数学专题:不等式知识的综合应用
高中数学第1章预备知识3不等式3.2第2课时基本不等式的综合应用学案含解析北师大版第一册

第2课时基本不等式的综合应用学习目标核心素养1.会用基本不等式求函数的最大(小)值问题.(重点)2.能利用基本不等式解决实际应用问题.(难点)1.通过基本不等式求函数最值的应用,提升数学运算素养.2.借助基本不等式在实际问题中的应用,培养数学建模素养.已知x、y都是正数,(1)若x+y=s(和为定值),则当x=y时,积xy取得最大值错误!;(2)若xy=p(积为定值),则当x=y时,x+y取得最小值2错误!。
上述命题可归纳为:和定积最大,积定和最小.思考:(1)两个非负数的积为定值,它们的和一定可以用基本不等式求最小值吗?(2)两个非负数的和为定值,它们的积一定可以用基本不等式求最大值吗?提示:(1)不一定,例如a2+2与错误!,它们的积为定值,但等号取不到,因此不能用基本不等式求最小值.(2)不一定,例如1+a2与1-a2,它们的和为定值,但等号取不到,因此不能用基本不等式求最大值.1.若a>1,则a+1a-1的最小值是()A.2B.a C.错误!D.3D[∵a>1,∴a-1>0,∴a+错误!=a-1+错误!+1≥2 错误!+1=3.当且仅当a-1=错误!,即a=2时,等号成立.] 2.设x>0,则y=3-3x-错误!的最大值是()A.3 B.-3错误!C.3-2错误!D.-1C[∵x>0,∴y=3-错误!≤3-2错误!=3-2错误!。
当且仅当3x=错误!,且x>0,即x=33时,等号成立.]3.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y1和y2分别为2万元和8万元.那么,要使这两项费用之和最小,仓库应建在离车站________千米处.5[依题意得y1=错误!,y2=错误!x为仓库与车站的距离,∴y1+y2=错误!+错误!≥2错误!=8,当且仅当x=5时取等号,所以仓库应建在离车站5千米处.]4.当x<32时,求函数y=x+错误!的最大值.[解]y=错误!(2x-3)+错误!+错误!=-错误!+错误!,∵当x〈错误!时,3-2x>0,∴3-2x2+错误!≥2错误!=4,当且仅当错误!=错误!,即x=-错误!时取等号.于是y≤-4+错误!=-错误!,故函数有最大值-错误!。
2021年中考数学复习第8讲 不等式(组)的解法及不等式的应用(教学课件)

重点题型
1.(2020·吉林)不等式3x+1>7的解集为
3x-2<x,① 2.(2020·湖州)解不等式组13x<-2.②
x>2
3x-2<x,① 解:13x<-2.② 解①得 x<1; 解②得 x<-6. 所以,不等式组的解集为 x<-6.
(1)求这两种书的单价;
(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半 ,且购买两种书的总价不超过1600元.请问有哪几种购买方案 ?哪种购买方案的费用最低?最低费用为多少元?
重点题型
题题组组训训练练
解:(1)购买《北上》的单价为35元,《牵风记》的单价为30元;
(2)设购买《北上》的数量 n 本,则购买《牵风记》的 数量为(50-n)本,
题题组组训训练练
.
重重点点题题型型
题 型 二 应用一元一次不等式(组)解决问题
题组训练
例3.(2020·哈尔滨)昌云中学计划为地理兴趣小组购买大、小两种 地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买 2个大地球仪和1个小地球仪需用132元. (1)求每个大地球仪和每个小地球仪各多少元? (2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960 元,那么昌云中学最多可以购买多少个大地球仪?
精讲释疑
重重点点题题型型
题组训练
题 型 一 解一元一次不等式(组)
例1.(2020·嘉兴)不等式3(1-x)>2-4x的解在数轴上表示正确的 是( A )
重重点点题题型型
题组训练
4(x+1)≤7x+13,
例 2.(2020·枣庄)解不等式组x-4<x-3 8,
2024年新高考版数学专题1_2.2 基本不等式及不等式的应用

x2
x
b
,则
x
2
x
b
≥1,由b>0得b≤x-x2,
即b≤
(
x
x
2
)
max
,∵x-x2=-
x
1 2
2
+
1 4
,x∈
1 4
,
3 4
,∴x=
1 2
时,(x-x2)max=
1 4
,则b≤
1 4
.
故0<b≤ 1 .
4
答案
0<b≤
1 4
例3
已知函数f(x)=x2,g(x)=
1 2
x
-m,若对任意x∈[1,2],都有f(x)≥g(x),则实
2.几个重要不等式
1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
2)a+b≥2 ab (a>0,b>0),当且仅当a=b时取等号.
3)ab≤
a
2
b
2
(a,b∈R),当且仅当a=b时取等号.
4)a+ 1 ≥2(a>0),当且仅当a=1时取等号;a+ 1 ≤-2(a<0),当且仅当a=-1时取
4.双变量的恒成立与存在性问题 1)若∀x1∈I1、∀x2∈I2 ,f(x1)>(≥)g(x2)恒成立,则f(x)min>(≥)g(x)max. 2)若∀x1∈I1,∃x2∈I2,使得f(x1)>(≥)g(x2),则f(x)min>(≥)g(x)min. 3)若∃x1∈I1,∀x2∈I2,使得f(x1)>(≥)g(x2),则f(x)max>(≥)g(x)max. 4)若∃x1∈I1,∃x2∈I2,使得f(x1)>(≥)g(x2),则f(x)max>(≥)g(x)min. 5)已知f(x)在区间I1上的值域为A,g(x)在区间I2上的值域为B,若∀x1∈I1,∃x2 ∈I2,使得f(x1)=g(x2)成立,则A⊆B.
高考数学一轮复习考点知识专题讲解48---基本不等式的综合应用

高考数学一轮复习考点知识专题讲解基本不等式的综合应用题型一 基本不等式与其他知识交汇的最值问题例1(1)(2022·成都模拟)已知直线ax +by -1=0(a >0,b >0)与圆x 2+y 2=4相切,则log 2a +log 2b 的最大值为() A .3B .2C .-2D .-3 答案D解析因为直线ax +by -1=0(a >0,b >0)与圆x 2+y 2=4相切, 所以1a 2+b2=2,即a 2+b 2=14, 因为a 2+b 2≥2ab ,所以ab ≤18(当且仅当a =b 时,等号成立),所以log 2a +log 2b =log 2(ab )≤log 218=-3,所以log 2a +log 2b 的最大值为-3.(2)(2022·合肥质检)若△ABC 的内角满足sin B +sin C =2sin A ,则() A .A 的最大值为π3B .A 的最大值为2π3C .A 的最小值为π3D .A 的最小值为π6答案A解析∵sin B +sin C =2sin A . ∴b +c =2a . 由余弦定理知cos A =b 2+c 2-a22bc =b 2+c 2-(b +c )242bc=3(b 2+c 2)-2bc 8bc ≥6bc -2bc 8bc =12,当且仅当b =c 时取等号. 又A ∈(0,π),∴0<A ≤π3,即A 的最大值为π3.教师备选已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点分别为F 1,F 2.若椭圆上有一点P ,使PF 1⊥PF 2,则ba 的取值范围是()A.⎝ ⎛⎦⎥⎤0,12B.⎝ ⎛⎦⎥⎤0,22C.⎣⎢⎡⎦⎥⎤12,22 D.⎣⎢⎡⎭⎪⎫22,1 答案B解析设|PF 1|=m ,|PF 2|=n , 则m +n =2a ,m 2+n 2=4c 2,∴2mn =4a 2-4c 2=4b 2, 又2mn ≤2⎝⎛⎭⎪⎫m +n 22, 即4b 2≤2⎝ ⎛⎭⎪⎫2a 22,∴2b 2≤a 2,∴0<b a ≤22. 思维升华基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,一般利用常数代换法求最值,要注意最值成立的条件.跟踪训练1(1)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则1a +4b的最小值等于()A .2 B.32 C.12 D .1答案B解析∵函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值, ∴f ′(x )=12x 2-2ax -2b , 则f ′(1)=12-2a -2b =0, 即a +b =6, 又a >0,b >0.∴1a +4b =16⎝ ⎛⎭⎪⎫1a +4b (a +b ) =56+16⎝ ⎛⎭⎪⎫b a +4a b ≥56+16×2b a ·4a b =32,当且仅当2a =b =4时,等号成立. 此时满足在x =1处有极值. ∴1a +4b 的最小值等于32. (2)已知数列{a n }是等比数列,若a 2a 5a 8=-8,则a 9+9a 1的最大值为________. 答案-12解析∵a 2a 5a 8=-8, ∴a 35=-8, ∴a 5=-2, ∴a 1<0,a 9<0, a 9+9a 1=-(-a 9-9a 1) ≤-2(-a 9)(-9a 1) =-29a 1a 9 =-29·a 25 =-12,当且仅当-a 9=-9a 1时取等号.题型二 求参数值或取值范围例2(1)已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a 等于() A .6 B .8 C .16 D .36 答案D解析因为f (x )=4x +a x(x >0,a >0),故4x +a x≥24x ·a x=4a ,当且仅当4x =a x,即x =a 2时取等号,故a 2=3,a =36.(2)已知x ,y 属于正实数,若不等式4x +9y ≥mx +y 恒成立,则实数m 的取值范围是()A .(-∞,9]B .(-∞,16]C .(-∞,25]D .(-∞,36] 答案C解析因为x ,y 属于正实数, 所以不等式4x +9y ≥mx +y 恒成立,即m ≤⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4x +9y (x +y )min ,因为⎝ ⎛⎭⎪⎫4x +9y (x +y )=13+4y x +9x y≥13+24yx·9xy=25,当且仅当4y x =9xy,即3x =2y 时,等号成立,所以m ≤25.教师备选(2022·沙坪坝模拟)已知函数f (x )=2x 3+3x (x ∈R ),若不等式f (2m +mt 2)+f (4t )<0对任意实数t ≥1恒成立,则实数m 的取值范围为() A .(-∞,-2)∪(2,+∞) B.⎝ ⎛⎭⎪⎫-∞,43C .(-∞,-2)D .(-2,-2) 答案C解析∵f (x )的定义域为R ,且f (-x )=-2x 3-3x =-f (x ),∴f (x )是奇函数, 且f (x )在R 上单调递增,则不等式f (2m +mt 2)+f (4t )<0等价于f (2m +mt 2)<-f (4t )=f (-4t ), ∴2m +mt 2<-4t ,即m <-4tt 2+2对t ≥1恒成立, ∵-4t t 2+2=-4t +2t≥-42t ·2t=-2,当且仅当t =2t,即t =2时等号成立,∴m <- 2.思维升华求参数的值或取值范围时,要观察题目的特点.利用基本不等式确定等号成立的条件,从而得到参数的值或范围.跟踪训练2(1)(2022·杭州模拟)已知k ∈R ,则“对任意a ,b ∈R ,a 2+b 2≥kab ”是“k≤2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析因为对任意a,b∈R,有a2+b2≥2ab,而对任意a,b∈R,a2+b2≥kab,所以-2≤k≤2,因为[-2,2]是(-∞,2]的真子集,所以“对任意a,b∈R,a2+b2≥kab”是“k≤2”的充分不必要条件.(2)(2022·济宁质检)命题p:∃x∈(0,+∞),x2-λx+1=0,当p是真命题时,则λ的取值范围是________.答案[2,+∞)解析依题意,方程x2-λx+1=0有正解,即λ=x+1x有正解,又x>0时,x+1x≥2,∴λ≥2.题型三基本不等式的实际应用例3小王于年初用50万元购买了一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年). (1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)解(1)设大货车运输到第x 年年底, 该车运输累计收入与总支出的差为y 万元,则y =25x -[6x +x (x -1)]-50=-x 2+20x -50(0<x ≤10,x ∈N *), 由-x 2+20x -50>0,可得10-52<x ≤10. 因为2<10-52<3,所以大货车运输到第3年年底,该车运输累计收入超过总支出. (2)因为利润=累计收入+销售收入-总支出, 所以二手车出售后, 小王的年平均利润为y +(25-x )x =19-⎝⎛⎭⎪⎫x +25x ≤19-225=9,当且仅当x =25x ,即x =5时,等号成立,所以小王应当在第5年年底将大货车出售,能使小王获得的年平均利润最大. 教师备选某高级中学高二年级部为了更好的督促本年级学生养成节约用水、珍惜粮食、爱护公物的良好习惯,现要设计如图所示的一张矩形宣传海报,该海报含有大小相等的左中右三个矩形栏目,这三栏的面积之和为60000cm 2,四周空白的宽度为10cm ,栏与栏之间的中缝空白的宽度为5cm.怎样确定矩形栏目高与宽的尺寸,能使整个矩形海报面积最小,其最小值是________cm 2.答案72600解析设矩形栏目的高为a cm ,宽为b cm , 由题意可得3ab =60000, 所以ab =20000,即b =20000a,所以该海报的高为(a +20)cm ,宽为(3b +10×2+5×2)cm,即(3b +30)cm , 所以整个矩形海报面积S =(a +20)(3b +30)=3ab +30a +60b +600 =30(a +2b )+60600=30⎝ ⎛⎭⎪⎫a +40000a +60600 ≥30×2a ·40000a+60600=30×400+60600=72600, 当且仅当a =40000a,即a =200时等号成立,所以当广告栏目的高为200cm ,宽为100cm 时,能使整个矩形海报面积最小,其最小值是72600cm 2.思维升华利用基本不等式求解实际问题时,要根据实际问题,设出变量,注意变量应满足实际意义,抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值.跟踪训练3网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2021年10月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x万件与投入实体店体验安装的费用t万元之间满足函数关系式x=3-2t+1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是______万元.答案37.5解析由题意知t=23-x-1(1<x<3),设该公司的月利润为y万元,则y=⎝⎛⎭⎪⎫32×150%+t2xx-32x-3-t=16x-t2-3=16x-13-x+12-3=45.5-⎣⎢⎡⎦⎥⎤16(3-x)+13-x≤45.5-216=37.5,当且仅当x=114时取等号,即最大月利润为37.5万元.课时精练1.(2022·苏州模拟)设直线l与曲线y=x3-2x+1相切,则l斜率的最小值为()A. 6 B.4 C.2 6 D.3 2 答案C解析因为x ≠0,所以x 2>0,因为y ′=3x 2+2x 2≥26⎝ ⎛⎭⎪⎫当且仅当3x 2=2x 2,等号成立,所以l 斜率的最小值为2 6.2.(2021·新高考全国Ⅰ)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为()A .13B .12C .9D .6 答案C解析由椭圆C :x 29+y 24=1,得|MF 1|+|MF 2|=2×3=6,则|MF 1|·|MF 2|≤⎝⎛⎭⎪⎫|MF 1|+|MF 2|22=32=9,当且仅当|MF 1|=|MF 2|=3时等号成立. 3.(2022·北京人大附中模拟)数列{a n }是等差数列,{b n }是各项均为正数的等比数列,公比q >1,且a 5=b 5,则() A .a 3+a 7>b 4+b 6B .a 3+a 7≥b 4+b 6 C .a 3+a 7<b 4+b 6D .a 3+a 7=b 4+b 6 答案C解析因为数列{a n }是等差数列,{b n }是各项均为正数的等比数列, 所以a 3+a 7=2a 5=2b 5,b 4+b 6≥2b 4b 6=2b 5, 所以a 3+a 7≤b 4+b 6, 又因为公比q >1,所以a 3+a 7<b 4+b 6.4.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为()A .2B .4C .6D .8 答案B解析已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9,∵(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥a +2a +1,当且仅当y =ax 时,等号成立, ∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4, 即正实数a 的最小值为4.5.(2022·湖南五市十校联考)原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是() A .第一种方案更划算 B .第二种方案更划算 C .两种方案一样 D .无法确定 答案B解析设小李这两次加油的油价分别为x 元/升、y 元/升(x ≠y ),则 方案一:两次加油平均价格为 40x +40y 80=x +y2>xy , 方案二:两次加油平均价格为 400200x +200y=2xyx +y <xy ,故无论油价如何起伏,方案二比方案一更划算.6.已知p :存在实数x ,使4x +2x ·m +1=0成立,若綈p 是假命题,则实数m 的取值范围是()A .(-∞,-2]B .(-∞,-2)C .(0,+∞)D .(1,+∞) 答案A解析∵綈p 为假命题,∴p 为真命题, 即关于x 的方程4x +2x ·m +1=0有解. 由4x +2x ·m +1=0, 得m =-2x-12x =-⎝⎛⎭⎪⎫2x +12x≤-22x·12x =-2,当且仅当2x =12x ,即x =0时,取等号.∴m 的取值范围为(-∞,-2].7.(2022·焦作质检)若数列{a n }满足a 2=9,a n -1+n =a n +1(n ≥2且n ∈N *),则a nn的最小A.72B.185C.113D.92答案A解析因为数列{a n}满足a2=9,a n-1+n=a n+1(n≥2且n∈N*),所以a1+2=a2+1,解得a1=8,所以a n=a2-a1+a3-a2+a4-a3+…+a n-a n-1+a1=1+2+3+…+n-1+8=n2-n+162,则ann=n2-n+162n=12⎝⎛⎭⎪⎫n+16n-1≥12⎝⎛⎭⎪⎫2n·16n-1=72,当且仅当n=16n,即n=4时,等号成立,所以ann的最小值为72.8.如图,在半径为4(单位:cm)的半圆形(O为圆心)铁皮上截取一块矩形材料ABCD,其顶点A,B在直径上,顶点C,D在圆周上,则矩形ABCD面积的最大值为(单位:cm2)()A.8 B.10 C.16 D.20解析连接OC ,如图,设BC =x ,则OB =16-x 2,所以AB =216-x 2, 所以矩形ABCD 的面积S =2x 16-x 2,x ∈(0,4), S =2x 16-x 2=2x 2(16-x 2) ≤x 2+16-x 2=16,当且仅当x 2=16-x 2,即x =22时取等号,此时S max =16.9.已知向量m =(x ,2),n =⎝ ⎛⎭⎪⎫3,y -12(x >0,y >0),若m ⊥n ,则xy 的最大值为________.答案124解析因为向量m =(x ,2),n =⎝⎛⎭⎪⎫3,y -12, 且m ⊥n ,所以3x +2⎝ ⎛⎭⎪⎫y -12=0,即3x +2y =1.因为x >0,y >0,所以1=3x +2y ≥23x ×2y , 即xy ≤124,当且仅当3x =2y =12,即x =16,y =14时取等号.10.在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和.若一个直角三角形的斜边长等于5,则这个直角三角形周长的最大值为________. 答案52+5解析设直角三角形的两条直角边边长分别为a ,b , 则a 2+b 2=25.因为(a +b )2=25+2ab ≤25+2×(a +b )24,所以(a +b )2≤50, 所以5<a +b ≤52, 当且仅当a =b =522时,等号成立. 故这个直角三角形周长的最大值为52+5.11.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为________.答案9解析因为圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线, 所以两圆相内切,其中C 1(-2a ,0),r 1=2;C 2(0,b ),r 2=1, 故|C 1C 2|=4a 2+b 2,由题设可知4a 2+b 2=2-1⇒4a 2+b 2=1,所以(4a 2+b 2)⎝ ⎛⎭⎪⎫1a 2+1b 2=4a 2b2+b2a 2+5≥24a 2b 2·b 2a 2+5=9, 当且仅当b 2=2a 2时等号成立.12.(2022·北京朝阳区模拟)李明自主创业,经营一家网店,每售出一件A 商品获利8元.现计划在“五一”期间对A 商品进行广告促销,假设售出A 商品的件数m (单位:万件)与广告费用x (单位:万元)符合函数模型m =3-2x +1.若要使这次促销活动获利最多,则广告费用x 应投入________万元. 答案3解析设李明获得的利润为f (x )万元,则x ≥0, 则f (x )=8m -x =8⎝ ⎛⎭⎪⎫3-2x +1-x =24-16x +1-x =25-⎣⎢⎡⎦⎥⎤16x +1+(x +1) ≤25-216x +1(x +1)=25-8=17, 当且仅当x +1=16x +1, 因为x ≥0,即当x =3时,等号成立.13.(2022·柳州模拟)已知△ABC 中,a 2+b 2-c 2=ab ≥c 2,则△ABC 一定是() A .等边三角形B .钝角三角形C.直角三角形D.等腰三角形答案A解析由a2+b2-c2=ab,则cos C=a2+b2-c22ab=ab2ab=12,又因为0°<C<180°,所以C=60°,因为a2+b2-c2≥2ab-c2,当且仅当a=b时取等号,即ab≥2ab-c2,解得ab≤c2,又因为ab≥c2,所以ab=c2,且a=b时取等号,因为C=60°,所以△ABC一定是等边三角形.14.(2022·武汉模拟)已知平面向量OA→,OB→,OC→为三个单位向量,且〈OA→,OB→〉=120°,若OC→=xOA→+yOB→(x,y∈R),则x+y的取值范围为________.答案[-2,2]解析由OC→=xOA→+yOB→,两边同时平方得OC→2=(xOA→+yOB→)2,即OC→2=x2OA→2+y2OB→2+2xyOA→·OB→,∵平面向量OA→,OB→,OC→为三个单位向量,且〈OA→,OB→〉=120°,∴x2+y2-xy=1,∴(x +y )2=1+3xy ≤1+3⎝ ⎛⎭⎪⎫x +y 22, 即(x +y )2≤4,即-2≤x +y ≤2.15.(2022·大庆模拟)设函数f (x )=|lg x |,若存在实数0<a <b ,满足f (a )=f (b ),则M =log 2a 2+b 28,N =log 2⎝⎛⎭⎪⎫1a +b 2,Q =ln 1e 2的关系为() A .M >N >Q B .M >Q >N C .N >Q >M D .N >M >Q 答案B解析∵f (a )=f (b ), ∴|lg a |=|lg b |, ∴lg a +lg b =0, 即ab =1,⎝ ⎛⎭⎪⎫1a +b 2=1a +b +2 =1a +1a+2<12+2=14, ∴N =log 2⎝ ⎛⎭⎪⎫1a +b 2<-2, 又a 2+b 28>ab 4=14, ∴a 2+b 28>14, ∴M =log 2a 2+b 28>-2,又∵Q =ln 1e2=-2,∴M >Q >N .16.设0<t <12,若1t +21-2t ≥k 2+2k 恒成立,则k 的取值范围为()A .[-4,2]B .[-2,4]C .[-4,0)∪(0,2]D .[-2,0)∪(0,4] 答案A解析依题意k 2+2k ≤1t+21-2t 对∀t ∈⎝⎛⎭⎪⎫0,12恒成立,所以k 2+2k ≤⎝ ⎛⎭⎪⎫1t +21-2t min , 因为t ∈⎝ ⎛⎭⎪⎫0,12,所以1-2t >0,所以1t +21-2t =⎝ ⎛⎭⎪⎫1t +21-2t (2t +1-2t ) =2+2+1-2tt+4t 1-2t ≥4+21-2tt·4t1-2t=8, 当且仅当1-2t t =4t1-2t 时取“=”,即t =14时取得最小值,所以k 2+2k ≤8, 所以(k -2)(k +4)≤0,解得-4≤k ≤2,即k ∈[-4,2].。
北京四中高三数学高考总复习不等式的综合应用(基础)知识梳理

不等式的综合应用【考纲要求】1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式;3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力; 5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.. 【知识网络】【考点梳理】考点一:不等式问题中相关方法1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形 →判断符号(值).5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当不等式的综合应用解不等式问题实际应用问题不等式中的含参问题不等式证明的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.考点二:不等式与相关知识的渗透1.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
高考数学一轮复习专题二不等式3基本不等式与不等式的综合应用专题检测含解析新人教A版

基本不等式与不等式的综合应用专题检测1.(2020山东师大附中第一次月考,12)下列不等式一定成立的是( ) A.lg (x 2+14)>lg x (x >0) B.sin x +1sin x ≥2(x ≠k π,k ∈Z) C.x 2+1≥2|x |(x ∈R) D.1x 2+1>1(x ∈R)答案 C 本题主要考查应用基本不等式求最值,考查的核心素养是逻辑推理.对于A,由于x 2+14≥2√x 2·14=x ,当且仅当x =12时,取“=”,故A 不正确;对于B,当x ∈(π,2π)时,sin x <0,sin x +1sin x ≤-2,故B 不正确;对于C,x 2+1-2|x |=(|x |-1)2≥0恒成立,故C 正确; 对于D,当x =0时,1x 2+1=1,故D 不正确.2.(2020西南四省八校9月联考,12)若x >0,y >0,x +2y =1,则xx2x +x 的最大值为 ( ) A.14 B.15 C.19 D.112 答案 C xx 2x +x =12x +1x,∵x >0,y >0,x +2y =1,∴1x +2x =(1x +2x )·1=(1x +2x )(x +2y )=5+2x x +2xx≥5+2√2x x ·2x x =5+4=9,当且仅当{2x x =2xx ,x +2x =1,即x =y =13时,取“=”,∴12x +1x≤19,故xx 2x +x的最大值为19,选C . 3.(2020山东青岛期初调研,8)函数f (x )=x 2+x +2x +4x 2(x >0)的最小值为 ( )A.4+2√2B.4√2C.8D.√2+2 答案 A ∵x >0,∴f (x )=x 2+x +2x +4x 2=x 2+4x 2+x +2x ≥2√x 2·4x 2+2√x ·2x =4+2√2,当且仅当{x 2=4x 2,x =2x ,即x =√2时取“=”,∴f (x )min =4+2√2,故选A .4.(2018福建厦门外国语中学模拟,10)已知实数a >0,b >0,1x +1+1x +1=1,则a +2b 的最小值是( )A.3√2B.2√2C.3D.2答案 B ∵a >0,b >0,∴a +1>1,b +1>1,又∵1x +1+1x +1=1,∴a +2b =[(a +1)+2(b +1)]-3=[(a +1)+2(b +1)]·(1x +1+1x +1)-3=1+2(x +1)x +1+x +1x +1+2-3≥2√2(x +1)x +1·x +1x +1=2√2,当且仅当2(x +1)x +1=x +1x +1时取“=”,故选B .5.(2018河北大名一中月考)已知关于x 的不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),则x 1+x 2+xx1x 2的最大值是 ( )A.√63B.2√33C.4√33D.-4√33答案 D 由题意知x 1,x 2是方程x 2-4ax +3a 2=0的两根. 由根与系数的关系得x 1x 2=3a 2,x 1+x 2=4a ,∴x 1+x 2+x x 1x 2=4a +13x ,∵a <0,∴-(4x +13x )≥2√4x ·13x=4√33,即4a +13x≤-4√33,当且仅当4a =13x,即a =-√36时,取“=”,故x 1+x 2+x x1x 2的最大值为-4√33.故选D.6.(2019晋冀鲁豫名校期末联考,10)已知函数f (x )=x 2e x,若a >0,b >0,p =f (x 2+x 22),q =f ((x +x 2)2),r =f (ab ),则( )A.q ≤r ≤pB.q ≤p ≤rC.r ≤p ≤qD.r ≤q ≤p 答案 D 因为x 2+x 22-(x +x 2)2=2x 2+2x 24-x 2+x 2+2xx 4=(x -x )24≥0,所以x 2+x 22≥(x +x 2)2,又x +x 2≥√xx (a >0,b >0),所以(x +x 2)2≥ab.易得函数f (x )=x 2e x在(0,+∞)上单调递增,所以f (ab )≤f ((x +x 2)2)≤f (x 2+x 22),即r ≤q ≤p.7.(2020河南濮阳第二次检测,9)已知a >2,b >2,则x 2x -2+x 2x -2的最小值为 ()A.2B.4C.6D.16答案 D 因为a >2,b >2,所以a -2>0,b -2>0. 令x =b -2,y =a -2,则x >0,y >0. 原式=(x +2)2x+(x +2)2x≥2√(x +2)2x·(x +2)2x =2√[xx +2(x +x )+4]2xx≥2√(xx +4√xx +4)2xx =2√(√xx +√xx)2=2√(√xx √xx4)2≥2√(2√√xx ·√xx+4)2=16.当且仅当x =y =2时取等号.故选D .思路分析 利用换元思想,设x =b -2,y =a -2,则x >0,y >0,将原式化为(x +2)2x+(x +2)2x,两次使用基本不等式求解.8.(2019新疆昌吉教育共同体联考,9)在1和17之间插入(n -2)个数,使这n 个数成等差数列,若这(n -2)个数中第一个为a ,第(n -2)个为b ,当1x +25x 取最小值时,n 的值为 ( ) A.6 B.7 C.8 D.9答案 D 由已知得a +b =18,则1x +25x =(1x +25x )×x +x 18=118(1+25+x x +25xx)≥118×(26+10)=2,当且仅当b =5a 时取等号,此时a =3,b =15,可得n =9.故选D.9.(2019辽宁沈阳东北育才学校五模,9)已知函数f (x )=2x -12x +1+x +sin x ,若正实数a ,b 满足f (4a )+f (b -9)=0,则1x +1x 的最小值是 ( )A.1B.92 C.9 D.18答案 A 因为f (x )=2x -12x +1+x +sin x ,所以f (-x )=2-x -12-x +1-x -sin x =-(2x -12x +1+x +sin x )=-f (x ),所以函数f (x )为奇函数,易知f (x )单调递增,又正实数a ,b 满足f (4a )+f (b -9)=0,所以4a +b -9=0,所以1x +1x =19(1x +1x )(4a +b )=194+x x +4x x +1=19(5+x x +4xx)≥19×(5+2√4)=1,当且仅当x x =4xx,即b =2a =3时,取等号.故选A .10.(2020黑龙江道里检测,10)设a ,b ,c ,d 均为大于零的实数,且abcd =1,令m =a (b +c +d )+b (c +d )+cd ,则a 2+b 2+m 的最小值为( )A.8B.4+2√3C.5+2√3D.4√3 答案 B ∵a ,b ,c ,d 均大于零且abcd =1,m =a (b +c +d )+b (c +d )+cd ,∴a 2+b 2+m =a 2+b 2+(a +b )(c +d )+ab +cd ≥2ab +2√xx ·2√xx +ab +cd =4+3ab +cd ≥4+2√3xxxx =4+2√3,当且仅当a =b ,c =d ,3ab =cd ,即a =b =(13)14,c =d =314时取等号,∴a 2+b 2+m 的最小值为4+2√3.故选B . 11.(多选题)(2020山东烟台期中,11)下列结论正确的是 ( )A.若a >b >0,c <d <0,则一定有x x >xx B.若x >y >0,且xy =1,则x +1x >x2x >log 2(x +y ) C.设{a n }是等差数列,若a 2>a 1>0,则a 2>√x 1x 3D.若x ∈[0,+∞),则ln(1+x )≥x -18x 2答案 AC 对于A,∵c <d <0,∴-c >-d >0,∴-1x >-1x >0, 又∵a >b >0,∴-x x >-x x >0,∴x x >xx ,故A 正确;对于B,∵x >y >0,且xy =1,∴可取x =2,y =12,此时x +1x =4,x2x =124=18,log 2(x +y )=log 252>log 22=1,故不满足x +1x >x2x >log 2(x +y ),故B 不正确;对于C,∵{a n }是等差数列,∴a 2=x 1+x 32.又∵a 3-a 2=a 2-a 1>0,∴a 3>a 2>a 1>0,∴x 1+x 32>√x 1x 3,即a 2>√x 1x 3,故C 正确;对于D,令f (x )=ln(1+x )-x +18x 2,x ≥0,则f'(x )=11+x -1+14x =1-(1+x )+14x (1+x )1+x=14x 2-34x 1+x=x 2-3x4(1+x ),x >0,令f'(x )>0,可得x >3,令f'(x )<0,可得0<x <3,因此函数f (x )=ln(1+x )-x +18x 2在[0,3)上为减函数,在[3,+∞)上为增函数, ∵f (0)=ln1-0+0=0,∴当x ∈(0,3]时,f (x )<0恒成立,故当x ∈[0,+∞)时,ln(1+x )≥x -18x 2不恒成立,故D 不正确,故选AC .12.(2019湖北黄冈元月调研,15)若关于x 的不等式x +4x -x ≥5在x ∈(a ,+∞)上恒成立,则实数a 的最小值为 . 答案 1解析 关于x 的不等式x +4x -x ≥5在x ∈(a ,+∞)上恒成立,即x -a +4x -x ≥5-a 在x ∈(a ,+∞)上恒成立,由x >a 可得x -a >0,则x -a +4x -x ≥2√(x -x )·4x -x =4,当且仅当x -a =2,即x =a +2时,上式取得最小值4,则5-a ≤4,可得a ≥1,故a 的最小值为1. 13.(2020上海复旦大学附中9月综合练,8)已知x 2+2x +2x ≤4x 2-x+1对于任意的x ∈(1,+∞)恒成立,则a 的取值范围是 . 答案 [-3,1] 解析 由已知x 2+2x +2x ≤4x 2-x+1对于任意的x ∈(1,+∞)恒成立可知,a 2+2a +2≤4x -1+x 对于任意的x ∈(1,+∞)恒成立,令g (x )=4x -1+x ,x >1,则g (x )=4x -1+x -1+1≥2√4x -1·(x -1)+1=5,当且仅当x =3时取“=”,∴a 2+2a +2≤g (x )min =5,∴a 2+2a -3≤0,∴-3≤a ≤1,故答案为[-3,1].14.(2019安徽黄山八校联考,16)不等式(a cos 2x -3)sin x ≥-3对任意x ∈R 恒成立,则实数a 的取值范围是 . 答案 [-32,12]解析 令g (x )=(a cos 2x -3)sin x ,sin x =t ,-1≤t ≤1,则原函数化为g (t )=(-at 2+a -3)t ,即g (t )=-at 3+(a -3)t ,由-at 3+(a -3)t ≥-3整理得(t -1)[-at (t +1)-3]≥0,由t -1≤0知,-at (t +1)-3≤0,即a (t 2+t )≥-3,当t =0,-1时该不等式恒成立,当0<t ≤1时,0<t 2+t ≤2,a ≥(-3x 2+x )max=-32;当-1<t <0时,-14≤t 2+t <0,a ≤(-3x 2+x)min=12,从而可知-32≤a ≤12.。
高中数学知识点不等式的性质及解法

高中数学知识点不等式的性质及解法高中数学中,不等式的性质及解法是一个重要的知识点。
它涉及到不等式的基本性质、不等式的加减乘除、不等式的等价变形以及一元一次不等式、一元二次不等式等不等式类型的解法。
下面将详细介绍不等式的性质及解法。
一、不等式的性质1.两边加减同一个数不等号方向不变。
2.两边乘除同一个正数不等号方向不变,同一个负数不等号方向改变。
3.如果两个不等式成立,则它们的和、差、乘积、商仍然成立。
4.如果两个不等式的符号方向相反,求和时不等式方向不确定,求差时等式方向不确定,求积时反而求商时等式方向相反。
5.无论何时,两边加上相等的数,不等式的大小不变。
二、一元一次不等式对于一元一次不等式,常规的解法是将其转化为等价的不等式进行求解。
具体步骤如下:1. 化简:将不等式中的所有项移到一边,化简为标准形式ax+b<0或ax+b>0。
2.等价变形:根据不等式的性质,进行乘除法或加减法,将不等式变形为更简单的形式。
3.解不等式:根据等价变形后的不等式,确定x的取值范围。
三、一元二次不等式对于一元二次不等式,可以利用抛物线的性质进行求解。
具体分为以下几种情况:1.一元二次不等式的根在抛物线的两侧,此时,可以通过求解抛物线与x轴的交点来确定不等式的解集。
2.一元二次不等式的根在抛物线上,此时,可以通过根的位置确定抛物线在不等式中的符号。
3.一元二次不等式的根在抛物线的一侧,此时,可以根据抛物线的开口方向来确定不等式的解集。
四、综合应用在实际问题中,不等式的应用非常广泛,比如在经济学、物理学、生物学等领域中的一些实际问题往往可以转化为不等式进行求解。
这时候,除了要掌握不等式的基本性质和解法外,还需要注意问题的本质,合理进行变量的定义和范围的确定。
综上所述,不等式的性质及解法在高中数学中占据很重要的地位。
掌握不等式的基本性质,熟悉不等式的加减乘除运算,能够灵活运用不等式的等价变形以及一元一次不等式、一元二次不等式的解法,对于提高解题能力和培养数学思维都非常有帮助。
高一数学基本不等式知识点

高一数学基本不等式知识点高一数学阶段,不等式的学习是一个重要的组成部分。
基本不等式是指一些关于数值的大小关系的基本规律,通过对这些不等式的掌握,学生不仅可以提升自己对数学的理解,还可以在解决实际问题时运用这些知识,从而提高数学思维能力和解决问题的能力。
一、基本不等式的意义1.定义:基本不等式是指在特定条件下,某些数之间存在的一种不可逆转的大小关系。
2.应用:这些不等式在几何、代数等个领域具有广泛应用,可以用来简化复杂问题的计算。
二、基本不等式的种类1.柯西-施瓦茨不等式:对任意实数a1, a2, ..., an和b1,b2, ..., bn都有(Σai*bi)² ≤ (Σai²)(Σbi²),这条不等式在线性代数和统计学中非常常用。
2.阿米尔-阿米尔不等式:对于非负实数a1, a2, ..., an,有(a1 + a2 + ... + an)² ≤ n(a1² + a2² + ... + an²),这为后续证明各种其他不等式打下了基础。
3.霍尔德不等式:如果p,q>1且p+q=1,则对于非负数a, b,有(ab)^(1/p) ≤ (a + b)/2,且在某些情况下等号成立。
三、基本不等式的推导1.推导方法:不等式的推导一般采用反证法或直接代入法,逻辑严谨,层次分明。
2.示例:推导柯西-施瓦茨不等式时,可以通过构造特定的向量来进行分析,细致分解可帮助理解不等式的成因。
四、不等式的应用1.数学竞赛:不等式在各类数学竞赛中均有应用,是解题的重要技巧之一。
2.证明题:在许多几何证明题中,基本不等式常常用来提供不等关系,为证明过程提供支撑。
五、解题技巧1.反证法:常用于不等式的证明,通过假设不等式的反面来推导出矛盾。
2.函数性质:利用单调性或凹凸性来处理不等式。
3.选取合适的变量:有时通过适当变换变量可以简化不等式,使问题变得更加直观。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式知识的综合应用 高考要求不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其他知识综合运用的特点比较突出 不等式的应用大致可分为两类 一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题、本难点提供相关的思想方法,使考生能够运用不等式的性质、定理和方法解决函数、方程、实际应用等方面的问题 重难点归纳 1 应用不等式知识可以解决函数、方程等方面的问题,在解决这些问题时,关键是把非不等式问题转化为不等式问题,在化归与转化中,要注意等价性 2 对于应用题要通过阅读,理解所给定的材料,寻找量与量之间的内在联系,抽象出事物系统的主要特征与关系,建立起能反映其本质属性的数学结构,从而建立起数学模型,然后利用不等式的知识求出题中的问题 典型题例示范讲解例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V的最大值(求解本题时,不计容器厚度) 命题意图 本题主要考查建立函数关系式,棱锥表面积和体积的计算及用均值定论求函数的最值 知识依托 本题求得体积V 的关系式后,应用均值定理可求得最值 错解分析 在求得a 的函数关系式时易漏h >0 技巧与方法 本题在求最值时应用均值定理 解 ①设h ′是正四棱锥的斜高,由题设可得⎪⎪⎩⎪⎪⎨⎧=+='⋅+12222412214h a a a h a 消去)0(11:.2>+='a h a h 解得 ②由)1(33122+==h h h a V (h >0)得 2121)1(31=⋅=++=h h h h hh V 而 所以V ≤61,当且仅当h =h1即h =1时取等号 故当h =1米时,V 有最大值,V 的最大值为61立方米 例2已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1(1)证明 |c |≤1;(2)证明 当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x ) 命题意图 本题主要考查二次函数的性质、含有绝对值不等式的性质,以及综合应用数学知识分析问题和解决问题的能力 知识依托二次函数的有关性质、函数的单调性是药引,而绝对值不等式的性质灵活运用是本题的灵魂 错解分析 本题综合性较强,其解答的关键是对函数f (x )的单调性的深刻理解,以及对条件“-1≤x ≤1时|f (x )|≤1”的运用;绝对值不等式的性质使用不当,会使解题过程空洞,缺乏严密,从而使题目陷于僵局 技巧与方法 本题(2)问有三种证法,证法一利用g (x )的单调性;证法二利用绝对值不等式 ||a |-|b ||≤|a ±b |≤|a |+|b |;而证法三则是整体处理g (x )与f (x )的关系(1)证明 由条件当=1≤x ≤1时,|f (x )|≤1,取x =0得 |c |=|f (0)|≤1,即|c |≤1(2)证法一 依题设|f (0)|≤1而f (0)=c ,所以|c |≤1 当a >0时,g (x )=ax +b 在[-1,1]上是增函数,于是g (-1)≤g (x )≤g (1),(-1≤x ≤1) ∵|f (x )|≤1,(-1≤x ≤1),|c |≤1,∴g (1)=a +b =f (1)-c ≤|f (1)|+|c |=2, g (-1)=-a +b =-f (-1)+c ≥-(|f (-2)|+|c |)≥-2, 因此得|g (x )|≤2 (-1≤x ≤1);当a <0时,g (x )=ax +b 在[-1,1]上是减函数, g (-1)≥g (x )≥g (1),(-1≤x ≤1), ∵|f (x )|≤1 (-1≤x ≤1),|c |≤1∴|g (x )|=|f (1)-c |≤|f (1)|+|c |≤2综合以上结果,当-1≤x ≤1时,都有|g (x )|≤2 证法二 ∵|f (x )|≤1(-1≤x ≤1)∴|f (-1)|≤1,|f (1)|≤1,|f (0)|≤1,∵f (x )=ax 2+bx +c ,∴|a -b +c |≤1,|a +b +c |≤1,|c |≤1,因此,根据绝对值不等式性质得 |a -b |=|(a -b +c )-c |≤|a -b +c |+|c |≤2, |a +b |=|(a +b +c )-c |≤|a +b +c |+|c |≤2,∵g (x )=ax +b ,∴|g (±1)|=|±a +b |=|a ±b |≤2,函数g (x )=ax +b 的图象是一条直线, 因此|g (x )|在[-1,1]上的最大值只能在区间的端点x =-1或x =1处取得,于是由|g (±1)|≤2得|g (x )|≤2,(-1<x <1))21()21(])21()21([])21()21([)2121(])21()21[()(,)21()21(4)1()1(:22222222--+=+-+--++++=--++--+=+=∴--+=--+=x f x f c x b x a c x b x a x x b x x a b ax x g x x x x x 证法三 当-1≤x ≤1时,有0≤21+x ≤1,-1≤21-x ≤0, ∵|f (x )|≤1,(-1≤x ≤1),∴|f )21(+x |≤1,|f (21-x )|≤1; 因此当-1≤x ≤1时,|g (x )|≤|f )21(+x |+|f (21-x )|≤2 (3)解 因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2,即g (1)=a +b =f (1)-f (0)=2 ①∵-1≤f (0)=f (1)-2≤1-2=-1,∴c =f (0)=-1因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),根据二次函数的性质,直线x =0为f (x )的图象的对称轴,由此得-ab 2<0 ,即b =0 由①得a =2,所以f (x )=2x 2-1 例3设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2a 1(1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图象关于直线x =x 0对称,证明 x 021x 解 (1)令F (x )=f (x )-x ,因为x 1,x 2是方程f (x )-x =0的根,所以F (x )=a (x -x 1)(x -x 2) 当x ∈(0,x 1)时,由于x 1<x 2,得(x -x 1)(x -x 2)>0,又a >0,得F (x )=a (x -x 1)(x -x 2)>0,即x <f (x )x 1-f (x )=x 1-[x +F (x )]=x 1-x +a (x 1-x )(x -x 2)=(x 1-x )[1+a (x -x 2)]∵0<x <x 1<x 2<a1,∴x 1-x >0,1+a (x -x 2)=1+ax -ax 2>1-ax 2>0 ∴x 1-f (x )>0,由此得f (x )<x 1(2)依题意 x 0=-ab 2,因为x 1、x 2是方程f (x )-x =0的两根,即x 1,x 2是方程ax 2+(b -1)x +c =0的根 ∴x 1+x 2=-ab 1- ∴x 0=-aax ax a x x a a b 2121)(22121-+=-+=,因为ax 2<1, ∴x 0<2211x a ax = 学生巩固练习1 定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b )③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a )A ①③B ②④C ①④D ②③2 下列四个命题中 ①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若yx 91+=1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________3 某公司租地建仓库,每月土地占用费y 1与车库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站__________公里处4 已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1;(2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围参考答案1 解析 由题意f (a )=g (a )>0,f (b )=g (b )>0,且f (a )>f (b ),g (a )>g (b )∴f (b )-f (-a )=f (b )+f (a )=g (a )+g (b )而g (a )-g (-b )=g (a )-g (b )∴g (a )+g (b )-[g (a )-g (b )]=2g (b )>0,∴f (b )-f (-a )>g (a )-g (-b )同理可证 f (a )-f (-b )>g (b )-g (-a ) 答案 A2 解析 ①②③不满足均值不等式的使用条件“正、定、等”④式 |x -y |=|(x -2)-(y -2)|≤|(x -2)-(y -2)|≤|x -2|+|y -2|<ε+ε=2ε 答案 ④ 3 解析 由已知y 1=x20;y 2=0 8x (x 为仓库与车站距离) 费用之和y =y 1+y 2=0 8x + x20≥2x x 208.0⋅=8 当且仅当0 8x =x20即x =5时“=”成立 答案 5公里处 4 证明 (1)设g (x )=f (x )-x =ax 2+(b -1)x +1,且x >0∵x 1<2<x 2<4,∴(x 1-2)(x 2-2)<0,即x 1x 2<2(x 1+x 2)-4, 12)42(212)(212)()(2121)(21)11(21221212121210-=++->++-=++-+>-+=---⋅=-=x x x x x x x x x x a a b a b x 于是得(2)解 由方程g (x )=ax 2+(b -1)x +1=0可知x 1·x 2=a1>0,所以x 1,x21°若0<x 1<2,则x 2-x 1=2,∴x 2=x 1+2>2,∴g (2)<0,即4a +2b -1<0 ① 又(x 2-x 1)2=44)1(22=--a a b ∴2a +1=1)1(2+-b (∵a >0)代入①式得, 21)1(2+-b <3-2b② 解②得b <41 2°若 -2<x 1<0,则x 2=-2+x 1<-2∴g (-2)<0,即4a -2b +3<0③ 又2a +1=1)1(2+-b ,代入③式得 21)1(2+-b <2b -1④ 解④得b 47 综上,当0<x 1<2时,b <41,当-2<x 1<0时,b 47。