动能和动能定理习题

合集下载

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点到B点的高度差为h2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v=0.5 m/s,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g=10 m/s2,试求:

由功能关系可得:
(另解:两个过程A球发生的位移分别为 、 , ,由匀变速规律推论 ,根据电场力做功公式有: )
(3)对A球由平衡条件得到: , ,
从A开始运动到发生第一次碰撞:
从第一次碰撞到发生第二次碰撞:
点睛:本题是电场相关知识与动量守恒定律的综合,虽然A球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.
所以
B到C根据动能定理有

动能 动能定理

动能    动能定理

练习2——2 动能动能定理一填空题1 一个质量为m,速度为v的物体,它的动能等于物体的质量与速度二次方乘积的一半。

2 动能是标量,它的国际单位是 J。

3 合力做的功等于物体动能的增量,这个结论叫做动能定理。

4 两物体的质量相等,速度大小相同,但方向不同,则它们的动能相同(填“相同”或“不相同”)5 合外力对物体做正功,物体的动能增加;合外力对物体做负功,物体的动能减少。

6 汽车的质量为6吨,速度为18km/h,其动能为75000J。

7估算你骑自行车时所具有的最大动能。

8一质量为m的物体在吊绳的拉力作用下,沿竖直方向由静止开始以加速度a 匀加速上升了h,在这一过程中物体动能的改变量为mah 。

9 我国发射的第一颗人造地球卫星的质量是173kg,轨道速度为7.2km/s,它的动能是 4.5×109J。

10 甲乙两物体,甲的质量是乙的4倍,甲的速度是5.0m/s,乙的速度必须是10 m/s,才具有和甲一样的动能。

11 甲的质量为m,速度为v;乙的质量为2m,速度为v/2.它们的动能之比为2:1 。

12 合外力对物体做了50J的功,则物体的动能变化情况是:动能增加了50 J。

13 质量为10kg的物体,由静止开始从6m长的斜面顶端加速滑下,加速度为3m/s2。

它到达斜面底端的速度为6m/s ,动能为180J。

二判断题1 动能是矢量,有负值。

(×)2 如果物体的质量减半,而速度增大一倍,则它的动能将保持不变。

(×)3 合外力对物体做正功时,物体的速度一定增大。

(√)4 只要合外力对物体做的功为零,物体的动能就不变。

(√)5 子弹的速度为v时,恰能射穿一块木板,若子弹的速度为2v时,则恰好能射穿两块同样的木板。

( ×)6 摩擦力对物体做功,有时也能使物体的动能增加。

(√)7 力对物体不做功,物体一定静止不动。

(×)8 动能的最小值是零,不可能有负值。

(√)9 物体受力越大,其动能的改变量越大。

高中物理动能与动能定理技巧(很有用)及练习题

高中物理动能与动能定理技巧(很有用)及练习题

高中物理动能与动能定理技巧(很有用)及练习题一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。

动能与动能定理经典习题及答案(免费》

动能与动能定理经典习题及答案(免费》

1.关于做功和物体动能变化的关系,不正确的是().A.只有动力对物体做功时,物体的动能增加B.只有物体克服阻力做功时,它的功能减少C.外力对物体做功的代数和等于物体的末动能和初动能之差D.动力和阻力都对物体做功,物体的动能一定变化2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是().A.乙大B.甲大C.一样大D.无法比较4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零C.动力做功与阻力做功的代数和为零D.合力做的功为零5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是().A.物体的动能可能减少B.物体的动能可能增加C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功大小是().A、FR/4B、3FR/4C、5FR/2D、零7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。

从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J8.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.9. 一小球从高出地面Hm 处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。

动能定理简单练习题

动能定理简单练习题

动能定理简单练习题动能定理简单练习题动能定理是物理学中的一个基本定理,描述了物体的动能与其速度之间的关系。

它在解决各种物理问题中起着重要的作用。

本文将给出一些简单的练习题,帮助读者更好地理解和应用动能定理。

练习题一:一个质量为1 kg的物体以10 m/s的速度沿着水平方向运动,求它的动能。

解析:根据动能定理,动能等于物体的质量乘以速度的平方的一半。

即动能=1/2 × 1 × (10)^2 = 50 J。

练习题二:一个质量为2 kg的物体以2 m/s的速度运动,当它的速度增加到4m/s时,求它的动能的增加量。

解析:首先求物体在速度从2 m/s增加到4 m/s时的动能。

根据动能定理,动能等于物体的质量乘以速度的平方的一半。

即动能1=1/2 × 2 × (2)^2 = 4 J。

再求物体在速度从0 m/s增加到4 m/s时的动能。

即动能2=1/2 × 2 × (4)^2 = 16 J。

所以动能的增加量=动能2 - 动能1 = 16 J - 4 J = 12 J。

练习题三:一个质量为0.5 kg的物体以20 m/s的速度运动,当它的速度减小到10 m/s时,求它的动能的减小量。

解析:首先求物体在速度从20 m/s减小到10 m/s时的动能。

根据动能定理,动能等于物体的质量乘以速度的平方的一半。

即动能1=1/2 × 0.5 × (20)^2 = 100 J。

再求物体在速度从20 m/s减小到0 m/s时的动能。

即动能2=1/2 × 0.5× (10)^2 = 25 J。

所以动能的减小量=动能1 - 动能2 = 100 J - 25 J = 75 J。

练习题四:一个质量为10 kg的物体以5 m/s的速度运动,撞击到一个质量为5kg的静止物体,两个物体粘在一起后以共同的速度运动,求它们共同的速度。

解析:由于两个物体粘在一起后以共同的速度运动,可以利用动能守恒定理解决这个问题。

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

(1)小车运动到 C 点时的速度大小;
(2)小车在 BD 段运动的时间;
(3)水平半圆轨道对小车的作用力大小;
(4)要使小车能通过水平半圆轨道,发动机开启的最短时间.
【答案】(1) 6m/s ;(2) 0.3s ;(3) 4 2N .;(4) 0.35s .
【解析】
【详解】
(1)由小车在 C 点受力得:
【答案】(1)8m/s (2)35J (3)5 次 【解析】 【详解】 (1)物块在 PO 过程中受到竖直向下的重力、垂直斜面向上的弹力、和沿斜面向上的摩擦 力,此过程应用动能定理得:
mgL sin mgL cos 1 mv2 2
解得物块第一次接触弹簧时物体的速度的大小为:
v 2gLsin cos 8 m/s
mvA2m
WT
mg
h sin
h
2.如图所示,粗糙水平地面与半径为 R=0.4m 的粗糙半圆轨道 BCD 相连接,且在同一竖直 平面内,O 是 BCD 的圆心,BOD 在同一竖直线上.质量为 m=1kg 的小物块在水平恒力 F=15N 的作用下,从 A 点由静止开始做匀加速直线运动,当小物块运动到 B 点时撤去 F, 小物块沿半圆轨道运动恰好能通过 D 点,已知 A、B 间的距离为 3m,小物块与地面间的动 摩擦因数为 0.5,重力加速度 g 取 10m/s2.求: (1)小物块运动到 B 点时对圆轨道 B 点的压力大小. (2)小物块离开 D 点后落到地面上的点与 D 点之间的距离
2mL QE
点睛:本题是电场相关知识与动量守恒定律的综合,虽然 A 球受电场力,但碰撞的内力远
大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么
A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
(2)等离子体由下方进入区域I后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q´,则q´E=q´v1B1,即:E=B1v1;正离子束经过区域I加速后,离开PQ的速度大小为v3,根据动能定理可知:qU= mv32- mv22,其中电压U=Ed=B1v1d
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能和动能定理
【学习目标】
1.知道动能的符号、表达式和单位.
2.会根据动能表达式计算运动物体的动能.
3.写出动能定理的表达式,理解动能定理的物理意义.
4.知道动能定理也可用于变力做功和曲线运动的情景.
5.会用动能定理解决单个物体的有关问题.
【重点难点】
1.能从牛顿第二定律和运动学公式导出动能定理.
2.运用动能定理求变力所做的功.
3.领悟运用动能定理解题的优越性.
4.理解做功的过程就是能量转化或转移的过程.
【知识链接】
1.动能
(1)物体由于_______而具有的能叫动能.
(2)动能的表达式:E k =______,动能的单位:国际单位制中是________.
(3)动能是_______,动能的大小与速度的_______有关,而与速度的_______无关.
2.动能定理
(1)动能定理的内容:力在一个过程中对物体所做的功,等于物体在这个过程中_______.这个结论叫做动能定理.
(2)动能定理的表达式W=E k2-E k1=21mv 22-2
1mv 12. E k2表示物体的______,E k1表示物体的______,W 表示______,或说是物体所受所有外力对物体做功的代数和.
(3)动能定理既适用于恒力做功,也适用于______,既适用于直线运动,也适用于_______.
(4)在应用动能定理时还应注意到,外力做正功,物体的动能__________,外力做负功,物体的动能________.
【问题探究】
一个物体的动能发生变化,速度一定变化吗?若速度发生变化,动能一定变化吗?你能通过比较动能定理与牛顿运动定律的适用条件,谈谈动能定理的优越性吗?
1.动能
(1)动能的定义
物体由于运动而具有的能叫动能.动能的表达式:E k =2
1mv 2.动能的单位:国际单位制中,焦耳(J ).
(2)对动能的理解
①动能是标量,且只有正值.例如一个正在做速率不变的圆周运动的物体,由于它的速率不变化,所以它的动能也不变化.
②动能具有瞬时性.在某一时刻,物体具有一定的速度,也就具有一定的动能.
③动能具有相对性.因为v 与参照系的选择有关,所以对于不同的参考系,同一物体可能具有不同的动能.一般都以地面为参考系.
2.动能定理的理解
动能定理的文字描述:“力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化.这个结论叫做动能定理(theorem of kinetic energy).”对于这句话的理解应注意以下几点:
(1)要注意动能与动能增量概念的不同.动能描述的是物体在某一时刻或某一位置所具有的能量状态,是个状态量.动能增量指的是物体的末动能减去初动能,即E k2-E k1,描述的是从一个状态到另一个状态的变化量.动能只取正值,无正负之分,而动能增量有正负之分,ΔE k>0表示物体的动能增加,ΔE k<0表示物体的动能减少.
(2)动能定理不仅描述了功和动能增量间的等值关系,还体现出了它们之间的因果关系,也就是说力对物体做功是引起物体动能变化的原因;同时还体现出了它们之间的量度关系,即功是物体动能变化的量度.但对于这一点,经常有同学会错误地理解为“功就是动能的增量”或“功转化成了动能”.其实,对于动能变化与功之间的关系,简而言之就是:“物体动能变化了,是因为力对物体做了功,而动能变化了多少可以用功的大小来量度.”正类似于“物体的运动状态变化了,是因为物体受到了力的作用.力的作用效果是产生了瞬时加速度,速度变化快慢可用加速度来表示”.
(3)动能定理中“力在一个过程中对物体做的功是指所有力对物体所做的功”,也就是总功,它揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来度量.
(4)动能定理的计算公式为标量式,v和s是相对同一惯性参考系的,且式中只涉及动能和功,无其他能.
(5)动能定理适用于物体的直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用过程中各力做功的多少和正负即可.这些正是动能定理解题的优越性所在.
(6)应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程中各外力所做的总功;两个状态是指初末两个状态的动能.
(7)若物体运动的过程中包含几个不同过程,应用动能定理时,可以分段考虑,也可以全过程为一整体来处理.
3.动能定理的应用
(1)一个物体的动能变化ΔE k与合外力对物体所做功W具有等量代换关系,若ΔE k>0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k<0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k=0,表示合外力对物体所做的功等于零.反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.
(2)动能定理中涉及的物理量有F、l、m、v、W、E k等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始末两状态动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.
(3)动能定理解题的基本思路
①选取研究对象,明确它的运动过程.
②分析研究对象的受力情况和各个力做功情况然后求各个外力做功的代数和.
③明确物体在过程始末状态的动能E k1和E k2.
④列出动能定理的方程W合=E k2-E k1,及其他必要的解题方程,进行求解.
【典型例题】
应用点一:动能概念的理解
例1:关于物体的动能,下列说法中正确的是()。

相关文档
最新文档