初二数学一元二次方程与二次函数试卷(含答案)
二次函数与一元二次方程练习题(含答案)

二次函数与一元二次方程一、选择题1.如图2-128所示的是二次函数y =ax 2+bx +c 的图象,则一次函数y=ax -b 的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.在二次函数y =ax 2+bx +c 中,若a 与c 异号,则其图象与x 轴的交点个数为 ( )A .2个B .1个C .0个D .不能确定 3.根据下列表格的对应值:x 3.23 3.24 3.25 3.26 ax 2+bx +c-0.06-0.020.030.09判断方程 ax 2+bx +c=0(a ≠0,a ,b ,c 为常数)的一个解x 的取值范围是 ( )A .3<x <3.23B .3.23<x <3.24C .3.24<x <3.25D .3.25<x <3.26 4.函数cbx axy ++=2的图象如图l -2-30,那么关于x 的方程a x 2+b+c-3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号实数根C .有两个相等实数根D .无实数根5.二次函数cbx ax y ++=2的图象如图l -2-31所示,则下列结论成立的是( )A .a >0,bc >0,△<0 B.a <0,bc >0,△<0 C .a >0,bc <0,△<0 D.a <0,bc <0,△>06.函数cbx ax y ++=2的图象如图 l -2-32所示,则下列结论错误的是( )A .a >0B .b 2-4ac >0C 、20ax bx c ++=的两根之和为负D 、20ax bx c ++=的两根之积为正7.不论m 为何实数,抛物线y=x 2-mx +m -2( ) A .在x 轴上方 B .与x 轴只有一个交点 C .与x 轴有两个交点 D .在x 轴下方 二、填空题8.已知二次函数y =-x 2+2x +m 的部分图象如图 2-129所示,则关于x 的一元二次方程-x 2+2x +m =0的解为 .9.若抛物线y=kx 2-2x +l 与x 轴有两个交点,则k 的取值范围是 . 10.若二次函数y =ax 2+bx +c(a ≠0)的图象与x 轴只有一个交 点,则这个交点的坐标是 .11.已知函数y=kx 2-7x —7的图象和x 轴有交点,则k 的取值范围是 12.直线y=3x —3与抛物线y=x 2 -x+1的交点的个数是 . 三、解答题13.已知二次函数y=-x 2+4x-3,其图象与y 轴交于点B,与x 轴交于A, C 两点. 求△ABC 的周长和面积.14..在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图象的一部分(如图),若这个男生出手处A 点的坐标为(0,2),铅球路线的最高处B 点的坐标为B(6,5).(1)求这个二次函数的表达式;(2)该男生把铅球推出去多远?(精确到0.01米).B(6,5)A(0,2)14121086420246xCy15.如图,已知抛物线y=-x 2+bx+c 与x 轴的两个交点分别为A(x 1,0),B(x 2,0) , 且x 1+x 2=4,1213x x .(1)求抛物线的代数表达式; (2)设抛物线与y 轴交于C 点,求直线BC 的表达式; (3)求△ABC 的面积.16.如果一个二次函数的图象经过点A(6,10),与x 轴交于B ,C 两点,点B ,C 的横坐标分别为x 1,x 2,且x 1+x 2=6,x 1x 2=5,求这个二次函数的解析式.17.已知关于x 的方程x 2+(2m +1)x +m 2+2=0有两个不相等的实数根,试判断直线y =(2m -3)x -4m +7能否经过点A(-2,4),并说明理由.18.二次函数y=ax 2+bx +c(a ≠0)的图象如图2-130所示,根据图象解 答下列问题.(1)写出方程ax 2+bx +c =0的两个根; (2)写出不等式ax 2+bx +c >0的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范围;BxOCy A(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.如图2-131所示,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F,G分别在线段BC,AC上,抛物线P上的部分点的横坐标对应的纵坐标如下.x …-3 -2 1 2 …y …-52-4 -520 …(1)求A,B,C三点的坐标;(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;(3)当矩形DEFG的面积S最大时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围;(4)若点D的坐标为(1,0),求矩形DEFG的面积.参考答案1.B[提示:a >0,-2ba<0,∴b >0.] 2.A 3.C 4.C 5.D 6.D 7.C8.x 1=-l ,x 2=3[提示:由图象可知,抛物线的对称轴为x=l ,与x 轴的交点是(3,0),根据对称性可知抛物线与x 轴的另一个交点坐标为(-l ,0),所以一元二次方程-x 2+2x +m =0的解为x 1=-1,x 2=3.故填x 1=-l ,x 2=3.]9.k <1,且k ≠0[提示:若抛物线与x 轴有两个交点,则(-2)2-4k >0.] 10.(-2ba,0) 11.略 12.113.令x=0,得y=-3,故B 点坐标为(0,-3). 解方程-x 2+4x-3=0,得x 1=1,x 2=3. 故A 、C 两点的坐标为(1,0),(3,0).所以AC=3-1=2,AB=221310+=,BC=223332+=, OB=│-3│=3. C △ABC =AB+BC+AC=21032++. S △ABC =12AC ·OB=12×2×3=3.14.(1)设y=a(x-6)2+5,则由A(0,2),得2=a(0-6)2+5,得a=112-. 故y=112-(x-6)2+5. (2)由 112-(x-6)2+5=0,得x 1=26215,6215x +=-.结合图象可知:C 点坐标为(6215+ 故OC=6215+13.75(米)即该男生把铅球推出约13.75米15..(1)解方程组1212413x xxx+=⎧⎪⎨=⎪⎩, 得x1=1,x2=3故2210330b cb c⎧-++=⎪⎨-++=⎪⎩,解这个方程组,得b=4,c=-3.所以,该抛物线的代数表达式为y=-x2+4x-3.(2)设直线BC的表达式为y=kx+m.由(1)得,当x=0时,y=-3,故C点坐标为(0,-3).所以330mk m=-⎧⎨+=⎩, 解得13km=⎧⎨=-⎩∴直线BC的代数表达式为y=x-3 (3)由于AB=3-1=2,OC=│-3│=3.故S△ABC =12AB·OC=12×2×3=3.16.解:设函数为y=ax2+bx+c(a≠0),将A(6,10)代入,得10=36a+6b+c①,当y=0时,ax2+bx+c=0,又x1+x2=-ba=6②,x1x2=ca=5③,由①②③解得a=2,b=-12,c=10.所以解析式为y=2x2-12x+10.17.解:该直线不经过点A.理由如下:∵方程x2+(2m+1)x+m2+2=0有两个不相等的实数根,∴△=(2m+1)2-4(m2+2)=4m-7>0,∴2m-72>0,∴2m-3>0.又由4m-7>0,得-4m+7<0,∴直线y=(2m-3)x-4m+7经过第一、三、四象限,而A(-2,4)在第二象限,∴该直线不经过点A.18.解:(1)由二次函数y=ax2+bx+c(a≠0)的图象可知,抛物线与x轴交于(1,0),B(3,0)两点,即x=1或x=3是方程ax2+bx+c=0的两个根.(2)不等式ax2+bx+c>0的解集,即是求y>0的解集,由图象可知l<x <3.(3)因为a<0,故在对称轴的右侧y随x的增大而减小,即当x>2时,y随x的增大而减小.(4)由图可知,22,242,43,baac baca⎧-=⎪⎪-⎪=⎨⎪⎪=⎪⎩解得2,8,6.abc=-⎧⎪=⎨⎪=-⎩代入方程得-2x2+8x-6-k=O.又因为方程有两个不相等的实数根,所以△>0,即82-4×(-2)×(-6-k)>0,解得k<2.19.解法l:(1)任取x,y的三组值代入y=ax2+bx+c(a≠0),求出解析式为y=12x2+x-4.令y=0,得x1=-4,x2=2;令x=0,得y=-4,∴A,B,C三点的坐标分别为A(2,0),B(-4,0),C(0,-4).解法2:(1)由抛物线P过点(1,-52),(-3,-52)可知,抛物线P的对称轴为x=-1.又∵抛物线P过(2,0),(-2,-4),则由抛物线的对称性可知,点A,B,C的坐标分别为A(2,0),B(-4,0),C(0,-4). (2)由题意,知AD DG AO OC=,而AO=2,OC=4,AD=2-m,故DG=4-2m.又BE EFBO OC=,EF=DG,得BE=4-2m,∴DE=3m,∴S矩形DEFG =DG·DE=(4-2m)·3m=12m-6m2(0<m<2). (3)∵S矩形DEFG=12m-6m2(0<m<2),∴m=1时,矩形的面积最大,且最大面积是6.当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0).设直线DF的解析式为y=kx+b,易知k=23,b=-23.∴y=23x-23.又抛物线P的解析式为y=12x2+x-4.令23x-23=12x2+x-4,解得x161-±.如图2-132所示,设射线DF与抛物线P相交于点N,则N161--.过N作x轴的垂线交x轴于H,得1612561339FN HEDF DE-----+===.∵点M不在抛物线P上,即点M不与N重合,此时k的取值范围是k561-+且k>0. (4)由(3)知S矩形DEFG=6.。
一元二次方程练习题 (含答案)

一元二次方程练习题题号一、填空题二、选择题三、多项选择四、简答题五、计算题总分得分一、填空题(每空5分,共30分)1、关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m= .2、已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.3、已知圆锥底面圆的半径为6cm,它的侧面积为60πcm2,则这个圆锥的高是4、已知m、n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是5、若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2= .6、一元二次方程x2+mx+2m=0(m≠0)的两个实根分别为x1,x2,则= .二、选择题(每空5 分,共35分)7、下列选项中一元二次方程的是()A.x=2y﹣3 B.2(x+1)=3 C.2x2+x﹣4 D.5x2+3x﹣4=0 8、一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=29、将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm10、某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A.8%B.18%C.20%D.25%11、如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为()A.1米 B.2米 C.3米 D.4米12、已知直角三角形的两条直角边的长恰好是方程的两根,则此直角三角形的斜边长为( ).A. B.3 C. D.1313、要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=15 B.x(x﹣1)=15 C.x(x+1)=15 D.x(x﹣1)=1514、由一元二次方程x2+px+q=0的两个根为p、q,则p、q等于()A.0B.1C.1或-2D.0或1评卷人得分评卷人得分三、多项选择(每空5 分,共5分)15、方程的两根分别为,,且,则的取值范围是.四、简答题(每题10 分,共110 分)16、试求实数(≠1),使得方程的两根都是正整数.17、已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.18、如图,在矩形ABCD中,AB=4cm,BC=cm,点P从点A出发以1cm/s的速度移动到点B;点P出发几秒后,点P、A的距离是点P、C距离的倍?19、某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)20、某花圃用花盆培育某种花苗,经试验发现每盆花的盈利与每盆花中花苗的株数有如下关系:每盆植入花苗4株时,平均单株盈利5元;以同样的栽培条件,若每盆每增加1株花苗,平均单株盈利就会减少0.5元.要使每盆花的盈利为24元,且尽可能地减少成本,则每盆花应种植花苗多少株?21、一个足球被从地面向上踢出,它距地面高度可以用二次函数刻画,其中表示足球被踢出后经过的时间.(1)解方程,并说明其根的实际意义;(2)求经过多长时间,足球到达它的最高点?最高点的高度是多少?22、随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2014年底拥有家庭轿车64辆,2016年底家庭轿车的拥有量达到100辆.(1)若该小区2014年底到2016年底家庭轿车拥有量的年平均增长率都相同,求该小区到2017年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,求该小区最多可建室内车位多少个?23、某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.评卷人得分评卷人得分(1) 写出月销售利润y(单位:元) 与售价x(单位:元/千克)之间的函数解析式.(2)当售价定为多少时会获得最大利润?求出最大利润.(3) 商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少?24、.要制作一个如图所示(图中阴影部分为底与盖,且SⅠ=SⅡ)的钢盒子,在钢片的四个角上分别截去两个相同的正方形与两个相同的小长方形,然后折合起来既可,求有盖盒子的高x.25、如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:在第6个图中,黑色瓷砖有__________块,白色瓷砖有__________块;(2)某商铺要装修,准备使用边长为1米的正方形白色瓷砖和长为1米、宽为0.5米的长方形黑色瓷砖来铺地面.且该商铺按照此图案方式进行装修,瓷砖无须切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.经测算总费用为15180元.请问两种瓷砖各需要买多少块?26、已知:平行四边形ABCD的两边AB、BC的长是关于的方程的两个实数根.(1)试说明:无论取何值方程总有两个实数根(2)当为何值时,四边形ABCD是菱形?求出这时菱形的边长;(3)若AB的长为2,那么平行四边形ABCD的周长是多少?五、计算题(每题5分,共35 分)27、用恰当的方法解下列方程:28、解方程:29、x2﹣7x﹣18=0.30、2x2+12x﹣6=031、解方程:.评卷人得分参考答案一、填空题1、﹣2 .【考点】一元二次方程的解.【分析】一元二次方程的解就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.将x=0代入方程式即得.【解答】解:把x=0代入一元二次方程(m﹣2)x2+3x+m2﹣4=0,得m2﹣4=0,即m=±2.又m﹣2≠0,m≠2,取m=﹣2.故答案为:m=﹣2.【点评】此题要注意一元二次方程的二次项系数不得为零.2、k<3 .【考点】根的判别式.【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【解答】解:∴a=1,b=﹣2,c=k,方程有两个不相等的实数根,∴△=b2﹣4ac=12﹣4k>0,∴k<3.故填:k<3.3、8 cm.【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,则l•2π•6=60π,然后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得l•2π•6=60π,解得l=10,所以圆锥的高==8(cm).故答案为8.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了勾股定理.4、4 .【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】先根据判别式的意义确定a≤2,再根据根与系数的关系得到m+n=2a,然后利用a的取值范围确定m+n的最大值.【解答】解:根据题意得△=4a2﹣4(a2+a﹣2)≥0,解得a≤2,因为m+n=2a,所以m+n≤4,所以m+n的最大值为4.故答案为4.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的判别式.5、16 .【考点】根与系数的关系.【分析】利用根与系数的关系可得出α+β和αβ,且α2+β2=(α+β)2﹣2αβ,代入计算即可.【解答】解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.【点评】本题主要考查一元二次方程根与系数的关系,把α2+β2化成(α+β)2﹣2αβ是解题的关键.6、﹣.【考点】根与系数的关系.【分析】由根与系数的关系可得x1+x2=﹣m,x1•x2=2m,继而求得答案.【解答】解:∵一元二次方程x2+mx+2m=0(m≠0)的两个实根分别为x1,x2,∴x1+x2=﹣m,x1•x2=2m,∴==﹣.二、选择题7、D【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是二元一次方程,故此选项错误;B、是一元一次方程,故此选项错误;C、不是方程,故此选项错误;D、符合一元二次方程的定义,故此选项正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.8、D【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.9、D【考点】一元二次方程的应用.【分析】设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.10、C【分析】设每次降价的百分率为x,则第一次降价后的售价为200(1﹣x)元,第二次降价后的售价为200(1﹣x)(1﹣x)元,根据第二降价后的售价为128元建立方程求出其解即可.【解答】解:设每次降价的百分率为x,由题意,得200(1﹣x)2=128,解得:x1=0.2,x2=1.8(不符合题意,舍去).答:每次降价的百分率为20%.故选C.【点评】本题考查了列一元二次方程解降低率的问题的运用,一元二次方程的解法的运用,解答时根据降低率的数量关系建立方程是关键,检验根是否符合题意是容易忘记的过程.11、C【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x,利用“道路的面积”作为相等关系可列方程20x+33x﹣x2=20×33﹣510,解方程即可求解.解题过程中要根据实际意义进行x的值的取舍.【解答】解:设道路的宽为x,根据题意得20x+33x﹣x2=20×33﹣510整理得x2﹣53x+150=0解得x=50(舍去)或x=3所以道路宽为3米.故选C.【点评】本题考查的是一元二次方程的实际运用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.12、C13、B【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=15,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=15.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.14、C三、多项选择15、.四、简答题16、解:因式分解得:,………….5分所以或. ………….7分因为,所以,,………….9分因为两根都是正整数,所以,. ………….12分17、解:(1)一元二次方程x2+(2m-1)x+m2=0有两个实数根,∴△=(2m-1)2-4×1×m2=-4m+1≥0,∴m ≤;(2)当x12-x22=0时,即(x1+x2)(x1-x2)=0,∴x1-x2=0或x1-x2=0当x1+x2=0,依据一元二次方程根与系数的关系可得x1+x2=-(2m-1)∴-(2m-1)=0,∴m=又∵由(1)一元二次方程x2+(2m-1)x+m2=0有两个实数根时的取值范围是m ≤,∴m=不成立,故m无解;当时x1-x2=0,x1=x2,方程有两个相等的实数根,∴△=(2m-1)2-4×1×m2=-4m+1=0,∴m=综上所述,当x1-x2=0时,m=。
初中数学二次函数一元二次方程练习题(附答案)

初中数学二次函数一元二次方程练习题 一、单选题1.如果方程()()23330m x m x --++=是关于x 的一元二次方程,那么m 不能取的值为( )A.3±B.3C.3-D.都不对2.下面关于x 的方程中①20ax bx c ++=;②223(9)(1)1x x --+=;③2150x x++=;④232560x x -+-=;⑤2233(2)x x =-;⑥12100x -=是一元二次方程的个数是( )A.1B.2C.3D.43.一元二次方程220x x -=的两根分别为1x 和2x ,则12x x 为( )A.2-B.1C.2D.04.下列函数解析式中,一定为二次函数的是( )A. 31y x =-B. 2y ax bx c =++C. 2221s t t =-+D. 21y x x=+5.已知(2)2m y x m x =+-+是关于x 的二次函数,那么m 的值为( ) A.2- B.2 C.2± D.06.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.7.在同一平面直角坐标系中,函数2y ax bx =-与y bx a =+的图象可能是( ) A. B. C. D.8.一种药品原价每盒25元,经过两次降价后每盒16元设两次降价的百分率都为x ,则x 满足()A.16(12)25x +=B.25(12)16x -=C.216(1)25x +=D.225(1)16x -=9.如图,二次函数2(0)y ax bx c a =++≠的图象与x 轴的交点坐标为(1,0)-和(3,0).给出下列结论:①0a >;②20a b +=;③0a b c ++>;④当13x -<<时,0y >.其中正确的个数为( )A.1B.2C.3D.4二、证明题10.如图,四边形ABCD 是平行四边形, E 、F 是对角线BD 上的点, 12∠=∠.1.求证: BE DF =;2.求证: //AF CE . 11.已知抛物线212y x bx c =++经过点3(10),0,2⎛⎫ ⎪⎝⎭, 1.求该抛物线的函数解析式;2.将抛物线212y x bx c =++平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的图象所对应的函数表达式。
一元二次方程与二次函数测试题(供参考)

一元二次方程二次函数考试试卷总分(120)分,考试时刻(120)分钟】说明:1.全卷共4页,考试历时120分钟,总分值为120分.2.答卷前,考生务必用黑色笔迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、 试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.一.选择题(每题4分,共40分) 1.二次函数2(1)2y x =-+的最小值是( )A .2-B .2C .1-D .12.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且通过点P (3,0), 则c b a +-的值为A. 0B. -1C. 1D. 2 3.22(1)3y x =-+的图象的极点坐标是( ) A .(13),B .(13)-,C .(13)-,D .(13)--,4.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )5.将一张边长为30㎝的正方形纸片的四角别离剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大A. 7B. 6C. 5D. 4 6.以下命题:①若0a b c ++=,那么240b ac -≥; ②若b a c >+,那么一元二次方程20ax bx c ++=有两个不相等的实数根;③若23b a c =+,那么一元二次方程20ax bx c ++=有两个不相等的实数根; ④若240b ac ->,那么二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的选项是( ).A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.7.如下图是二次函数2122y x =-+的图象在x 轴上方的一部份,关于这段图象与x 轴所围成的阴影部份的面积,你以为与其最.接近的值是( ) A .4B .163C .2πD .88.在平面直角坐标系中,若是抛物线y =2x 2不动,而把x 轴、y 轴别离向上、向 右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2 + 2B .y =2(x + 2)2-Oxyy–1 33O xP1C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.一个函数的图象如图,给出以下结论:x 时,函数值最大;①当0(第10题)②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0.其中正确的结论是( ) A .①② B .①③ C .②③ D .①②③二、填空题(每题5分,共15分)11.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之 间的关系是21251233y x x =-++.那么他将铅球推出的距离是 m . 12.初三数学讲义上,用“描点法”画二次函数2y ax bx c =++的图象时,列了如下表格:依照表格上的信息回答下列问题:该二次函数2y ax bx c =++在3x =时,y =_______13. 已知函数22y x x c =-++的部份图象如下图,那么c=______, 当x______时,y 随 x 的增大而减小.14题(8分)15题(8分)x… 2-1- 0 1 2 … y…162- 4-122- 2-122- …ox1316.(9分)已知二次函数y=x2-2x-1。
二次函数与一元二次方程练习题(含答案)

二次函数与一元二次方程一、选择题1.如图2-128所示的是二次函数y =ax 2+bx +c 的图象,则一次函数y=ax -b 的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.在二次函数y =ax 2+bx +c 中,若a 与c 异号,则其图象与x 轴的交点个数为 ( )A .2个B .1个C .0个D .不能确定 3.根据下列表格的对应值:x 3.23 3.24 3.25 3.26 ax 2+bx +c-0.06-0.020.030.09判断方程 ax 2+bx +c=0(a ≠0,a ,b ,c 为常数)的一个解x 的取值范围是 ( )A .3<x <3.23B .3.23<x <3.24C .3.24<x <3.25D .3.25<x <3.26 4.函数cbx axy ++=2的图象如图l -2-30,那么关于x 的方程a x 2+b+c-3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号实数根C .有两个相等实数根D .无实数根5.二次函数cbx ax y ++=2的图象如图l -2-31所示,则下列结论成立的是( )A .a >0,bc >0,△<0 B.a <0,bc >0,△<0 C .a >0,bc <0,△<0 D.a <0,bc <0,△>06.函数cbx ax y ++=2的图象如图 l -2-32所示,则下列结论错误的是( )A .a >0B .b 2-4ac >0C 、20ax bx c ++=的两根之和为负D 、20ax bx c ++=的两根之积为正7.不论m 为何实数,抛物线y=x 2-mx +m -2( ) A .在x 轴上方 B .与x 轴只有一个交点 C .与x 轴有两个交点 D .在x 轴下方 二、填空题8.已知二次函数y =-x 2+2x +m 的部分图象如图 2-129所示,则关于x 的一元二次方程-x 2+2x +m =0的解为 .9.若抛物线y=kx 2-2x +l 与x 轴有两个交点,则k 的取值范围是 . 10.若二次函数y =ax 2+bx +c(a ≠0)的图象与x 轴只有一个交 点,则这个交点的坐标是 .11.已知函数y=kx 2-7x —7的图象和x 轴有交点,则k 的取值范围是 12.直线y=3x —3与抛物线y=x 2 -x+1的交点的个数是 . 三、解答题13.已知二次函数y=-x 2+4x-3,其图象与y 轴交于点B,与x 轴交于A, C 两点. 求△ABC 的周长和面积.14..在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图象的一部分(如图),若这个男生出手处A 点的坐标为(0,2),铅球路线的最高处B 点的坐标为B(6,5).(1)求这个二次函数的表达式;(2)该男生把铅球推出去多远?(精确到0.01米).B(6,5)A(0,2)14121086420246xCy15.如图,已知抛物线y=-x 2+bx+c 与x 轴的两个交点分别为A(x 1,0),B(x 2,0) , 且x 1+x 2=4,1213x x .(1)求抛物线的代数表达式; (2)设抛物线与y 轴交于C 点,求直线BC 的表达式; (3)求△ABC 的面积.16.如果一个二次函数的图象经过点A(6,10),与x 轴交于B ,C 两点,点B ,C 的横坐标分别为x 1,x 2,且x 1+x 2=6,x 1x 2=5,求这个二次函数的解析式.17.已知关于x 的方程x 2+(2m +1)x +m 2+2=0有两个不相等的实数根,试判断直线y =(2m -3)x -4m +7能否经过点A(-2,4),并说明理由.18.二次函数y=ax 2+bx +c(a ≠0)的图象如图2-130所示,根据图象解 答下列问题.(1)写出方程ax 2+bx +c =0的两个根; (2)写出不等式ax 2+bx +c >0的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范围;BxOCy A(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.如图2-131所示,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F,G分别在线段BC,AC上,抛物线P上的部分点的横坐标对应的纵坐标如下.x …-3 -2 1 2 …y …-52-4 -520 …(1)求A,B,C三点的坐标;(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;(3)当矩形DEFG的面积S最大时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围;(4)若点D的坐标为(1,0),求矩形DEFG的面积.参考答案1.B[提示:a >0,-2ba<0,∴b >0.] 2.A 3.C 4.C 5.D 6.D 7.C8.x 1=-l ,x 2=3[提示:由图象可知,抛物线的对称轴为x=l ,与x 轴的交点是(3,0),根据对称性可知抛物线与x 轴的另一个交点坐标为(-l ,0),所以一元二次方程-x 2+2x +m =0的解为x 1=-1,x 2=3.故填x 1=-l ,x 2=3.]9.k <1,且k ≠0[提示:若抛物线与x 轴有两个交点,则(-2)2-4k >0.] 10.(-2ba,0) 11.略 12.113.令x=0,得y=-3,故B 点坐标为(0,-3). 解方程-x 2+4x-3=0,得x 1=1,x 2=3. 故A 、C 两点的坐标为(1,0),(3,0).所以AC=3-1=2,AB=221310+=,BC=223332+=, OB=│-3│=3. C △ABC =AB+BC+AC=21032++. S △ABC =12AC ·OB=12×2×3=3.14.(1)设y=a(x-6)2+5,则由A(0,2),得2=a(0-6)2+5,得a=112-. 故y=112-(x-6)2+5. (2)由 112-(x-6)2+5=0,得x 1=26215,6215x +=-.结合图象可知:C 点坐标为(6215+ 故OC=6215+13.75(米)即该男生把铅球推出约13.75米15..(1)解方程组1212413x xxx+=⎧⎪⎨=⎪⎩, 得x1=1,x2=3故2210330b cb c⎧-++=⎪⎨-++=⎪⎩,解这个方程组,得b=4,c=-3.所以,该抛物线的代数表达式为y=-x2+4x-3.(2)设直线BC的表达式为y=kx+m.由(1)得,当x=0时,y=-3,故C点坐标为(0,-3).所以330mk m=-⎧⎨+=⎩, 解得13km=⎧⎨=-⎩∴直线BC的代数表达式为y=x-3 (3)由于AB=3-1=2,OC=│-3│=3.故S△ABC =12AB·OC=12×2×3=3.16.解:设函数为y=ax2+bx+c(a≠0),将A(6,10)代入,得10=36a+6b+c①,当y=0时,ax2+bx+c=0,又x1+x2=-ba=6②,x1x2=ca=5③,由①②③解得a=2,b=-12,c=10.所以解析式为y=2x2-12x+10.17.解:该直线不经过点A.理由如下:∵方程x2+(2m+1)x+m2+2=0有两个不相等的实数根,∴△=(2m+1)2-4(m2+2)=4m-7>0,∴2m-72>0,∴2m-3>0.又由4m-7>0,得-4m+7<0,∴直线y=(2m-3)x-4m+7经过第一、三、四象限,而A(-2,4)在第二象限,∴该直线不经过点A.18.解:(1)由二次函数y=ax2+bx+c(a≠0)的图象可知,抛物线与x轴交于(1,0),B(3,0)两点,即x=1或x=3是方程ax2+bx+c=0的两个根.(2)不等式ax2+bx+c>0的解集,即是求y>0的解集,由图象可知l<x <3.(3)因为a<0,故在对称轴的右侧y随x的增大而减小,即当x>2时,y随x的增大而减小.(4)由图可知,22,242,43,baac baca⎧-=⎪⎪-⎪=⎨⎪⎪=⎪⎩解得2,8,6.abc=-⎧⎪=⎨⎪=-⎩代入方程得-2x2+8x-6-k=O.又因为方程有两个不相等的实数根,所以△>0,即82-4×(-2)×(-6-k)>0,解得k<2.19.解法l:(1)任取x,y的三组值代入y=ax2+bx+c(a≠0),求出解析式为y=12x2+x-4.令y=0,得x1=-4,x2=2;令x=0,得y=-4,∴A,B,C三点的坐标分别为A(2,0),B(-4,0),C(0,-4).解法2:(1)由抛物线P过点(1,-52),(-3,-52)可知,抛物线P的对称轴为x=-1.又∵抛物线P过(2,0),(-2,-4),则由抛物线的对称性可知,点A,B,C的坐标分别为A(2,0),B(-4,0),C(0,-4). (2)由题意,知AD DG AO OC=,而AO=2,OC=4,AD=2-m,故DG=4-2m.又BE EFBO OC=,EF=DG,得BE=4-2m,∴DE=3m,∴S矩形DEFG =DG·DE=(4-2m)·3m=12m-6m2(0<m<2). (3)∵S矩形DEFG=12m-6m2(0<m<2),∴m=1时,矩形的面积最大,且最大面积是6.当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0).设直线DF的解析式为y=kx+b,易知k=23,b=-23.∴y=23x-23.又抛物线P的解析式为y=12x2+x-4.令23x-23=12x2+x-4,解得x161-±.如图2-132所示,设射线DF与抛物线P相交于点N,则N161--.过N作x轴的垂线交x轴于H,得1612561339FN HEDF DE-----+===.∵点M不在抛物线P上,即点M不与N重合,此时k的取值范围是k561-+且k>0. (4)由(3)知S矩形DEFG=6.。
22.2《二次函数与一元二次方程》练习题(含答案)

22.2 二次函数与一元二次方程01 基础题知识点1 二次函数与一元二次方程1.(柳州中考)小兰画了一个函数y =x 2+ax +b 的图象如图,则关于x 的方程x 2+ax +b =0的解是(D )A .无解B .x =1C .x =-4D .x =-1或x =42.(青岛中考)若抛物线y =x 2-6x +m 与x 轴没有交点,则m 的取值范围是m >9. 3.二次函数y =ax 2+bx 的图象如图,若一元二次方程ax 2+bx +m =0有实数根,则m 的取值范围为m ≤3.4.(1)已知一元二次方程x 2+x -2=0有两个不相等的实数根,即x 1=1,x 2=-2.求二次函数y =x 2+x -2与x 轴的交点坐标;(2)若二次函数y =-x 2+x +a 与x 轴有一个交点,求a 的值.解:(1)∵一元二次方程x 2+x -2=0有两个不相等的实数根,即x 1=1,x 2=-2, ∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴有一个交点, 令y =0,则-x 2+x +a =0有两个相等的实数根, ∴1+4a =0,解得a =-14.知识点2利用二次函数求一元二次方程的近似解5.(兰州中考)下表是一组二次函数y=x2+3x-5的自变量x与函数值y的对应值:那么方程x2+3x-5=0的一个近似根是(C)A.1 B.1.1 C.1.2 D.1.3知识点3二次函数与不等式6.二次函数y=x2-x-2的图象如图所示,则函数值y<0时x的取值范围是(C)A.x<-1B.x>2C.-1<x<2D.x<-1或x>27.画出二次函数y=x2-2x的图象.利用图象回答:(1)方程x2-2x=0的解是什么?(2)x取什么值时,函数值大于0;(3)x取什么值时,函数值小于0.解:列表:描点并连线:(1)方程x2-2x=0的解是x1=0,x2=2.(2)当x<0或x>2时,函数值大于0.(3)当0<x<2时,函数值小于0.易错点1漏掉函数是一次函数的情况8.(吕梁市文水县期中)若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a 的值为-1或2或1.易错点2忽视坐标轴包含x轴和y轴9.抛物线y=x2-2x+1与坐标轴的交点个数是(C)A.0 B.1C.2 D.310.已知抛物线y=x2-(a+2)x+9的顶点在坐标轴上,则抛物线的解析式为y=x2-6x+9或y=x2+6x+9或y=x2+9.02中档题11.(牡丹江中考)抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是(C)A.x<2 B.x>-3C.-3<x<1 D.x<-3或x>112.(大同市期中)二次函数y=(x-2)2+m的图象如图所示,一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B(4,3),则满足kx+b≥(x-2)2+m的x的取值范围是(A) A.1≤x≤4 B.x≤1C.x≥4 D.x≤1或x≥413.如图,抛物线与两坐标轴的交点分别为(-1,0),(2,0),(0,2),则当y>2时,自变量x 的取值范围是(B )A .0<x <12B .0<x <1 C.12<x <1 D .-1<x <214.(济南中考)二次函数y =x 2+bx 的图象如图,对称轴为直线x =1.若关于x 的一元二次方程x 2+bx -t =0(t 为实数)在-1<x <4的范围内有解,则t 的取值范围是(C )A .t ≥-1B .-1≤t <3C .-1≤t <8D .3<t <815.(阳泉市平定县月考)已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为直线x =1;③当x <1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有(B )A .1个B .2个C .3个D .4个16.(杭州中考)把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式h =20t -5t 2(0≤t ≤4).(1)当t =3时,求足球距离地面的高度; (2)当足球距离地面的高度为10米时,求t ;(3)若存在实数t 1,t 2(t 1≠t 2),当t =t 1或t 2时,足球距离地面的高度都为m (米),求m 的取值范围.解:(1)当t =3时,h =20t -5t 2=20×3-5×9=15, ∴此时足球距离地面的高度为15米. (2)当h =10时,20t -5t 2=10,即t 2-4t +2=0,解得t =2+2或t =2- 2.答:经过2+2或2-2秒时,足球距离地面的高度为10米. (3)由题意得t 1和t 2是方程20t -5t 2=m (m ≥0)的两个不相等的实数根,则 Δ=202-20m >0.解得m <20. ∴m 的取值范围是0≤m <20. 03 综合题17.有这样一个问题:探究函数y =12x 2+1x 的图象与性质,小东根据学习函数的经验,对函数y =12x 2+1x 的图象与性质进行了探究,下面是小东的探究过程,请补充完整:(1)下表是y 与x 的几组对应值.函数y =12x 2+1x 的自变量x 的取值范围是x ≠0,m 的值为296;(2)在如图所示的平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,并画出该函数的大致图象;(3)进一步探究函数图象发现:①函数图象与x 轴有1个交点,所以对应方程12x 2+1x =0有1个实数根;②方程12x 2+1x=2有3个实数根;③结合函数的图象,写出该函数的一条性质.解:(2)函数图象如图所示.(3)③答案不唯一,如:函数没有最大值或函数没有最小值,函数图象不经过第四象限.。
初二数学二次函数与一元二次方程练习题及答案20题

初二数学二次函数与一元二次方程练习题及答案20题1. 解一元二次方程:2x^2 - 5x - 3 = 0解答:首先,我们可以使用求根公式来解一元二次方程。
假设方程为ax^2 + bx + c = 0,求根公式可以表示为: x = (-b ± √(b^2 - 4ac)) / (2a)。
对于这个方程,系数为 a = 2, b = -5, c = -3。
代入求根公式,我们可以计算出两个解:x = (-(-5) ± √((-5)^2 - 4*2*(-3))) / (2*2)= (5 ± √(25 + 24)) / 4= (5 ± √49) / 4所以,方程的解为 x = (5 + 7) / 4 或 x = (5 - 7) / 4,即 x = 3 或 x = -1/2。
2. 求二次函数的顶点坐标和对称轴:y = 3x^2 + 6x + 2解答:二次函数的标准形式为 y = ax^2 + bx + c。
其中,顶点坐标可以使用公式 (-b/2a, c - b^2/4a) 求得。
对称轴为 x = -b/2a。
对于给定的函数 y = 3x^2 + 6x + 2,我们可以计算出顶点坐标和对称轴:顶点坐标:x = -6 / (2*3) = -1y = 3*(-1)^2 + 6*(-1) + 2 = -1所以,该二次函数的顶点坐标为 (-1, -1)。
对称轴:x = -6 / (2*3) = -1所以,该二次函数的对称轴为 x = -1。
3. 求二次函数的图像与 x 轴的交点:y = x^2 - 4x + 3解答:要求二次函数的图像与 x 轴的交点,我们需要解方程 y = 0。
对于给定的函数 y = x^2 - 4x + 3,我们有:x^2 - 4x + 3 = 0这里我们可以使用因式分解或求根公式来解方程。
通过因式分解,我们可以将方程化简为 (x - 3)(x - 1) = 0。
一元二次方程与二次函数综合测试题及参考答案(精品范文).doc

【最新整理,下载后即可编辑】一、选择题1、设、是关于的一元二次方程的两个实数根,且,,则()A.B.C.D.2、下列命题:①若,则;②若,则一元二次方程有两个不相等的实数根;③若,则一元二次方程有两个不相等的实数根;④若,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④3、若一次函数的图象过第一、三、四象限,则函数()A.有最大值B.有最大值-C.有最小值D.有最小值-4、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A. 3个B. 2个C. 1个D. 0个5、关于的一元二次方程的两个实数根分别是,且,则的值是()A.1 B.12 C.13 D.25二、填空题6、设、是方程的两根,则代数式= 。
7、已知关于一元二次方程有一根是,则。
三、计算题8、已知:关于的方程(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是,求另一个根及值.9、解方程:四、综合题10、已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.11、如图:抛物线与轴交于A、B两点,点A的坐标是(1,0),与轴交于点C.(1)求抛物线的对称轴和点B的坐标;(2)过点C作CP⊥对称轴于点P,连接BC交对称轴于点D,连接AC、BP,且∠BPD=∠BCP,求抛物线的解析式。
12、已知关于x的二次函数y=x2-(2m-1)x+m2+3m+4.(1)探究m满足什么条件时,二次函数y的图象与x轴的交点的个数. (2)设二次函数y的图象与x轴的交点为A(x1,0),B(x2,0),且+=5,与y轴的交点为C,它的顶点为M,求直线CM的解析式.13、如图,已知点,直线交轴于点,交轴于点(1)求对称轴平行于轴,且过三点的抛物线解析式;(2)若直线平分∠ABC,求直线的解析式;(3)若直线产(>0)交(1)中抛物线于两点,问:为何值时,以为边的正方形的面积为9?14、如图,抛物线交轴于点、,交轴于点,连结,是线段上一动点,以为一边向右侧作正方形,连结,交于点.(1)试判断的形状,并说明理由;(2)求证:;(3)连结,记的面积为,的面积为,若,试探究的最小值.15、如图,抛物线y =-x2+bx +c 与x 轴交于A、B两点,与y 轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E 在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.五、简答题16、已知的两边,的长是关于的一元二次方程的两个实数根,第三边的长是.(1)为何值时,是以为斜边的直角三角形;(2)为何值时,是等腰三角形,并求的周长17、已知关于的一元二次方程:.(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为(其中).若是关于的函数,且,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量的取值范围满足什么条件时,.18、已知抛物线y = ax2-x + c经过点Q(-2,),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、B两点,如图.(1)求抛物线的解析式;(2)求A、B两点的坐标;(3)设PB于y轴交于C点,求△ABC的面积.19、如图,已知抛物线的顶点为A(1,4)、抛物线与y 轴交于点B (0,3),与x轴交于C、D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式.(2)当PA+PB的值最小时,求点P的坐标.20、已知二次函数的部分图象如图7所示,抛物线与轴的一个交点坐标为,对称轴为直线.(1)若,求的值;(2)若实数,比较与的大小,并说明理由.参考答案一、选择题1、C2、B3、B4、考点:二次函数图象与系数的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程与二次函数试卷
班级: 姓名 总分:
一、选择题(本大题10小题,每小题3分,共30分)
1.下列方程是关于x 的一元二次方程的是( ).
22
22221A.0 B.0C.421 D.3250x ax bx c x
x x x xy y +
=++=-=--=
2.用配方法解方程 2
210x x --=,变形后的结果正确的是( ).
2.(1)0x A += 2.(1)0x B -= 2
C.(1)2x += 2
D.(1)2x -=
3.抛物线 2
(2)2y x =-+ 的顶点坐标是( ).
A.(2,2)-
B.(2,2)-
C.(2,2)
D.(2,2)
-- 4.下列所给方程中,没有实数根的是( ).
2A.0x x += 2B.5410x x --= 2C.3410x x -+= 2D.4520x x -+=
5.已知三角形两边的长分别是3和6,第三边的长是 2
680x x -+= 的根,则这个三角
形的周长是( ).
A.11
B.13
C.1113
D.1215 或 或
6.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( ).
A.100(1)121x +=
B.100(1)121x -= 2
C.100(1)121x += 2
D.100(1)121
x -= 7.要得到抛物线 2
2(4)1y x =-- ,可以将抛物线 2
2y x = ( ).
A. 向左平移4个单位长度,在向下平移1个单位长度
B. 向右平移4个单位长度,在向下平移1个单位长度
C. 向左平移4个单位长度,在向上平移1个单位长度
D. 向右平移4个单位长度,在向上平移1个单位长度
8.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米²,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( ).
2A.10080100807644B.(100)(80)7644C.(100)(80)7644D.100807644
x x x x x x x x x ⨯--=--+=--=+=
9.如图,2
210y ax a y ax x a a =+=-+≠函数和(是常数,且)在同一平面直角坐标系
中的图象可能是( )
.
10.二次函数 2
(0)y ax bx c a =++≠的图像大致如图,关于该二次函数,下列说法错.误.
的是( ).
A.1
B.2
1
C.2
D.120x x y x x y =
<-<<>函数有最小值
对称轴是直线当,随的增大而减小
当时,
第10题图 第16题图
二、填空题(本大题6小题,每小题4分,共24分)
11.写出解为3x =的一个一元二次方程: .
12.已知1x =是关于x 的一元二次方程2
0ax bx c ++=的一个根,则代数式
a b c ++= .
13.有一人患了流感,经过两轮传染后共有100人患了流感,设每轮传染中,平均一个人传染的人数为x ,可列方程为: . 14.二次函数2
26y x x =-+的最小值是: .
15.正方形的边长是3,若边长增加x ,则面积y 与x 之间的关系是: . 16.抛物线2
y ax bx c =++的部分图象如图所示,则 当0y >时,x 的取值范围
是 .
三、解答题(本大题3小题,每小题6分,共18分) 17.解方程:2
320x x -+=
18.已知关于x的一元二次方程26210
-+-=有两个相等的实数根,求m的值及方
x x m
程的根.
19.已知抛物线的顶点为(1,-4),且经过点(3,0),求这条抛物线的解析式.
四、解答题(本大题3小题,每小题7分,共21分)
20. 惠州市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?
21.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.
22.如图,在△ABC 中,∠B=90°,AB=12mm ,BC=24mm ,动点P 从点A 开始,沿边AB 向点B 以2mm/s •的速度移动,动点Q 从点B 开始,沿边BC 向点C 以4mm/s 的速度移动,如果•P 、Q 都从A,B 点同时出发,那么△PBQ 的面积S 随出发时间t 如何变化?写出S 关于t 的函数解析式及t 的取值范围.
Q B
A C
P
五、解答题(本大题3小题,每小题9分,共27分)
23. 李师傅去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,4月份的盈利达到3456元,且从2月到4月,每月盈利的平均增长率都相同. (1)求每月盈利的平均增长率.
(2)按照这个平均增长率,预计5月份家商店的盈利将达到多少元?
24. 石坝特产专卖店销售莲子,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.
若该专卖店销售这种莲子想要平均每天获利2240元,请回答: ⑴每千克莲子应降价多少元?
⑵在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
25.如图,隧道的截面由抛物线和长方形构成,长方形的长是8m ,宽是2m ,抛物线可以用y=-
4
1x 2
+4表示. (1)一辆货运卡车高4m ,宽2m ,它能通过该隧道吗? (2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?
答案 一. 选择题
1-----5 C.D.C.D.B 6----10 C.B.C.B.D 二. 填空题
11. 29x =( 答案不唯一) 12.0 13. 21(1)121(1)121x x x x +++=+=或 14.5 15. 2(3)y x =+ 16. 1<<3x - 三.解答题
12(2)(1)0
20102,1
x x x x x x --=-=-===17.解:因式分解得:于是得或 22222
221262104641(21)3684=05
5621062510690(3)03
x x x m b ac m m m m x x m x x x x x x x -+-=∴∆=-=-⨯⨯-=-+∴==-+-=-+⨯-=-+=-=∴==18.解:关于的方程有两个相等的实数根把代入得
222
2()11,4(1)4(3,0)0(31)41(1)4
y a x h k h k y a x a a y x =-+∴==-∴=--=--∴=∴=--19.解:设抛物线的解析式为顶点(,-4) 把代入得抛物线的解析式为
121=28
2
=8=78x x x x x --20.解:设应邀请支球队参加比赛,依题意得()
解得:,(不合题意,舍去)答:应邀请支球队参加比赛.
1223221.,2
32(
)1202
12,2020>162012x
BC x x
x x x x BC --===∴=解:设的长为米则AB 的长为()米,得 解得: (不合题意,舍去)答:该矩形草坪边的长米.
29012 mm 24 mm (12-2t) mm 4t mm
11
=(12-2t)4t
22
244(0<<6)
B BP S PB BP B S t t t ∠=︒==∴==∴∆∙∙=-22.解:,AB ,B
C ,BQ Q Q=化简得
21,2400(1)3450
0.2 2.253450(120%)=4147.220%54147.2x x x x +===-⨯+223.解:(1)设每月盈利的平均增长率依题意得解得,(不合题意,舍去)(2)月份家商店的盈利:(元)答:每月盈利的平均增长率,月份家商店的盈利将达到元
212(6040)(10020)2240
2
102404,6(2)6
6065454
100%90%60
46x x
x x x x x x --+⨯=-+===∴=∴-=∴⨯=24.解:(1)设每千克莲子应降价元,依题意得化简得:解得:尽可能让利于顾客售价为:即:九折
答:每千克莲子应降价元或元;该店应按原售价的九折出售.
2211
1,(1)4 3.75,
4
3.752>4
1
2,(2)43,
4
32>4
x y x y =±=-⨯±+=+∴=±=-⨯±+=+∴25.解:()建立相应的直角坐标系,当货车在正中央时,即对应的货车能通过该隧道.
(2)当隧道内设双行道时,就意味着货车只能走一边,即对应的货车能通过该隧道.。