函数的奇偶性试题及高考常见
高中数学函数的奇偶性经典习题(带答案)

绝密★启用前1.判断下列函数的奇偶性:(1)f(x)=x 3-1x ; (2)f(x)=|2|2x +-; (3)f(x)=(x -(4)f(x). 【答案】(1)奇函数(2)奇函数(3)既不是奇函数也不是偶函数(4)既是奇函数也是偶函数解析:(1)定义域是(-∞,0)∪(0,+∞),关于原点对称,由f(-x)=-f(x),所以f(x)是奇函数.(2)去掉绝对值符号,根据定义判断.由210|2|20x x ⎧≥⎨≠⎩-,+-,得1104x x x ≤≤⎧⎨≠≠⎩-,且-. 故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f(x)=22x x=+-, 这时有f(-x)=21(x x --)-=-f(x),故f(x)为奇函数. (3)因为f(x)定义域为[-1,1),所以f(x)既不是奇函数也不是偶函数.(4)因为f(x)定义域为{,所以f(x)=0,则f(x)既是奇函数也是偶函数2.下列函数是奇函数的是( )A .()||f x x =-B .()22x x f x -=+C .()lg(1)lg(1)f x x x =+--D .3()1f x x =-【答案】C 解析:对于B ,()22()x x f x f x --=+=,函数()f x 为偶函数,所以B 错;对于C ,由1010x x +>⎧⎨->⎩,故11x -<<,关于原点对称,又()lg(1)lg(1)()f x x x f x -=--+=-对于D ,33()()11()()f x x x f x f x -=--=--≠≠-,函数()f x 既不是奇函数,也不是偶函数,3.已知函数)(x f y =是奇函数,当0>x 时,,lg )(x x f =则( )C.2lgD.-2lg 【答案】D.解析:4.已知函数(1)f x +是奇函数,(1)f x -是偶函数,且(0)2,(4)则f f ==( )A .-2B .0C .2D .3【答案】A 解析:因为函数(1)f x +是奇函数,所以)(x f 的对称中心为(1,0),因为(1)f x -是偶函数,所以)(x f 的对称轴为x=-1。
高考数学函数奇偶性之高考真题48道

函数的奇偶性之高考真题48道一、具体函数的奇偶性1.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =e x C.y =cos x D.y =e x -e -x2.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =|sin x | C.y =cos xD.y =e x -e -x3.(2014•广东)下列函数为奇函数的是(A )A.y =2x - 12xB.y =x 3sin xC.y =2cos x +1D.y =x 2+2x4.(2015•北京)下列函数中为偶函数的是(B )A.y =x 2sin xB.y =x 2cos xC.y =|lnx |D.y =2-x5.(2019•全国)下列函数中,为偶函数的是(C )A.y =(x +1)2B.y =2-xC.y =|sin x |D.y =lg (x +1)+lg (x -1)6.(2018•上海)下列函数中,为偶函数的是(A )A.y =x -2B.y =x13C.y =x -12D.y =x 37.(2012•广东)下列函数为偶函数的是(D )A.y =sin xB.y =x 3C.y =e xD.y =lnx 2+18.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y =x +sin2xB.y =x 2-cos xC.y =2x + 12xD.y =x 2+sin x 9.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y = 1+x 2B.y =x + 1xC.y =2x + 12xD.y =x +e x 二、抽象函数的奇偶性10.(2014•新课标Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论正确的是(C )A.f (x )∙g (x )是偶函数B.|f (x )|∙g (x )是奇函数C.f (x )∙|g (x )|是奇函数D.|f (x )∙g (x )|是奇函数三、已知奇偶性求参数11.(2020•上海)若函数y =a ∙3x + 13x为偶函数,则a =1.12.(2009•重庆)若f (x )=a + 12x +1是奇函数,则a =- 12.13.(2019•北京)设函数f (x )=e x +ae -x (a 为常数).若f (x )为奇函数,则a =-1;若f (x )是R 上的增函数,则a 的取值范围是(-∞,0].14.(2014•湖南)若f (x )=ln (e 3x+1)+ax 是偶函数,则a =- 32.15.(2015•新课标Ⅰ)若函数f (x )=xln (x +a +x 2)为偶函数,则a =1.16.(2015•上海)已知a 是实数,函数f (x )= x 2+ax +4x是奇函数,求f (x )在(0,+∞)上的最小值及取到最小值时x 的值.四、奇函数性质的应用之中值定理17.(1990•全国)已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于(A )A.-26B.-18C.-10D.1018.(2013•重庆)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg (log 210))=5,则f (lg (lg 2))=(C )A.-5 B.-1C.3D.419.(2018•新课标Ⅲ)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=-2.20.(2012•上海)已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=3.五、奇函数性质的应用之分段函数21.(2019•新课标Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=(D )A.e -x -1B.e -x +1C.-e -x -1D.-e -x +122.(2019•新课标Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln 2)=8,则a =-3.六、偶函数性质应用之比较大小23.(2019•新课标Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则(C )A.f (log 3 14)>f (2- 32)>f (2- 23)B.f (log 3 14)>f (2- 23)>f (2- 32)C.f (2- 32)>f (2- 23)>f (log 3 14)D.f (2- 23)>f (2- 32)>f (log 3 14)七、函数性质综合24.(2018•新课标Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=(C )A.-50B.0C.2D.50八、奇偶性与单调性综合判断25.(2020•新课标Ⅱ)设函数f (x )=x 3- 1x 3,则f (x )(A )A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减26.(2020•新课标Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )(D )A.是偶函数,且在( 12,+∞)单调递增B.是奇函数,且在(- 12, 12)单调递减C.是偶函数,且在(-∞,- 12)单调递增D.是奇函数,且在(-∞,- 12)单调递减27.(2015•湖南)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是(A )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数28.(2014•湖南)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是(A )A.f (x )= 1x2B.f (x )=x 2+1C.f (x )=x 3D.f (x )=2-x 29.(2017•北京)已知函数f (x )=3x -( 13)x ,则f (x )(A )A.是奇函数,且在R 上是增函数B.是偶函数,且在R 上是增函数C.是奇函数,且在R 上是减函数D.是偶函数,且在R 上是减函数30.(2005•山东)下列函数既是奇函数,又在区间[-1,1]上单调递减的是(D )A.f (x )=sin xB.f (x )=-|x +1|C.f (x )= 12(a x -a -x )D.f (x )=ln 2-x 2+x31.(2013•北京)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(D )A.y =1x B.y =e -x C.y =lg |x | D.y =-x 2+132.(2012•陕西)下列函数中,既是奇函数又是增函数的为(D )A.y =x +1B.y =-x 2C.y =1xD.y =x |x |33.(2012•天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(B )A.y =cos2x ,x ∈RB.y =log 2|x |,x ∈R 且x ≠0C.y = e x -e -x2,x ∈R D.y =x 3+1,x ∈R34.(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(B )A.y =2x 3B.y =|x |+1C.y =-x 2+4D.y =2-|x |九、奇偶函数图象的对称性35.(2009•黑龙江)函数y =log 2 2-x 2+x的图象(B )A.关于直线y =-x 对称B.关于原点对称C.关于y 轴对称D.关于直线y =x 对称36.(2010•重庆)函数f (x )= 4x+12x 的图象(D )A.关于原点对称B.关于直线y =x 对称C.关于x 轴对称D.关于y 轴对称37.(2011•上海)f (x )= 4x-12x的图象关于(A )A.原点对称B.直线y =x 对称C.直线y =-x 对称D.y 轴对称38.(2008•全国卷Ⅱ)函数f (x )= 1x-x 的图象关于(C )A.y 轴对称B.直线y =-x 对称C.坐标原点对称D.直线y =x 对称十、奇函数性质应用之解不等式39.(2020•山东)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是(D )A.[-1,1]∪ 3,+∞)B.[-3,-1]∪ 0,1]C.[-1,0]∪ 1,+∞)D.[-1,0]∪ 1,3]40.(2015•山东)若函数f (x )= 2x+12x -a是奇函数,则使f (x )>3成立的x 的取值范围为(C )A.(-∞,-1) B.(-1,0) C.(0,1) D.(1,+∞)十一、奇函数性质比较大小41.(2017•天津)已知奇函数f (x )在R 上是增函数.若a =-f (log 2 15),b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为(C )A.a <b <cB.b <a <cC.c <b <aD.c <a <b42.(2009•山东)已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x )且在区间[0,2]上是增函数,则(A )A.f (-25)<f (80)<f (11)B.f (80)<f (11)<f (-25)C.f (11)<f (80)<f (-25)D.f (-25)<f (11)<f (80)十二、偶函数性质比较大小43.(2015•天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为(C )A.a <b <cB.a <c <bC.c <a <bD.c <b <a44.(2008•天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是增函数.令a=f (sin 2π7),b =f (cos 5π7),c =f (tan 5π7),则(A )A.b <a <cB.c <b <aC.b <c <aD.a <b <c 解:b =f (-cos 5π7)=f (cos 2π7),c =f (-tan 5π7)=f (tan 2π7)因为 π4< 2π7< π2,又由函数在区间[0,+∞)上是增函数,所以0<cos 2π7<sin 2π7<1<tan 2π7,所以b <a <c ,故选:A .十三、奇偶性综合之比较大小45.(2008•安徽)若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有(D )A.f (2)<f (3)<g (0)B.g (0)<f (3)<f (2)C.f (2)<g (0)<f (3)D.g (0)<f (2)<f (3)十四、偶函数性质应用之解不等式46.(2016•天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,若实数a满足f (2|a -1|)>f (- 2),则a 的取值范围是( 12, 32).47.(2014•新课标Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是(-1,3).48.(2015•新课标Ⅱ)设函数f (x )=ln (1+|x |)- 11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是(B )A.(-∞, 13)∪(1,+∞)B.( 13,1)C.(- 13, 13)D.(-∞,- 13)∪( 13,+∞)。
函数的奇偶性练习题及答案

函数的奇偶性练习题一、选择题1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )A .a=1/3,b =0B .a =-1,b =0C .a =1,b =0D .a =3,b =03.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2)4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( )A .-26B .-18C .-10D .105.函数1111)(22+++-++=x x x xx f 是( )A 偶函数B 奇函数C 非奇非偶函数D 既是奇函数又是偶函数6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3二、填空题7.函数2122)(xx x f ---=的奇偶性为________(填奇函数或偶函数) 8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为_______10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0, 试证f (x )是偶函数13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式14.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2), 求证f (x )是偶函数1.解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A .3.解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x2+2x )=-x 2-2x =x (-x -2).∴,,)0()0()2()2()(<≥---=⎩⎨⎧x x x x x x x f 即f (x )=x (|x|-2)答案:D 4.解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B6.解析:)(x ϕ、g (x )为奇函数,∴)()(2)(x bg x a x f +=-ϕ为奇函数.又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3.∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C7.答案:奇函数8.答案:0解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.解析:由f (x )是偶函数,g (x )是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f .答案:11)(2-=x x f 10.答案:0 11.答案:21<m 12.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数.13.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1,∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力.14.解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证,f (1)=2f (1),∴f (1)=0.又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0,∴(-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x 1=x 2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。
高中函数奇偶性练习题

高中函数奇偶性练习题高中函数奇偶性练习题函数是数学中的重要概念,它描述了数值之间的关系。
而在高中数学中,函数的奇偶性是一个重要的性质,它可以帮助我们更好地理解函数的行为和特点。
本文将通过一些练习题来探讨高中函数的奇偶性。
1. 练习题一:判断函数的奇偶性考虑函数f(x) = x^3 + 2x^2 - 3x,我们需要判断它的奇偶性。
首先,我们来看函数f(-x)的表达式:f(-x) = (-x)^3 + 2(-x)^2 - 3(-x) = -x^3 +2x^2 + 3x。
现在,我们来比较f(x)和f(-x)的表达式。
通过比较我们可以发现,f(x)和f(-x)的表达式中,只有最后一项的符号不同。
根据奇偶性的定义,如果一个函数满足f(x) = f(-x),那么它是一个偶函数;如果一个函数满足f(x) = -f(-x),那么它是一个奇函数。
根据上述比较,我们可以得出结论:函数f(x)是一个奇函数,因为f(x) = -f(-x)。
2. 练习题二:利用奇偶性求解方程现在考虑一个方程:f(x) = 0。
我们可以利用函数的奇偶性来求解这个方程。
假设函数f(x)是一个奇函数,那么对于任意的x,如果f(x) = 0,那么必然有f(-x) = 0。
这是因为如果f(x) = 0,那么根据奇函数的定义,我们有f(x) = -f(-x),所以-f(-x) = 0,即f(-x) = 0。
同样地,如果函数f(x)是一个偶函数,那么对于任意的x,如果f(x) = 0,那么必然有f(-x) = 0。
通过利用奇偶性,我们可以将一个方程的解空间缩小一半。
例如,如果我们发现函数f(x)是一个奇函数,并且我们找到了一个x的解x1,那么我们知道-f(x1)也是一个解。
因此,我们只需要找到方程f(x) = 0的正解,然后通过奇偶性来得到其他解。
3. 练习题三:利用奇偶性求导在微积分中,我们经常需要对函数进行求导。
而函数的奇偶性也可以帮助我们求导。
高考总复习函数的奇偶性习题及详解

高考总复习函数的奇偶性习题及详解一、选择题1.(文)下列函数,在其定义域内既是奇函数又是增函数的是( ) A .y =x +x 3(x ∈R) B .y =3x (x ∈R)C .y =-log 2x (x >0,x ∈R)D .y =-1x (x ∈R ,x ≠0)[答案] A[解析] 首先函数为奇函数、定义域应关于原点对称,排除C ,若x =0在定义域内,则应有f (0)=0,排除B ;又函数在定义域内单调递增,排除D ,故选A.(理)下列函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x +a -x )D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x )为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.故选D.2.(2010·安徽理,4)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( )A .-1B .1C .-2D .2[答案] A[解析] f (3)-f (4)=f (-2)-f (-1)=-f (2)+f (1)=-2+1=-1,故选A.3.(2010·河北唐山)已知f (x )与g (x )分别是定义在R 上奇函数与偶函数,若f (x )+g (x )=log 2(x 2+x +2),则f (1)等于( )A .-12B.12 C .1D.32[答案] B[解析] 由条件知,⎩⎪⎨⎪⎧f (1)+g (1)=2f (-1)+g (-1)=1,∵f (x )为奇函数,g (x )为偶函数.∴⎩⎪⎨⎪⎧f (1)+g (1)=2g (1)-f (1)=1,∴f (1)=12.4.(文)(2010·北京崇文区)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f (x ),当1≤x ≤2时,f (x )=x -2,则f (6.5)=( )A .4.5B .-4.5C .0.5D .-0.5[答案] D[解析] ∵f (x +2)=-1f (x ),∴f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.(理)(2010·山东日照)已知函数f (x )是定义域为R 的偶函数,且f (x +2)=f (x ),若f (x )在[-1,0]上是减函数,则f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数[答案] A[解析] 由f (x +2)=f (x )得出周期T =2, ∵f (x )在[-1,0]上为减函数,又f (x )为偶函数,∴f (x )在[0,1]上为增函数,从而f (x )在[2,3]上为增函数.5.(2010·辽宁锦州)已知函数f (x )是定义在区间[-a ,a ](a >0)上的奇函数,且存在最大值与最小值.若g (x )=f (x )+2,则g (x )的最大值与最小值之和为( )A .0B .2C .4D .不能确定[答案] C[解析] ∵f (x )是定义在[-a ,a ]上的奇函数,∴f (x )的最大值与最小值之和为0,又g (x )=f (x )+2是将f (x )的图象向上平移2个单位得到的,故g (x )的最大值与最小值比f (x )的最大值与最小值都大2,故其和为4.6.定义两种运算:a ⊗b =a 2-b 2,a ⊕b =|a -b |,则函数f (x )=2⊗x(x ⊕2)-2( )A .是偶函数B .是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数[答案] B[解析] f (x )=4-x 2|x -2|-2,∵x 2≤4,∴-2≤x ≤2, 又∵x ≠0,∴x ∈[-2,0)∪(0,2]. 则f (x )=4-x 2-x ,f (x )+f (-x )=0,故选B.7.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),则a 、b 、c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c[答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6<1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b <a <c .故选C.8.已知函数f (x )满足:f (1)=2,f (x +1)=1+f (x )1-f (x ),则f (2011)等于( )A .2B .-3C .-12D.13[答案] C[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x ) (x∈N *).∴f (x )的周期为4, 故f (2011)=f (3)=-12.[点评] 严格推证如下: f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4.故f (4k +x )=f (x ),(x ∈N *,k ∈N *),9.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)[答案] A[解析] ∵f (x )为奇函数,∴f (0)=0,∴a =-1. ∴f (x )=lg x +11-x ,由f (x )<0得0<x +11-x<1,∴-1<x <0,故选A. 10.(文)(09·全国Ⅱ)函数y =log 22-x2+x 的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称 [答案] A[解析] 首先由2-x 2+x >0得,-2<x <2,其次令f (x )=log 22-x 2+x ,则f (x )+f (-x )=log 22-x2+x +log 22+x2-x=log 21=0.故f (x )为奇函数,其图象关于原点对称,故选A. (理)函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的( )[答案] C [解析] ∵y =xsin x是偶函数,排除A ,当x =2时,y =2sin2>2,排除D , 当x =π6时,y =π6sin π6=π3>1,排除B ,故选C.二、填空题11.(文)已知f (x )=⎩⎪⎨⎪⎧sinπx (x <0)f (x -1)-1 (x >0),则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. [答案] -2[解析] f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-52, f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6=sin π6=12,∴原式=-2. (理)设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,则f (1)+f (2)+f (3)+f (4)+f (5)=________.[答案] 0[解析] ∵f (x )的图象关于直线x =12对称,∴f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,对任意x ∈R 都成立, ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),∴周期T =2 ∴f (0)=f (2)=f (4)=0 又f (1)与f (0)关于x =12对称∴f (1)=0 ∴f (3)=f (5)=0 填0.12.(2010·深圳中学)已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式f (x )g (x )<0的解集是________.[答案] ⎝⎛⎭⎫-π3,0∪⎝⎛⎭⎫π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎪⎨⎪⎧ f (x )<0g (x )>0,或⎩⎪⎨⎪⎧f (x )>0g (x )<0,观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.13.(文)若f (x )是定义在R 上的偶函数,其图象关于直线x =2对称,且当x ∈(-2,2)时,f (x )=-x 2+1.则f (-5)=________.[答案] 0[解析] 由题意知f (-5)=f (5)=f (2+3)=f (2-3)=f (-1)=-(-1)2+1=0.(理)已知函数f (x )是定义域为R 的奇函数,当-1≤x ≤1时,f (x )=a ,当x ≥1时,f (x )=(x +b )2,则f (-3)+f (5)=________.[答案] 12[解析] ∵f (x )是R 上的奇函数,∴f (0)=0, ∵-1≤x ≤1时,f (x )=a ,∴a =0. ∴f (1)=(1+b )2=0,∴b =-1.∴当x ≤-1时,-x ≥1,f (-x )=(-x -1)2=(x +1)2, ∵f (x )为奇函数,∴f (x )=-(x +1)2, ∴f (x )=⎩⎪⎨⎪⎧-(x +1)2x ≤-10 -1≤x ≤1(x -1)2 x ≥1∴f (-3)+f (5)=-(-3+1)2+(5-1)2=12.[点评] 求得b =-1后,可直接由奇函数的性质得f (-3)+f (5)=-f (3)+f (5)=-(3-1)2+(5-1)2=12.14.(文)(2010·山东枣庄模拟)若f (x )=lg ⎝⎛⎭⎫2x1+x +a (a ∈R)是奇函数,则a =________.[答案] -1[解析] ∵f (x )=lg ⎝⎛⎭⎫2x1+x +a 是奇函数,∴f (-x )+f (x )=0恒成立, 即lg ⎝⎛⎭⎫2x 1+x +a +lg ⎝ ⎛⎭⎪⎫-2x 1-x +a =lg ⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =0.∴⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =1,∴(a 2+4a +3)x 2-(a 2-1)=0, ∵上式对定义内的任意x 都成立,∴⎩⎪⎨⎪⎧a 2+4a +3=0a 2-1=0,∴a =-1. [点评] ①可以先将真数通分,再利用f (-x )=-f (x )恒成立求解,运算过程稍简单些. ②如果利用奇函数定义域的特点考虑,则问题变得比较简单.f (x )=lg (a +2)x +a 1+x 为奇函数,显然x =-1不在f (x )的定义域内,故x =1也不在f (x )的定义域内,令x =-aa +2=1,得a =-1.故平时解题中要多思少算,培养观察、分析、捕捉信息的能力.(理)(2010·吉林长春质检)已知函数f (x )=lg ⎝⎛⎭⎫-1+a 2+x 为奇函数,则使不等式f (x )<-1成立的x 的取值范围是________.[答案]1811<x <2 [解析] ∵f (x )为奇函数,∴f (-x )+f (x )=0恒成立,∴lg ⎝⎛⎭⎫-1+a 2-x +lg ⎝⎛⎭⎫-1+a2+x=lg ⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =0,∴⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =1,∵a ≠0,∴4-ax 2-4=0,∴a =4,∴f (x )=lg ⎝⎛⎭⎫-1+42+x =lg 2-xx +2,由f (x )<-1得,lg 2-x2+x<-1,∴0<2-x 2+x <110,由2-x 2+x >0得,-2<x <2,由2-x 2+x <110得,x <-2或x >1811,∴1811<x <2.三、解答题15.(2010·杭州外国语学校)已知f (x )=x 2+bx +c 为偶函数,曲线y =f (x )过点(2,5),g (x )=(x +a )f (x ).(1)若曲线y =g (x )有斜率为0的切线,求实数a 的取值范围;(2)若当x =-1时函数y =g (x )取得极值,且方程g (x )+b =0有三个不同的实数解,求实数b 的取值范围.[解析] (1)由f (x )为偶函数知b =0, 又f (2)=5,得c =1,∴f (x )=x 2+1. ∴g (x )=(x +a )(x 2+1)=x 3+ax 2+x +a , 因为曲线y =g (x )有斜率为0的切线, 所以g ′(x )=3x 2+2ax +1=0有实数解. ∴Δ=4a 2-12≥0,解得a ≥3或a ≤- 3. (2)由题意得g ′(-1)=0,得a =2. ∴g (x )=x 3+2x 2+x +2,g ′(x )=3x 2+4x +1=(3x +1)(x +1). 令g ′(x )=0,得x 1=-1,x 2=-13.∵当x ∈(-∞,-1)时,g ′(x )>0,当x ∈(-1,-13)时,g ′(x )<0,当x ∈(-13,+∞)时,g ′(x )>0,∴g (x )在x =-1处取得极大值,在x =-13处取得极小值.又∵g (-1)=2,g (-13)=5027,且方程g (x )+b =0即g (x )=-b 有三个不同的实数解,∴5027<-b <2,解得-2<b <-5027.16.(2010·揭阳模拟)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2011).[分析] 由f (x +2)=-f (x )可得f (x +4)与f (x )关系,由f (x )为奇函数及在(0,2]上解析式可求f (x )在[-2,0]上的解析式,进而可得f (x )在[2,4]上的解析式.[解析] (1)∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数.(2)当x ∈[-2,0]时,-x ∈[0,2],由已知得 f (-x )=2(-x )-(-x )2=-2x -x 2,又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2, ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 又f (x )是周期为4的周期函数, ∴f (x )=f (x -4) =x 2-6x +8.从而求得x ∈[2,4]时, f (x )=x 2-6x +8.(3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1. 又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2008)+f (2009)+f (2010)+f (2011)=0.∴f (0)+f (1)+f (2)+…+f (2011)=0. 17.(文)已知函数f (x )=1-42a x+a(a >0且a ≠1)是定义在(-∞,+∞)上的奇函数. (1)求a 的值; (2)求函数f (x )的值域;(3)当x ∈(0,1]时,tf (x )≥2x -2恒成立,求实数t 的取值范围.[解析] (1)∵f (x )是定义在(-∞,+∞)上的奇函数,即f (-x )=-f (x )恒成立,∴f (0)=0.即1-42×a 0+a=0,解得a =2.(2)∵y =2x -12x +1,∴2x =1+y1-y ,由2x >0知1+y1-y>0,∴-1<y <1,即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x-2即为t ·2x -t 2x +1≥2x-2.即:(2x )2-(t +1)·2x +t -2≤0.设2x =u , ∵x ∈(0,1],∴u ∈(1,2].∵u ∈(1,2]时u 2-(t +1)·u +t -2≤0恒成立.∴⎩⎪⎨⎪⎧12-(t +1)×1+t -2≤022-(t +1)×2+t -2≤0,解得t ≥0. (理)设函数f (x )=ax 2+bx +c (a 、b 、c 为实数,且a ≠0),F (x )=⎩⎪⎨⎪⎧f (x ) x >0-f (x ) x <0.(1)若f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值范围; (3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0. [解析] (1)因为f (x )=ax 2+bx +c ,所以f ′(x )=2ax +b .又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0, 即-2a +b =0,因此b =2a .① 因为f (-1)=0,所以b =a +c .② 又因为曲线y =f (x )通过点(0,2a +3), 所以c =2a +3.③解由①,②,③组成的方程组得,a =-3,b =-6,c =-3. 从而f (x )=-3x 2-6x -3.所以F (x )=⎩⎪⎨⎪⎧-3(x +1)2x >03(x +1)2x <0. (2)由(1)知f (x )=-3x 2-6x -3, 所以g (x )=kx -f (x )=3x 2+(k +6)x +3. 由g (x )在[-1,1]上是单调函数知: -k +66≤-1或-k +66≥1,得k ≤-12或k ≥0. (3)因为f (x )是偶函数,可知b =0. 因此f (x )=ax 2+c . 又因为mn <0,m +n >0, 可知m ,n 异号. 若m >0,则n <0.则F (m )+F (n )=f (m )-f (n )=am 2+c -an 2-c =a (m +n )(m -n )>0. 若m <0,则n >0. 同理可得F (m )+F (n )>0. 综上可知F (m )+F (n )>0.。
函数奇偶性之高考真题48道

函数的奇偶性之高考真题48道一、具体函数的奇偶性1.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =e x C.y =cos x D.y =e x -e -x2.(2015•福建)下列函数为奇函数的是(D )A.y =x B.y =|sin x | C.y =cos xD.y =e x -e -x3.(2014•广东)下列函数为奇函数的是(A )A.y =2x - 12xB.y =x 3sin xC.y =2cos x +1D.y =x 2+2x4.(2015•北京)下列函数中为偶函数的是(B )A.y =x 2sin xB.y =x 2cos xC.y =|lnx |D.y =2-x5.(2019•全国)下列函数中,为偶函数的是(C )A.y =(x +1)2B.y =2-xC.y =|sin x |D.y =lg (x +1)+lg (x -1)6.(2018•上海)下列函数中,为偶函数的是(A )A.y =x -2B.y =x13C.y =x -12D.y =x 37.(2012•广东)下列函数为偶函数的是(D )A.y =sin xB.y =x 3C.y =e xD.y =lnx 2+18.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y =x +sin2xB.y =x 2-cos xC.y =2x + 12xD.y =x 2+sin x 9.(2015•广东)下列函数中,既不是奇函数,也不是偶函数的是(D )A.y = 1+x 2B.y =x + 1xC.y =2x + 12xD.y =x +e x 二、抽象函数的奇偶性10.(2014•新课标Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论正确的是(C )A.f (x )∙g (x )是偶函数B.|f (x )|∙g (x )是奇函数C.f (x )∙|g (x )|是奇函数D.|f (x )∙g (x )|是奇函数三、已知奇偶性求参数11.(2020•上海)若函数y =a ∙3x + 13x为偶函数,则a =1.12.(2009•重庆)若f (x )=a + 12x +1是奇函数,则a =- 12.13.(2019•北京)设函数f (x )=e x +ae -x (a 为常数).若f (x )为奇函数,则a =-1;若f (x )是R 上的增函数,则a 的取值范围是(-∞,0].14.(2014•湖南)若f (x )=ln (e 3x+1)+ax 是偶函数,则a =- 32.15.(2015•新课标Ⅰ)若函数f (x )=xln (x +a +x 2)为偶函数,则a =1.资料下载来源——高中数学优质资料群群号:114265753916.(2015•上海)已知a 是实数,函数f (x )= x 2+ax +4x是奇函数,求f (x )在(0,+∞)上的最小值及取到最小值时x 的值.四、奇函数性质的应用之中值定理17.(1990•全国)已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于(A )A.-26B.-18C.-10D.1018.(2013•重庆)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg (log 210))=5,则f (lg (lg 2))=(C )A.-5 B.-1C.3D.419.(2018•新课标Ⅲ)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=-2.20.(2012•上海)已知y =f (x )是奇函数,若g (x )=f (x )+2且g (1)=1,则g (-1)=3.五、奇函数性质的应用之分段函数21.(2019•新课标Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=(D )A.e -x -1B.e -x +1C.-e -x -1D.-e -x +122.(2019•新课标Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln 2)=8,则a =-3.六、偶函数性质应用之比较大小23.(2019•新课标Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则(C )A.f (log 3 14)>f (2- 32)>f (2- 23)B.f (log 3 14)>f (2- 23)>f (2- 32)C.f (2- 32)>f (2- 23)>f (log 3 14)D.f (2- 23)>f (2- 32)>f (log 3 14)七、函数性质综合24.(2018•新课标Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=(C )A.-50B.0C.2D.50八、奇偶性与单调性综合判断25.(2020•新课标Ⅱ)设函数f (x )=x 3- 1x 3,则f (x )(A )A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减26.(2020•新课标Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )(D )A.是偶函数,且在( 12,+∞)单调递增B.是奇函数,且在(- 12, 12)单调递减C.是偶函数,且在(-∞,- 12)单调递增D.是奇函数,且在(-∞,- 12)单调递减27.(2015•湖南)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是(A )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数28.(2014•湖南)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是(A )A.f (x )= 1x2B.f (x )=x 2+1C.f (x )=x 3D.f (x )=2-x 29.(2017•北京)已知函数f (x )=3x -( 13)x ,则f (x )(A )A.是奇函数,且在R 上是增函数B.是偶函数,且在R 上是增函数C.是奇函数,且在R 上是减函数D.是偶函数,且在R 上是减函数30.(2005•山东)下列函数既是奇函数,又在区间[-1,1]上单调递减的是(D )A.f (x )=sin xB.f (x )=-|x +1|C.f (x )= 12(a x -a -x )D.f (x )=ln 2-x 2+x31.(2013•北京)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(D )A.y =1x B.y =e -x C.y =lg |x | D.y =-x 2+132.(2012•陕西)下列函数中,既是奇函数又是增函数的为(D )A.y =x +1B.y =-x 2C.y =1xD.y =x |x |33.(2012•天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(B )A.y =cos2x ,x ∈RB.y =log 2|x |,x ∈R 且x ≠0C.y = e x -e -x2,x ∈R D.y =x 3+1,x ∈R34.(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(B )A.y =2x 3B.y =|x |+1C.y =-x 2+4D.y =2-|x |九、奇偶函数图象的对称性35.(2009•黑龙江)函数y =log 2 2-x 2+x的图象(B )A.关于直线y =-x 对称B.关于原点对称C.关于y 轴对称D.关于直线y =x 对称36.(2010•重庆)函数f (x )= 4x+12x 的图象(D )A.关于原点对称B.关于直线y =x 对称C.关于x 轴对称D.关于y 轴对称37.(2011•上海)f (x )= 4x-12x的图象关于(A )A.原点对称B.直线y =x 对称C.直线y =-x 对称D.y 轴对称38.(2008•全国卷Ⅱ)函数f (x )= 1x-x 的图象关于(C )A.y 轴对称B.直线y =-x 对称C.坐标原点对称D.直线y =x 对称十、奇函数性质应用之解不等式39.(2020•山东)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是(D )A.[-1,1]∪ 3,+∞)B.[-3,-1]∪ 0,1]C.[-1,0]∪ 1,+∞)D.[-1,0]∪ 1,3]40.(2015•山东)若函数f (x )= 2x+12x -a是奇函数,则使f (x )>3成立的x 的取值范围为(C )A.(-∞,-1) B.(-1,0) C.(0,1) D.(1,+∞)十一、奇函数性质比较大小41.(2017•天津)已知奇函数f (x )在R 上是增函数.若a =-f (log 2 15),b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为(C )A.a <b <cB.b <a <cC.c <b <aD.c <a <b42.(2009•山东)已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x )且在区间[0,2]上是增函数,则(A )A.f (-25)<f (80)<f (11)B.f (80)<f (11)<f (-25)C.f (11)<f (80)<f (-25)D.f (-25)<f (11)<f (80)十二、偶函数性质比较大小43.(2015•天津)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为(C )A.a <b <cB.a <c <bC.c <a <bD.c <b <a44.(2008•天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是增函数.令a=f (sin 2π7),b =f (cos 5π7),c =f (tan 5π7),则(A )A.b <a <cB.c <b <aC.b <c <aD.a <b <c 解:b =f (-cos 5π7)=f (cos 2π7),c =f (-tan 5π7)=f (tan 2π7)因为 π4< 2π7< π2,又由函数在区间[0,+∞)上是增函数,所以0<cos 2π7<sin 2π7<1<tan 2π7,所以b <a <c ,故选:A .十三、奇偶性综合之比较大小45.(2008•安徽)若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有(D )A.f (2)<f (3)<g (0)B.g (0)<f (3)<f (2)C.f (2)<g (0)<f (3)D.g (0)<f (2)<f (3)十四、偶函数性质应用之解不等式46.(2016•天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,若实数a满足f (2|a -1|)>f (- 2),则a 的取值范围是( 12, 32).47.(2014•新课标Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是(-1,3).48.(2015•新课标Ⅱ)设函数f (x )=ln (1+|x |)- 11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是(B )A.(-∞, 13)∪(1,+∞)B.( 13,1)C.(- 13, 13)D.(-∞,- 13)∪( 13,+∞)。
高中数学高考总复习函数的奇偶性习题及详解精选

高中数学高考总复习函数的奇偶性习题及详解一、选择题1.(文)下列函数,在其定义域内既是奇函数又是增函数的是( ) A .y =x +x 3(x ∈R) B .y =3x (x ∈R)C .y =-log 2x (x >0,x ∈R)D .y =-1x (x ∈R ,x ≠0)[答案] A[解析] 首先函数为奇函数、定义域应关于原点对称,排除C ,若x =0在定义域内,则应有f (0)=0,排除B ;又函数在定义域内单调递增,排除D ,故选A.(理)下列函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x +a -x )D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x )为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.故选D.2.(2010·安徽理,4)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( ) A .-1 B .1 C .-2D .2[答案] A[解析] f (3)-f (4)=f (-2)-f (-1)=-f (2)+f (1)=-2+1=-1,故选A.3.(2010·河北唐山)已知f (x )与g (x )分别是定义在R 上奇函数与偶函数,若f (x )+g (x )=log 2(x 2+x +2),则f (1)等于( )A .-12B.12 C .1D.32[答案] B[解析] 由条件知,⎩⎪⎨⎪⎧f1+g 1=2f -1+g -1=1,∵f (x )为奇函数,g (x )为偶函数.∴⎩⎪⎨⎪⎧f 1+g 1=2g1-f 1=1,∴f (1)=12.4.(文)(2010·北京崇文区)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f x,当1≤x ≤2时,f (x )=x -2,则f (6.5)=( )A .4.5B .-4.5C .0.5D .-0.5[答案] D[解析] ∵f (x +2)=-1fx ,∴f (x +4)=f [(x +2)+2]=-1fx +2=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.(理)(2010·山东日照)已知函数f (x )是定义域为R 的偶函数,且f (x +2)=f (x ),若f (x )在[-1,0]上是减函数,则f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数[答案] A[解析] 由f (x +2)=f (x )得出周期T =2, ∵f (x )在[-1,0]上为减函数,又f (x )为偶函数,∴f (x )在[0,1]上为增函数,从而f (x )在[2,3]上为增函数.5.(2010·辽宁锦州)已知函数f (x )是定义在区间[-a ,a ](a >0)上的奇函数,且存在最大值与最小值.若g (x )=f (x )+2,则g (x )的最大值与最小值之和为( ) A .0B .2C .4D .不能确定 [答案] C[解析] ∵f (x )是定义在[-a ,a ]上的奇函数,∴f (x )的最大值与最小值之和为0,又g (x )=f (x )+2是将f (x )的图象向上平移2个单位得到的,故g (x )的最大值与最小值比f (x )的最大值与最小值都大2,故其和为4.)(2⊗xx⊕2-2)=x (f |,则函数b -a =|b ⊕a ,a2-b2=b ⊗a 6.定义两种运算: A .是偶函数 B .是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 [答案] B,4-x2|x -2|-2=)x (f ]解析[ ,2≤x ≤2-∴,4≤2x ∵ 又∵x ≠0,∴x ∈[-2,0)∪(0,2]. ,4-x2-x=)x (f 则 f (x )+f (-x )=0,故选B.12(log f =b 7),4(log f =a ,0]上是增函数,设∞)上的偶函数,且在(-∞,+∞)是定义在(-x (f 7.已知) 的大小关系是(c 、b 、a ),则0.6(0.2f =c 3), A .c <b <a B .b <c <a C .b <a <cD .a <b <c [答案] C[解析] 由题意知f (x )=f (|x |).,<10.60<0.2,723>log 2log =3|12|log ,>172log =74log ∵ |.0.67|>|0.243|>|log 12|log ∴ 又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b <a <c .故选C.)(2011)等于(f ,则1+f x1-f x+1)=x (f (1)=2,f )满足:x (f 8.已知函数 A .2B .-312C .-13D. [答案] C.)*N ∈x ( )x (f =4)+x (f ,故2=(1)f =(5)f ,13=(4)f ,12=-(3)f ,3=-(2)f 由条件知, ]解析[ ∴f (x )的周期为4, .12=-(3)f =(2011)f 故 [点评] 严格推证如下: ,1f x=-1+f x +11-f x +1=2)+x (f ∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4. ,)*N ∈k ,*N ∈x (,)x (f =)x +k (4f 故)的取值范围是(x )<0的x (f 是奇函数,则使⎝ ⎛⎭⎪⎫21-x +a )=lg x (f 9.设 A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞) [答案] A[解析] ∵f (x )为奇函数,∴f (0)=0,∴a =-1. 得)<0x (f ,由x +11-xlg =)x (f ∴ A.,故选<0x 1<-∴,<1x +11-x0<) 的图象(2-x2+x2=log y )函数Ⅱ10.(文)(09·全国 A .关于原点对称 B .关于直线y =-x 对称 C .关于y 轴对称 D .关于直线y =x 对称 [答案] A=2+x 2-x2log +2-x 2+x 2log =)x -(f +)x (f ,则2-x 2+x 2log =)x (f ,其次令<2x 2<得,->02-x 2+x 首先由 ]解析[ A.为奇函数,其图象关于原点对称,故选)x (f 故0.=12log ) (0,π)的图象可能是下列图象中的(∪(-π,0)∈x ,xsinx=y (理)函数[答案] C ,A 是偶函数,排除xsinx=y ∵ ]解析[ ,D ,排除>22sin2=y 时,2=x 当C.,故选B ,排除>1π3=π6sinπ6=y 时,π6=x 当二、填空题的值为________.⎝ ⎛⎭⎪⎫116f +⎝ ⎛⎭⎪⎫-116f ,则⎩⎪⎨⎪⎧sinπxx<0f x -1-1 x>0)=x (f 11.(文)已知 [答案] -2 2-⎝ ⎛⎭⎪⎫-16f =1-⎝ ⎛⎭⎪⎫56f =⎝ ⎛⎭⎪⎫116f ]解析[ ,52=-2-⎝ ⎛⎭⎪⎫-π6sin = 2.原式=-∴,12=π6sin =⎝⎛⎭⎪⎫-11π6sin =⎝ ⎛⎭⎪⎫-116f 12=x )的图象关于直线x (f =y )是定义在R 上的奇函数,且x (f (理)设对称,则f (1)+f (2)+f (3)+f (4)+f (5)=________. [答案] 0对称,12=x 的图象关于直线)x (f ∵ ]解析[ 都成立,R ∈x ,对任意⎝ ⎛⎭⎪⎫12-x f =⎝ ⎛⎭⎪⎫12+x f ∴ ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),∴周期T =2 ∴f (0)=f (2)=f (4)=0 对称12=x 关于(0)f 与(1)f 又 ∴f (1)=0 ∴f (3)=f (5)=0 填0.12.(2010·深圳中学)已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它<0的解集是________.f xg x图所示,则不等式[0,π]上的图象如∈x 们在⎝ ⎛⎭⎪⎫π3,π∪⎝ ⎛⎭⎪⎫-π3,0 ]答案[ [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,轴上方,一个在x ,观察两函数的图象,其中一个在⎩⎪⎨⎪⎧fx >0g x <0,或⎩⎪⎨⎪⎧f x <0g x >0∴,<0f xg x ∵<π.x <π3或<0x <π3-∴轴下方的,即满足要求,x 13.(文)若f (x )是定义在R 上的偶函数,其图象关于直线x =2对称,且当x ∈(-5)=________.f +1.则2x )=-x (f (-2,2)时, [答案] 00.=1+21)-(=-1)-(f =3)-(2f =3)+(2f =(5)f =5)-(f 由题意知 ]解析[ (-3)f ,则2)b +x )=(x (f 1时,≥x ,当a )=x (f 1时,≤x ≤)是定义域为R 的奇函数,当-1x (f (理)已知函数+f (5)=________. [答案] 12[解析] ∵f (x )是R 上的奇函数,∴f (0)=0, ∵-1≤x ≤1时,f (x )=a ,∴a =0. 1.=-b ∴,0=2)b +(1=(1)f ∴ ,21)+x (=21)-x -(=)x -(f ,1≥x 时,-1-≤x 当∴ ,21)+x (=-)x (f ∴为奇函数,)x (f ∵ ⎩⎪⎨⎪⎧-x +1 2 x≤-10 -1≤x≤1x -1 2 x≥1=)x (f ∴ 12.=21)-(5+21)+3-(=-(5)f +3)-(f ∴ =21)-(5+21)-(3=-(5)f +(3)f =-(5)f +3)-(f 后,可直接由奇函数的性质得1=-b 求得 ]点评[12.=________.a R)是奇函数,则∈a (⎝ ⎛⎭⎪⎫2x 1+x +a )=lg x (f 14.(文)(2010·山东枣庄模拟)若 [答案] -1 是奇函数,⎝⎛⎭⎪⎫2x 1+x +a lg =)x (f ∵ ]解析[ ∴f (-x )+f (x )=0恒成立, ⎝ ⎛⎭⎪⎫-2x 1-x +a lg +⎝ ⎛⎭⎪⎫2x 1+x +a lg 即 0.=⎝ ⎛⎭⎪⎫2x x -1+a ⎝⎛⎭⎪⎫2x 1+x +a lg =,1=⎝ ⎛⎭⎪⎫2x x -1+a ⎝⎛⎭⎪⎫2x 1+x +a ∴ ,0=1)-2a (-2x 3)+a 4+2a (∴ ∵上式对定义内的任意x 都成立,1.=-a ∴,⎩⎪⎨⎪⎧a2+4a +3=0a2-1=0∴ [点评] ①可以先将真数通分,再利用f (-x )=-f (x )恒成立求解,运算过程稍简单些.x为奇函数,显然a +2x +a1+xlg=)x (f 如果利用奇函数定义域的特点考虑,则问题变得比较简单.②故平时解题中要1.=-a ,得1=aa +2=-x 的定义域内,令)x (f 也不在1=x 的定义域内,故)x (f 不在1=-多思少算,培养观察、分析、捕捉信息的能力.⎝ ⎛⎭⎪⎫-1+a 2+x )=lg x (f (理)(2010·吉林长春质检)已知函数为奇函数,则使不等式f (x )<-1成立的x 的取值范围是________. <2x <1811]答案[ ⎝⎛⎭⎪⎫-1+a 2+x lg +⎝⎛⎭⎪⎫-1+a 2-x lg ∴恒成立,0=)x (f +)x -(f ∴为奇函数,)x (f ∵ ]解析[ ,0=⎝ ⎛⎭⎪⎫-1+a 2+x ⎝⎛⎭⎪⎫-1+a 2-x lg = ,1=⎝ ⎛⎭⎪⎫-1+a 2+x ⎝⎛⎭⎪⎫-1+a 2-x ∴ ,4=a ∴,0=4-ax2-4∴,0≠a ∵ ,2-xx +2lg =⎝⎛⎭⎪⎫-1+42+x lg =)x (f ∴ ,1-<2-x2+xlg 得,1-)<x (f 由 ,<2x 2<得,->02-x2+x,由110<2-x 2+x 0<∴ <2.x <1811∴,1811>x 或2-<x 得,110<2-x 2+x 由三、解答题).x (f )a +x )=(x (g )过点(2,5),x (f =y 为偶函数,曲线c +bx +2x )=x (f 15.(2010·杭州外国语学校)已知 (1)若曲线y =g (x )有斜率为0的切线,求实数a 的取值范围;(2)若当x =-1时函数y =g (x )取得极值,且方程g (x )+b =0有三个不同的实数解,求实数b 的取值范围.[解析] (1)由f (x )为偶函数知b =0, 1.+2x =)x (f ∴,1=c ,得5=(2)f 又 ,a +x +2ax +3x =1)+2x )(a +x (=)x (g ∴ 因为曲线y =g (x )有斜率为0的切线, 有实数解.0=1+ax 2+2x 3=)x (′g 所以 .3-≤a 或3≥a ,解得0≥12-2a 4=Δ∴ (2)由题意得g ′(-1)=0,得a =2. ,2+x +2x 2+3x =)x (g ∴ .1)+x 1)(+x (3=1+x 4+2x 3=)x (′g .13=-2x ,1=-1x ,得0=)x (′g 令 ,)>0x (′g 时,)∞,+13-(∈x ,当)<0x (′g 时,)13,-1-(∈x ,当)>0x (′g 时,1),-∞-(∈x 当∵ 处取得极小值.13=-x 处取得极大值,在1=-x 在)x (g ∴ ,<2b -<5027∴有三个不同的实数解,b =-)x (g 即0=b +)x (g ,且方程5027=)13-(g ,2=1)-(g ∵又 .5027-<b 2<解得- 16.(2010·揭阳模拟)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈.2x -x )=2x (f [0,2]时, (1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2011).[分析] 由f (x +2)=-f (x )可得f (x +4)与f (x )关系,由f (x )为奇函数及在(0,2]上解析式可求f (x )在[-2,0]上的解析式,进而可得f (x )在[2,4]上的解析式. [解析] (1)∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数.(2)当x ∈[-2,0]时,-x ∈[0,2],由已知得 ,2x -x 2=-2)x -(-)x -2(=)x -(f ,2x -x 2=-)x (f =-)x -(f ∴是奇函数,)x (f 又 .x 2+2x =)x (f ∴ 又当x ∈[2,4]时,x -4∈[-2,0], 8.+x 6-2x =4)-x 2(+24)-x (=4)-x (f ∴又f (x )是周期为4的周期函数, ∴f (x )=f (x -4) 8.+x 6-2x = 从而求得x ∈[2,4]时, 8.+x 6-2x =)x (f (3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1. 又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2008)+f (2009)+f (2010)+f (2011)=0. ∴f (0)+f (1)+f (2)+…+f (2011)=0. )上的奇函数.∞,+∞1)是定义在(-≠a >0且a (42ax +a)=1-x (f 17.(文)已知函数 (1)求a 的值; (2)求函数f (x )的值域;的取值范围.t -2恒成立,求实数x 2≥)x (tf (0,1]时,∈x (3)当 [解析] (1)∵f (x )是定义在(-∞,+∞)上的奇函数,即f (-x )=-f (x )恒成立,∴f (0)=0. ,0=42×a0+a-1即 解得a =2. ,1+y1-y =x 2∴,2x -12x +1=y ∵(2) ,>01+y1-y知>0x 2由 ∴-1<y <1,即f (x )的值域为(-1,1). 2.-x2≥t·2x-t 2x +1即为2-x 2≥)x (tf 不等式(3) ,u =x 2设0.≤2-t +x 1)·2+t (-2)x (2即: ∵x ∈(0,1],∴u ∈(1,2].恒成立.0≤2-t +u 1)·+t (-2u 时(1,2]∈u ∵ 0.≥t ,解得⎩⎪⎨⎪⎧12-t +1×1+t -2≤022-t +1×2+t -2≤0∴ .⎩⎪⎨⎪⎧f x x>0-f x x<0)=x (F 0),≠a 为实数,且c 、b 、a (c +bx +2ax )=x (f (理)设函数 (1)若f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值范围; (3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0..b +ax 2=)x (′ f ,所以c +bx +2ax =)x (f 因为(1) ]解析[ 又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0, 即-2a +b =0,因此b =2a .① 因为f (-1)=0,所以b =a +c .② 又因为曲线y =f (x )通过点(0,2a +3), 所以c =2a +3.③解由①,②,③组成的方程组得,a =-3,b =-6,c =-3. 3.-x 6-2x 3=-)x (f 从而 .⎩⎪⎨⎪⎧-3x +1 2 x>03x +1 2 x<0=)x (F 所以 ,3-x 6-2x 3=-)x (f 知(1)由(2) 3.+x 6)+k (+2x 3=)x (f -kx =)x (g 所以 由g (x )在[-1,1]上是单调函数知: 0.≥k 或12-≤k ,得1≥k +66或-1-≤k +66-(3)因为f (x )是偶函数,可知b =0. .c +2ax =)x (f 因此 又因为mn <0,m +n >0, 可知m ,n 异号. 若m >0,则n <0.c -2an -c +2am =)n (f -)m (f =)n (F +)m (F 则 =a (m +n )(m -n )>0. 若m <0,则n >0. 同理可得F (m )+F (n )>0. 综上可知F (m )+F (n )>0.。
高考数学复习----《函数的奇偶性的综合应用》典型例题讲解

高考数学复习----《函数的奇偶性的综合应用》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 在(],3−∞上单调递增,且()3f x +为偶函数,则不等式()()12f x f x +>的解集为( )A .51,3⎛⎫ ⎪⎝⎭B .()5,1,3⎛⎫−∞⋃+∞ ⎪⎝⎭C .(),1−∞D .()1,+∞【答案】B【解析】∵()3f x +为偶函数, ∴()()33f x f x −+=+,即函数()f x 关于3x =对称,又函数()f x 在(],3−∞上单调递增,∴函数()f x 在[)3,+∞上单调递减,由()()12f x f x +>,可得1323x x +−<−,整理得,23850x x −+>,解得1x <或53x >. 故选:B .例2、(2023·全国·高三专题练习)设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,不等式()()24f x f x ≥的解集为( )A .(][),04,−∞+∞UB .[]0,4C .(][),02,−∞⋃+∞D .[]0,2【答案】C 【解析】根据题意,当0x ≥时,()2f x x =,所以()f x 在[0,)+∞上为增函数,因为()f x 是定义在R 上的奇函数,所以()f x 在R 上为增函数,因为20x ≥,所以24()f x x =,24124x f x ⎛⎫= ⎪⎝⎭, 所以221()42x f x f ⎛⎫= ⎪⎝⎭, 所以不等式()()24f x f x ≥可化为2()2x f f x ⎛⎫≥ ⎪⎝⎭, 所以22x x ≥,解得0x ≤或2x ≥, 所以不等式()()24f x f x ≥的解集为(][),02,−∞⋃+∞,故选:C例3、(2023·全国·高三专题练习)已知偶函数()f x 的定义域为R ,且当0x ≥时,()11x f x x −=+,则使不等式()2122f a a −<成立的实数a 的取值范围是( ) A .()1,3−B .()3,3−C .()1,1−D .(),3−∞【答案】A 【解析】当0x ≥时,()()12121111x x f x x x x +−−===−+++,所以()f x 在[)0,∞+上单调递增, 且()132f =,不等式()2122f a a −<即为()()223f a a f −<. 又因为()f x 是偶函数,所以不等式()()223f a a f −<等价于()()223f a a f −<, 则223a a −<,所以,222323a a a a ⎧−<⎨−>−⎩,解得13a −<<. 综上可知,实数a 的取值范围为()1,3−,故选:A .例4、(2023·全国·高三专题练习)定义在R 上的奇函数()f x 在(,0]−∞上单调递增,且(2)2f −=−,则不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭的解集为( ) A .10,100⎛⎫ ⎪⎝⎭B .1,100⎛⎫+∞ ⎪⎝⎭C .(0,100)D .(100,)+∞【答案】D【解析】因为函数()f x 为奇函数,所以()()f x f x −=−,又(2)2f −=−,(2)2f =, 所以不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭,可化为()2(lg )422f x f >=, 即()(lg )2f x f >,又因为()f x 在(,0]−∞上单调递增,所以()f x 在R 上单调递增,所以lg 2x >,解得100x >.故选:D .例5、(2023春·广西·高三期末)()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则()()20232022f f +−=( )A .-1B .12−C .12D .1【答案】A 【解析】()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则 1111111222222f x f x f x f x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−++=−++⇒−+++=− ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. ∴()()40451404512023202212222f f f f ⎛⎫⎛⎫+−=++−+=− ⎪ ⎪⎝⎭⎝⎭. 故选:A 例6、(2023春·甘肃兰州·高三兰化一中校考阶段练习)若函数f (x )=e e sin x x x x −−+−,则满足()()22ln 102x f a x f ⎛⎫−++≥ ⎪⎝⎭恒成立的实数a 的取值范围为( )A .12ln 2,2⎡⎫−+∞⎪⎢⎣⎭B .1(ln 2,)4−+∞C .[7,)4+∞D .[3,)2+∞ 【答案】A 【解析】因为()e e sin ()x x f x x x f x −−−=−+=−,所以()f x 是R 上的奇函数,由()e +e cos 1x x f x x −'=+−cos 11cos 0x x ≥−=+≥ ,所以()f x 是R 上的增函数, 所以2(2ln(1))02x f a x f ⎛⎫−++≥ ⎪⎝⎭等价于: 22(2ln(1))22x x f a x f f ⎛⎫⎛⎫−+≥−=− ⎪ ⎪⎝⎭⎝⎭即22ln(1)2x a x −+≥−, 所以22ln(1)2x a x ≥−++, 令2()2ln(1)2x g x x =−++, 则问题转化为:max ()a g x ≥,因为()()g x g x −=且定义域为R ,所以()g x =22ln(1)2x x −++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =−++, ()()22122()111x x x x g x x x x x +−−−+'=−+==−+++, 则当()0,1x ∈时,()0g x '>;当()1,x ∈+∞时,()0g x '<; 所以()g x 在()0,1上单调递增,在()1,+∞上单调递减,可得:max 1()(1)2ln 22g x g ==−, 即12ln 22a ≥−, 故选:A . 本课结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:函数的奇偶性教学目标:掌握函数的奇偶性的定义及图象特征,并能判断和证明函数的奇偶性,能利用函数的奇偶性解决问题.教学重点:函数的奇偶性的定义及应用. (一) 主要知识:1.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数; 2.奇偶函数的性质:()1函数具有奇偶性的必要条件是其定义域关于原点对称; ()2()f x 是偶函数⇔()f x 的图象关于y 轴对称; ()f x 是奇函数⇔()f x 的图象关于原点对称;()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性.3.()f x 为偶函数()()(||)f x f x f x ⇔=-=.4.若奇函数()f x 的定义域包含0,则(0)0f =.(二)主要方法:1.判断函数的奇偶性的方法:()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x =-或()()f x f x =-是否定义域上的恒等式;()2图象法;()3性质法:①设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D =上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;②若某奇函数若存在反函数,则其反函数必是奇函数;2. 判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-. (三)典例分析:问题1.判断下列各函数的奇偶性:()1 ()(f x x =- ()2 2lg(1)()|2|2x f x x -=--;()3 ())f x x =; ()4 22(0)()(0)x x x f x x xx ⎧+<⎪=⎨-+>⎪⎩问题2.()1已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,()(1f x x =,则()f x 的解析式为()2(04上海)设奇函数()f x 的定义域为[5,5- ()f x 的图象如右图,则不等式()0f x <问题3.已知函数()f x 满足:()()2()()f x y f x y f x f y ++-=⋅对任意的实数x 、y总成立,且(1)(2)f f ≠.求证:()f x 为偶函数.问题4.()1(06黄岗中学月考)已知函数21()log 1xf x x x-=-++, 求1()2005f -1()2004f +-1()2004f +1()2005f +的值; ()2已知函数21()ax f x bx c+=+(a 、b 、c Z ∈)为奇函数,又(1)2f =,(2)3f <, 求a 、b 、c 的值 .问题5.()1已知()f x 是偶函数,x R ∈,当0x >时,()f x 为增函数,若120,0x x <>,且12||||x x <,则A .12()()f x f x ->-B .12()()f x f x -<-C .12()()f x f x ->-D . 12()()f x f x -<-()2设定义在[]2,2-上的偶函数()f x 在区间[]0,2上单调递减,若(1)()f m f m -<,求实数m 的取值范围(四)巩固练习:1.已知函数2()f x ax bx c =++,[]23,1x a ∈--是偶函数,则a b +=2.已知1()21x f x m =++为奇函数,则(1)f -的值为3.已知5)(357++++=dx cx bx ax x f ,其中d c b a ,,,为常数,若7)7(-=-f ,则=)7(f _______4.若函数)(x f 是定义在R 上的奇函数,则函数)()()(x f x f x F +=的图象关于.A x 轴对称 .B y 轴对称 .C 原点对称 .D 以上均不对西安市昆仑中学2008届高三理科数学第一轮复习讲义 第10课时 席成5.函数)0)(()1221()(≠-+=x x f x F x 是偶函数,且)(x f 不恒等于零,则)(x f .A 是奇函数 .B 是偶函数.C 可能是奇函数也可能是偶函数 .D 不是奇函数也不是偶函数(五)课后作业:1.判断下列函数的奇偶性:()1()f x = ()2()212()2x xf x +=;()311()212xf x =+-; ()4()3()l o g 132x xf x -=++; ()51()log 1a xf x x +=-(其中0a >,1a ≠)2.(03南昌模拟)给出下列函数①cos y x x =②2sin y x =③2y x x =-④x x y e e -=-,其中是奇函数的是( ) .A ①② .B ①④ .C ②④ .D ③④3.已知函数)(x f y =在R 是奇函数,且当0≥x 时,x x x f 2)(2-=,则0<x 时,)(x f 的解析式为_______________4.(06上海春)已知函数()f x 是定义在(),-∞+∞上的偶函数.当(),0x ∈-∞时,4()f x x x =-,则当()0,x ∈+∞时,()f x =5.已知()f x 为R 上的奇函数,当0x <时,1()3xf x ⎛⎫= ⎪⎝⎭,那么1()2f 的值为.A.B.C.D 96.若()f x 为偶函数,()g x 为奇函数,且1()()1f xg x x +=-,则()f x = , ()g x =7.定义在)1,1(-上的函数1)(2+++=nx x mx x f 是奇函数,则常数=m ____,=n _____(05北京西城模拟)已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+,()1求证:()f x 为奇函数;()2若(3)f a -=,用a 表示(12)f .9.( 06重庆文)已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数。
(Ⅰ)求,a b 的值;(Ⅱ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围;10.设)(x f 是定义在R 上的奇函数,且)()2(x f x f -=+,又当1-≤x ≤1时,3)(x x f =,()1证明:直线1=x 是函数)(x f 图象的一条对称轴; ()2当]5,1[∈x 时,求)(x f 的解析式1. (04全国)已知函数1()lg1xf x x-=+,若()f a b =,则()f a -= .A b .B b - .C 1b .D 1b -2. (06全国Ⅰ文)已知函数()1,21x f x a =-+,若()f x 为奇函数,则a =3.(06江苏)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =.A 0 .B 1 .C 1- .D 1±4.(06辽宁)设()f x 是R 上的任意函数,下列叙述正确的是( ).A ()()f x f x ⋅-是奇函数 .B ()()f x f x ⋅-是奇函数 .C ()()f x f x +-是偶函数.D ()()f x f x --是偶函数5.(07辽宁文)已知()y f x =为奇函数,若(3)(2)1f f -=,则(2)(3)f f ---=6.(07广东)若函数21()sin 2f x x =-()x R ∈,则()f x 是( ).A 最小正周期为π2的奇函数.B 最小正周期为π的奇函数西安市昆仑中学2008届高三理科数学第一轮复习讲义 第10课时 席成.C 最小正周期为2π的偶函数.D 最小正周期为π的偶函数 7.(07海南)设函数(1)()()x x a f x x++=为奇函数,则a =8.(07海南文)设函数()(1)()f x x x a =++为偶函数,则a =9.(07江苏)设2()lg 1f x a x ⎛⎫=+ ⎪-⎝⎭是奇函数,则使()0f x <的x 的取值范围是.A (10)-, .B (01), .C (0)-∞, .D (0)(1)-∞+∞,, 10. (07江西)设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为 .A 15-.B 0.C 15.D 511.设a 为实数,函数2()||1f x x x a =+-+,x R ∈.()1讨论()f x 的奇偶性; ()2求()f x 的最小值.12.(07上海,本题满分14分)已知函数2()af x x x=+(0x ≠,常数)a R ∈. ()1讨论函数()f x 的奇偶性,并说明理由()2若()f x 在[)2,x ∈+∞上是增函数,求a 的取值范围.。