高斯投影正反算

合集下载

高斯投影

高斯投影

一、高斯投影正反算 (1)采用c 语言(2)编程思想和设计框图(3)采用的基本数学模型 基本椭球参数: 椭球长半轴a 椭球扁率f椭球短半轴:(1)b a f =-椭球第一偏心率:e =椭球第二偏心率:e b'=高斯投影正算公式:此公式换算的精度为0.001m6425644223422)5861(cos sin 720)495(cos 24cos sin 2lt t B B N lt B simB N l B B N X x ''+-''+''++-''+''⋅''+=ρηηρρ5222425532233)5814185(cos 120)1(cos 6cos lt t t B N lt B N l B N y ''-++-''+''+-''+''⋅''=ηηρηρρ其中:角度都为弧度B 为点的纬度,0l L L ''=-,L 为点的经度,0L 为中央子午线经度; N 为子午圈曲率半径,1222(1sin )N a e B -=-; tan t B =;222cos e B η'=1803600ρπ''=*其中X 为子午线弧长:2402464661616sin cos ()(2)sin sin 33X a B B B a a a a a B a B ⎡⎤=--++-+⎢⎥⎣⎦02468,,,,a a a a a 为基本常量,按如下公式计算:200468242684468686883535281612815722321637816323216128m a m m m m m m a m mm a m m m m a m a ⎧=++++⎪⎪⎪=+++⎪⎪⎪=++⎨⎪⎪=+⎪⎪⎪=⎪⎩02468,,,,m m m m m 为基本常量,按如下公式计算:22222020426486379(1);;5;;268m a e m e m m e m m e m m e m =-====;高斯投影反算公式:此公式换算的精度为0.0001’’.()()()()222224324653223524222553922461904572012cos 6cos 5282468120cos f f f ff f f f ff fff f f ff f f f f f f f f f f f f t t B B y tt yM N M Nt y t t yM Ny y l t N B N B y t t t N B L l L ηηηηη=-+++--++=-+++++++=+其中:0L 为中央子午线经度。

高斯投影正反算

高斯投影正反算

高斯投影正反算学院:资源与环境工程工程学院专业:测绘工程 学号:X51414012:超一、高斯投影概述想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线相切,椭圆柱的中心轴通过椭球体的中心,然后用一定投影方法,将中央子午线两侧各一定经差围的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。

高斯投影由于是正形投影,故保证了投影的角度不变性,图形的相似性以及在某点各方向上长度比的同一性。

由于采用了同样法则的分带投影,这即限制了长度变形,又保证了在不同投影带中采用相同的简便公式和数表进行变形引起的各项改正的计算,并且带与带间的互相换算也能用相同的公式和方法进行。

高斯投影的这些优点必将使它得到广泛的推广和具有国际意义。

二、高斯投影坐标正算公式1.高斯投影必须满足以下三个条件 1)中央子午线投影后为直线 2)中央子午线投影后长度不变 3)投影具有正形性质,即正形投影条件2.高斯正算公式推导1)由第一个条件可知,由于地球椭球体是一个旋转椭球体,所以高斯投影必然有这样一个性质,即中央子午线东西两侧的投影必然对称于中央子午线。

2)由于高斯投影是换带投影,在每带经差l是不大的,lρ是一个微小量,所以可以将X=X (l,q ),Y=Y (l ,q )展开为经差为l 的幂级数,它可写成如下的形式X=m 0+m 2l 2+m 4l 4+…Y=m 1l+m 3l 2+m 5l 5+…式中m 0,m1,m2,…是待定系数,他们都是纬度B 的函数。

3)由第三个条件:∂y ∂l =∂x ∂q 和∂x ∂l =-∂y∂q ,将上式分别对l 和q 求偏导2340123423401234...........x m m l m l m l m l y n n l n l n l n l =+++++=+++++可得到下式0312123403121234111,,,, 234111,,,,234dm dm dm dm n n n n dq dq dq dq dn dn dn dn m m m m dq dq dq dq ⎧====⎪⎪⎨⎪=-=-=-=-⎪⎩经过计算可以得出232244524632235242225sin cos sin cos (594)224 sin cos (6158)720cos cos (1)6cos (5181458)120N N x X B B l B B t l NB B t t l Ny N B l B t l NB t t t l ηηηηη=+⋅+-+++-+=⋅+-++-++-三、高斯投影坐标反算公式推导1.思路:级数展开,应用高斯投影三个条件,待定系数法求解。

高斯投影正反算公式

高斯投影正反算公式

⾼斯投影正反算公式⾼斯投影坐标正反算⼀、基本思想:⾼斯投影正算公式就是由⼤地坐标(L ,B )求解⾼斯平⾯坐标(x ,y ),⽽⾼斯投影反算公式则是由⾼斯平⾯坐标(x ,y )求解⼤地坐标(L ,B )。

⼆、计算模型:基本椭球参数:椭球长半轴a椭球扁率f椭球短半轴:(1)b a f =-椭球第⼀偏⼼率:e a= 椭球第⼆偏⼼率:e b'=⾼斯投影正算公式:此公式换算的精度为0.001m6425644223422)5861(cos sin 720)495(cos 24cos sin 2l t t B B N l t B simB N l B B N X x ''+-''+''++-''+''?''+=ρηηρρ 5222425532233)5814185(cos 120)1(cos 6cos l t t t B N l t B N l B N y ''-++-''+''+-''+''?''=ηηρηρρ其中:⾓度都为弧度B 为点的纬度,0l L L ''=-,L 为点的经度,0L 为中央⼦午线经度; N 为⼦午圈曲率半径,1222(1sin )N a e B -=-;tan t B =; 222cos e B η'=1803600ρπ''=*其中X 为⼦午线弧长:2402464661616sin cos ()(2)sin sin 33X a B B B a a a a a B a B ??=--++-+02468,,,,a a a a a 为基本常量,按如下公式计算:200468242684468686883535281612815722321637816323216128m a m m m m m m a m m m a m m m m a m a ?=++++=+++=++=+ =??02468,,,,m m m m m 为基本常量,按如下公式计算:22222020426486379(1);;5;;268m a e m e m m e m m e m m e m =-====;⾼斯投影反算公式:此公式换算的精度为0.0001’’.()()()()2222243246532235242225053922461904572012cos 6cos 5282468120cos f f f f f f f f f f f f f f f f f f f f f ff f f f f f ft t B B y t t yM N M N t y t t yM N y y l t N B N B y t t t N B L l L ηηηηη=-+++--++=-+++++++=+其中: 0L 为中央⼦午线经度。

python高斯投影公式

python高斯投影公式

python高斯投影公式
高斯投影是一种将地球椭球面上的经纬度线投影到平面上的方法,常用于地图制作和地理信息系统等领域。

在Python中,可以使用以下公式进行高斯投影:
1. 投影正反解公式:
正解公式:X=F(L)= L (1+sin(L))
反解公式:L=F^{-1}(X)
其中,L为经度,X为投影坐标。

2. 投影变换公式:
纬度变换公式:B=B0-g(L)
经度变换公式:L=L0-e(X)
其中,B为投影坐标,B0为地球椭球面上的纬度,L为投影坐标对应的经度,L0为地球椭球面上的经度,g(L)和e(X)分别为纬度和经度的变换函数。

需要注意的是,高斯投影公式是一种近似解法,其精度受到地球椭球模型、投影范围和投影方式等因素的影响。

在实际应用中,需要根据具体情况选择合适的投影公式和参数。

高斯平面直角坐标与大地坐标的相互转换——高斯投影的正算与反算.

高斯平面直角坐标与大地坐标的相互转换——高斯投影的正算与反算.

昆明冶金高等专科学校测绘学院 (4)计算公式
3 2 2 2 4 ( 5 3 t 9 t ) y f f f f 2M f N f 2 4M f N 3 f tf 2 4 6 (6 1 9 0t f 4 5t f ) y 7 2 0M f N 5 f 1 1 2 2 3 l y (1 2t f f ) y 3 N f co s B f 6 N f co s B f 1 2 5 (5 2 8t 2 t4 2 2 f 24 f 6 f 8 f t f )y 5 1 2 0N f co s B f B Bf tf y2 tf
式中:

2 e 2 cos2 B
t 2 tan2 B l (L L0) X为B对应子午线弧长 N为卯酉圈曲率半径 20626 5
昆明冶金高等专科学校测绘学院
2
高斯投影坐标反算公式
(1)高斯投影反算:
已知某点 x, y ,求该点 L, B ,即 x, y ( L, B) 的坐标变换。 (2)投影变换必须满足的条件
昆明冶金高等专科学校测绘学院
二、高斯投影坐标正反算得实用公式及算例
1 高斯投影坐标正算公式 (1)高斯投影正算: 已知某点的 L, B ,求该点的 x, y ,即 (2)投影变换必须满足的条件: 中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。 (3)投影过程 在椭球面上有对称于中央子午线的两点 P1 和 P2 ,它们的大地坐标 分别为 ( L1 , B1 )或(l1 , B1)及 (L2 , B2)或(l2 , B2 ) 式中 l 为椭球面上点的经 度与中央子午线 ( L0 ) 的经度差:l L L0 ,点在中央子午线之东, l 为正,在西则为负,则投影后的平面坐标一定为P1 ( x1 , y1 ) 和 P2 ( x 2 , y 2 ) 。

高斯投影正反算

高斯投影正反算

高斯投影正、反算及换带程序执行条件※数组投影选择T、换算点个数“Z=0 F≠0”、=0正算0、≠0反算※坐标系选择“54 ≠54”、=54换算为1954年北京坐标系输入54、≠54换算为1988年西安坐标系M、中央子午线经度(°′″)输入※大地坐标I、序列号B、L:大地纬度和经度(地理坐标)(°′″)※高斯平面坐标轴子午线I、序列号X、Y:高斯平面坐标(m) Z、轴子午线(°)输出※大地坐标子午收敛角N、序列号B、L:大地纬度和经度(地理坐标)(°′″) R、子午收敛角(°′″)※高斯平面坐标子午收敛角N、序列号X、Y:高斯平面坐标(m) R、子午收敛角(°′″)注:1、程序执行前必须进行数组定位。

如:Defm 10 T×2=5×2=102、Y坐标值要去掉带号及避免出现负值的500公里;4、本程序运算时,各已知数据、观测变量不会随之变化,可非常方便地进行各数据的核对;5、本程序在进行换带计算时采用的是间接换带计算法。

Prog GSXYDefm 10:TA“Z=0 F≠0”G“54 ≠54”Z:Fixm:I=0:「b」0:I=I+1◢J=2I-1:M=Z[J:L=Z[J+1:A=0=>Prog“3”:B=M:M=L+Z:Prog“3”:L=M:{BL}:M=B:Prog“2”: B=M:M=L:Prog“2”:L=M-Z:≠>X=M:Y=L:{XY}:B=X:L=Y⊿Z[J]=B:Z[J+1]=L:I<T=>Goto 0⊿G=54=>C=6399698.90178271:E=.006738525414684:≠>C=6399596.65198801:E=.006 739501819473⊿I=0:「b」0:I“N”=I+1◢J=2I-1:B=Z[J:L=Z[J+1:A≠0=>X=B:Y=L:Goto 2⊿S=sin B:G=54=>F=111134.8611B-(32 005.7799S+133.9238S∧3+.6973S∧5+.0039S∧7)cos B:≠>F=111133.0047B-(32009.857 S+133.9602S∧3+.6976S∧5+.0039S∧7)cos B⊿U=√Ecos B:V=√(1+U2:N=C÷V:W=tan B: M=cos B(Lπ÷180:X=F+NW(.5M2+1┛24(5-W2+9U2+4U∧4)M∧4+1┛720(61-58W2+W∧4)M∧6◢Y=N(M+1┛6(1-W 2+U 2)M ∧3+1┛120(5-18W 2+W ∧4+14U 2-58U 2W 2)M ∧5◢M=W ┛π(180M+60(1+3U 2+2U ∧4)M ∧3+12(2-W 2)M ∧5:Goto 3:「b 」2:W=E ﹣6X-3:G=54=>F=27.11115372595+9.024********W-.00579740442W 2-4.3532572E ﹣4W ∧3+4.857285E ﹣5W ∧4+2.15727E ﹣6W ∧5-1.9399E ﹣7W ∧6:≠>F=27.11162289465+9.024********W-.00579850656W2-4.3540029E ﹣4W ∧3+4.858357E ﹣5W ∧4+2.15769E ﹣6W ∧5-1.9404E ﹣7W ∧6⊿U=√Ecos F:V=√(1+U 2:Q=YV ÷C:W=tan F:M=F-(1+U 2)W ┛π(90Q 2-7.5(5+3W 2+U 2-9U 2W 2)Q ∧4+.25(61+90W 2+45W ∧4)Q ∧6:Prog “3”:B=M ◢M=Z+1┛(πcos F)(180Q-30(1+2W 2+U 2)Q ∧3+1.5(5+28W 2+24W ∧4)Q ∧5:Prog “3”:L=M ◢M=W ┛π(180Q-60(1+W 2-U 2)Q ∧3+12(2+5W 2+3W ∧4)Q ∧5:「b 」3:Prog “3”:R=M ◢ I<T=>Goto 1⊿“END ”概要说明:我国的经度范围西边自73°起,东边至135°,可分成6°带共11带或3°共22带。

高斯投影正反算原理

高斯投影正反算原理

高斯投影正反算原理高斯投影是一种常用于地图制图的投影方式,也被广泛应用于其他领域的空间数据处理。

高斯投影正反算是对于已知的地球坐标系上的位置(经纬度),通过计算得到该点的平面坐标(东、北坐标),或者对于已知的平面坐标(东、北坐标),通过计算得到该点的地球坐标系上的位置(经纬度)的过程。

本文将详细介绍高斯投影正反算的原理。

一、高斯投影简介高斯投影是一种圆锥投影,其投影面在地球表面的某个经线上,也就是说,投影面是以该经线为轴的圆锥面。

经过对圆锥体的调整后,使其切于地球椭球面,在该经线上进行投影,同时保持沿该经线方向的比例尺一致,从而达到地图上各点在包括该经线的垂直面上映射的目的。

这种投影方式在某一特定区域内得到高精度的结果,因此广泛应用于地图制图。

二、高斯投影数学模型对于高斯投影正反算,需要先建立高斯投影坐标系与地球坐标系的转换模型。

1.高斯投影坐标系的建立高斯投影坐标系的建立需要确定圆锥面的基本参数,首先需要确定其所处的中央子午线,再确定该子午线上的经度为零点,并利用该经线上某一点的经度和该点的高度来确定该点所在的圆锥体。

圆锥体的底面包括所有与地球椭球面相切的圆面,通过对这些圆面进行调整,使得圆锥体转动后能够在中央子午线上进行投影。

在此基础上,可建立高斯投影坐标系,其中投影面为圆锥面,且中央子午线与投影面的交点称为该投影坐标系的中心,投影面的上端点和下端点分别对应正北方向和正南方向。

2.地球坐标系的建立地球坐标系是以地球椭球体为基础建立的,其坐标系原点确定为地球椭球体上的一个特定点。

在已知该点经纬度和高度的前提下,可确定以该点为中心的地球椭球体,并可根据它与地球坐标系之间的转换关系得到平面坐标系。

3.高斯投影坐标系与地球坐标系之间的转换关系由于高斯投影坐标系与地球坐标系存在不同的坐标体系和基准面,因此需要通过数学关系式来建立它们之间的转换关系。

(1)高斯投影坐标系转地球坐标系:已知高斯投影坐标系中任意一点的东北坐标(N,E),以及所属的中央子午线经度λ0、椭球参数a和e,则可通过以下公式求出该点的地球坐标系经纬度(φ,λ)和高度H:A0为以地球椭球体中心为原点,高斯投影坐标系中心投影坐标为(0,0)的点到椭球面的距离。

高斯投影坐标正反算公式

高斯投影坐标正反算公式

§8.3高斯投影坐标正反算公式任何一种投影①坐标对应关系是最主要的;②假设是正形投影,除了满足正形投影的条件外〔C-R 偏微分方程〕,还有它本身的特殊条件。

高斯投影坐标正算公式: B,l ⇒ x,y高斯投影必须满足以下三个条件:①中央子午线投影后为直线;②中央子午线投影后长度不变;③投影具有正形性质,即正形投影条件。

由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即(8-10)式中,x 为l 的偶函数,y 为l 的奇函数;0330'≤l ,即20/1/≈''''ρl ,如展开为l 的级数,收敛。

+++=++++=553316644220l m l m l m y l m l m l m m x 〔8-33〕式中 ,,10m m 是待定系数,它们都是纬度B 的函数。

由第三个条件知:qyl x l y q x ∂∂-=∂∂∂∂=∂∂, (8-33)式分别对l 和q 求偏导数并代入上式----=++++++=+++5533156342442204523164253l dqdm l dq dm l dq dm l m l m l m l dqdm l dq dm dq dm l m l m m (8-34) 上两式两边相等,其必要充分条件是同次幂l 前的系数应相等,即dq dm m dqdm m dqdm m 2312013121⋅=⋅-==(8-35)(8-35)是一种递推公式,只要确定了0m 就可依次确定其余各系数。

由第二条件知:位于中央子午线上的点,投影后的纵坐标x 应等于投影前从赤道量至该点的子午线弧长X ,即(8-33)式第一式中,当0=l时有:0m X x == (8-36) 顾及(对于中央子午线)B V Mr M B N dq dB M dBdXcos cos 2==== 得:B V cB N r dq dB dB dX dq dX dq dm m cos cos 01===⋅===(8-37,38)B B Ndq dB dB dm dq dm m cos sin 22121112=⋅-=⋅-= (8-39)依次求得6543,,,m m m m 并代入(8-33)式,得到高斯投影正算公式6425644223422)5861(cos sin 720)495(cos 24cos sin 2lt t B B N lt B simB N l B B N X x ''+-''+''++-''+''⋅''+=ρηηρρ5222425532233)5814185(cos 120)1(cos 6cos l t t t B N lt B N l B N y ''-++-''+''+-''+''⋅''=ηηρηρρ (8-42) 高斯投影坐标反算公式x,y ⇒B,l投影方程:),(),(21y x l y x B ϕϕ== (8-43)满足以下三个条件:①x 坐标轴投影后为中央子午线是投影的对称轴;② x 坐标轴投影后长度不变;③投影具有正形性质,即正形投影条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
double ee = (2 * f - 1) / f / f; //第一偏心率的平方
double ee2 = ee / (1 - ee); //第二偏心率的平方
double rB, tB, m;
rB = B * Math.PI / 180;
tB = Math.Tan(rB);
m = Math.Cos(rB) * dL * Math.PI / 180;
/// <param name="L">大地经度</param>
/// <param name="a">参考椭球长半轴</param>
/// <param name="f">参考椭球扁率倒数</param>
public static void xy_BL(double x, double y, out double B, out double L, double a, double f)
/// <param name="a">参考椭球长半轴</param>
/// <param name="f">参考椭球扁率倒数</param>
/// <param name="beltWidth">投影分带的带宽</param>
/// <param name="assumedCoord">是否使用假定坐标</param>
x = MeridianLength(B, a, f) + N * tB * x;
y = N * (m + (1 - tB * tB + it2) * Math.Pow(m, 3) / 6 + (5 - 18 * tB * tB + Math.Pow(tB, 4) + 14 * it2 - 58 * tB * tB * it2) * Math.Pow(m, 5) / 120);
public static void BL_xy(double B, double L, out double x, out double y, double a, double f, int beltWidth, bool assumedCoord)
{
int beltNum; //投影分带的带号
beltNum = (int)Math.Ceiling((L - (beltWidth == 3 ? 1.5 : 0)) / beltWidth);
if (beltWidth == 3 && beltNum * 3 == L - 1.5) beltNum += 1;
L -= beltNum * beltWidth - (beltWidth == 6 ? 3 : 0);
Bl_xy(B, L, out x, out y, a, f, beltWidth);
//换算成假定坐标,平移500km,前面加带号
if (assumedCoord) y += 500000 + beltNum * 1000000;
}
/// <summary>
///从大地坐标到平面坐标的高斯正算
///
///指定中央子午线,用于进行邻带换算,此时必不使用假定坐标
/// </summary>
}
/// <summary>
///从大地坐标到平面坐标的高斯正算
/// </summary>
/// <param name="B">大地纬度</param>
/// <param name="L">大地经度</param>
/// <param name="x">平面纵轴</param>
/// <param name="y">平面横轴</param>
}
/// <summary>
///平面坐标(自然坐标)到大地坐标的高斯反算
/// </summary>
/// <param name="x">平面纵轴</param>
/// <param name="y">平面横轴</param>
/// <param name="B">大地纬度</param>
/// <param name="l">经度差</param>
/// <param name="B">大地纬度</param>
/// <param name="L">大地经度</param>
/// <param name="CenterL">中央子午线</param>
/// <param name="x">平面纵轴</param>
/// <param name="y">平面横轴</param>
public static void BL_xy(double B, double L, out double x, out double y, double a, double f, bool assumedCoord)
{
BL_xy(B, L, out x, out y, a, f, 6, assumedCoord);
}
/// <summary>
///平面坐标(自然坐标或假定坐标)到大地坐标的高斯反算
///
///默认使用六度带
/// </summary>
/// <param name="x">平面纵轴</param>
/// <param name="y">平面横轴</param>
/// <param name="B">大地纬度</param>
/// <param name="x">平面纵轴</param>
/// <param name="y">平面横轴</param>
/// <param name="a">参考椭球长半轴</param>
/// <param name="f">参考椭球扁率倒数</param>
/// <param name="beltWidth">投影分带的带宽</param>
/// <param name="a">参考椭球长半轴</param>
/// <param name="f">参考椭球扁率倒数</param>
/// <param name="beltWidth">投影分带的带宽</param>
public static void Bl_xy(double B, double dL, out double x, out double y, double a, double f, int beltWidth)
/// <param name="a">参考椭球长半轴</param>
/// <param name="f">参考椭球扁率倒数</param>
/// <param name="beltWidth">投影分带的带宽</param>
private static void xy_Bl(double x, double y, out double B, out double l, double a, double f, int beltWidth)
/// <param name="y">平面横轴</param>
/// <param name="a">参考椭球长半轴</param>
/// <param name="f">参考椭球扁率倒数</param>
/// <param name="assumedCoord">是否使用假定坐标</param>
cA = 1 + 3 * ee / 4 + 45 * ee * ee / 64 + 175 * Math.Pow(ee, 3) / 256 + 11025 * Math.Pow(ee, 4) / 16384;
cB = 3 * ee / 4 + 15 * ee * ee / 16 + 525 * Math.Pow(ee, 3) / 512 + 2205 * Math.Pow(ee, 4) / 2048;
{
beltNum = (int)Math.Ceiling(y / 1000000) - 1;
y -= 1000000 * beltNum + 500000;
相关文档
最新文档