)设 f (x )=ax 2+bx +c(a≠0), 由 f (0)=0,知 c=0,f (x )=ax 2+bx , 又由 f (x +1)=f (x )+x +1, 得 a(x +1)2+b(x +1)=ax 2+bx +x +1, 即 ax 2+(2a+b)x +a+b=ax 2+(b+1)x +1,
3.已知集合 A =[0,8],集合 B =[0,4],则下列对应关系中,不 能看作从 A 到 B 的映射的是 1 A.f :x →y = x 8 1 C.f :x →y = x 2 1 B.f :x →y = x 4 D.f :x →y =x ( )
D [按照对应关系 f :x →y =x ,对 A 中某些元素(如 x =8),B 中不存在元素与之对应.]
2.函数的定义域、值域:
在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A 叫做函数的 ;与x的值相对应的y值叫 定义域 做函数值,函数值的集合{f(x)|x∈A}叫做函数 值域 的 .显然,值域是集合B的子集. 3.函数的三要素: 和 定义域 . 值域 、
对应关系
4.相等函数:如果两个函 数的 和 定义域 对应关系 完全一致,则这两个函数相等,这是判断两函数相等的 依据.
4.已知
=x 2+5x ,则 f (x )=____________.
1 1 1 5 解析 令 t= ,则 x = .所以 f (t)= 2+ . x t t t 5x + 1 故 f (x )= 2 (x ≠0). x 5x +1 答案 (x ≠0) x2
5.(教材习题改编)若f(x)=x2+bx+c,且f(1)=0,f(3) =0,则f(-1)=________.
[规律方法]
两个函数是否是同一个函数,取决于它们的定义域和对应 关系是否相同,只有当两个函数的定义域和对应关系完全 相同时,才表示同一函数.另外,函数的自变量习惯上用 x表示,但也可用其他字母表示,如:f(x)=2x-1,
g(t)=2t-1,h(m)=2m-1均表示同一函数.
[跟踪训练]
即 y=f (x )的图象与直线 x =1 最多有一个交点; 对于(3), f (x )与 g(t) 的定义域、 值域和对应关系均相同, 所以 f (x )和 g(t)表示同一函数; 对于(4),由于 1 所以 f (f ( ))=f (0)=1. 2 综上可知,正确的判断是(2)(3). 答案 (2)(3)
第一节
函数及其表示
[主干知识梳理]
一、函数的概念 1.函数的定义: 一般地,设 A , B 是两个 的数集,如果 非空 按照某种确定的对应关系 f ,使对于集合 A 中的任意一个 数x,在集合B中都有 确定的数f(x)和它对应; 唯一 那么 就 称 f : A → B 为从集合 A 到集合 B 的一个函数 . 记 作 . y=f(x),x∈A
配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成 关于g(x)的表达式,然后以x替代g(x),便得f(x)的解析 式(如例(1)); (2)待定系数法:若已知函数的类型(如一次函数、二次函 数),可用待定系数法(如例(3));
(3)换元法:已知复合函数f(g(x))的解析式,可用换元法, 此时要注意新元的取值范围(如例(2));
二、函数的表示法 表 有: 示 函 数 解析法 的 图象法 常 用 列表法 方 法 、 、 .
三、映射的概念 设A,B是两个非空的集合,如果按照某一个确定的对应 关系f,使对于集合A中的任意一个元素x,在集合B中都有 唯一确定的元素 y与之对应,那么称对应f:A →B 为集合A 到集合B的一个映射.
四、分段函数 若 函数在其定义域内,对于定义域内的不同取值 区间,有着不同的 ,这样的函数通 对应关系 常叫做分段函数.分段函数虽然由部分组成,但它表示 的是一个函数.
[基础自测自评]
1.下列各图形中是函数图象的是 ( )
D [由函数的概念知D正确,A,B,C中不满足一对一关 系.]