反比例函数导学案
反比例函数导学案

6.1 反比例函数导学案班级________ 姓名___________教学目标:知识与技能目标:①了解反比例函数的意义,理解反比例函数的概念;②会求简单实际问题中的反比例函数解析式。
过程与方法目标:①从现实情景和学生的已有知识经验出发,讨论两个变量之间的相互关系,从而加深对函数概念的理解;②使学生经历抽象反比例函数概念的过程中感悟反比例函数的概念。
情感与价值观目标:①通过反比例函数概念的教学,使学生亲身经历知识的发生、发展的过程,培养学生的自主、合作的意识以及确立良好的认知观;②学生通过对反比例函数的简单应用,使其初步形成数学的建模意识和能力。
教学重点与难点:反比例函数的概念;例1涉及较多的《科学》学科知识,学生理解问题时有一定的难度是本节的难点。
一、合作学习:思考并完成下面的问题:问题1:北京到杭州铁路线长为1650km。
一列火车从北京开往杭州,记火车全程的行驶时间为x(h),火车行驶的平均速度为y(km/h), (1)你能完成下列表格吗?(2) y与x有什么数量关系?能用一个函数表达式表示吗?问题2:测量质量都是100g的金、铜、铁、铝四种金属块的体积V(cm3),获得数据. 表中ρ(g/cm3)表示金属块的密度(近似值).已知锌的密度是7g/cm3, 金的密度是19.30g/cm3,(2)V与ρ有什么数量关系?能用一个函数表达式表示吗?做一做:1、某住宅小区要种植一个面积为1000 平方米的矩形草坪,草坪长为y米,宽为x 米,则y关于x 的关系式为_______________;2、已知北京市的总面积为1.68×104平方千米,全市总人口为n人,人均占有土地面积为s平方千米,则s关于n的关系式为_______________;归纳:一般地形如________________(k是常数,k≠0)的函数叫做_____________函数.___________叫做反比例函数的比例系数。
人教版数学九年级(下)第二十六章《反比例函数》导学案

人教版数学九年级(下)第二十六章《反比例函数》导学案26.1反比例函数学习目标、重点、难点【学习目标】1、理解反比例函数的定义;2、用待定系数法确定反比例函数的表达式;3、反比例函数的图象画法,反比例函数的性质;【重点难点】1、用待定系数法确定反比例函数的表达式;2、反比例函数的图象画法,反比例函数的性质;知识概览图反比例函数的定义反比例函数反比例函数的图象与性质新课导引【生活链接】学校课外生物小组的同学准备自己动手,用围栏建一个面积为24m2的矩形饲养场(如右图所示),设它的一边长为x(m),求另一边长y(m)与x(m)之间的函数关系式.【问题探究】这个函数有什么特点?自变量的取值有什么限制?教材精华知识点1反比例函数的定义重点;理解一般地,形如kyx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数,y的取值范围也是不等于0的一切实数,k叫做比例系数,另外,反比例函数的关系式也可写成y=kx-1的形式.y是x的反比例函数⇔kyx=(k≠0)⇔xy=k(k≠0) ⇔变量y与x成反比例,比例系数为k.拓展 (1)在反比例函数kyx=(k≠0)的左边是函数y,右边是分母为自变量x的分式,也就是说,分母不能是多项式,只能是x的一次单项式,如1yx=,312yx=等都是反比例函数,但21yx=+就不是关于x的反比例函数.(2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y=kx-1或xy=k 的形式.(3)反比例函数中,两个变量成反比例关系.知识点2用待定系数法确定反比例函数的表达式难点:运用由于反比例函数kyx=中只有一个待定系数,因此只要有一对对应的x,y值,或已知其图象上一点坐标,即可求出k,从而确定反比例函数的表达式.其一般步骤:(1)设反比例函数关系式kyx=(k≠0).(2)把已知条件(自变量和函数的对应值)代入关系式,得出关于k的方程.(3)解方程,求出待定系数k的值.(4)将待定系数k的值代回所设的关系式,即得所求的反比例函数关系式.知识点3反比例函数图象的画法难点;运用反比例函数图象的画法是描点法,其步骤如下:(1)列表:自变量的限值应以0为中心点,沿0的两边取三对(或三对以上)相反数,分别计算y 的值.(2)描点:先描出一侧,另一侧可根据中心对称的性质去找.(3)连线:按从左到右的顺序用平滑的曲线连接各点,双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交.说明:在图象上注明函数的关系式.拓展(1)反比例函数的图象是双曲线,它有两个分支,它的两个分支是断开的.(2)当k>0时,两个分支位于第一、三象限;当k﹤0时,两个分支位于第二、四象限.(3)反比例函数kyx=(k≠0)的图象的两个分支关于原点对称.(4)反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x≠0,y≠0.知识点4反比例函数kyx=(k≠0)的性质难点;灵活应用(1)如图17-2所示,反比例函数的图象是双曲线,反比例函数kyx=的图象是由两支曲线组成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内。
人教版九年级数学下册 26.1.1《反比例函数》导学案

26.1.1 反比例函数 导学案【学习目标】1.理解反比例函数的概念,能确定简单的反比例函数关系式.2.培养学生分析问题的能力,并体会函数在实际问题中的应用.【重、难点】重点:理解反比例函数的概念.难点:用待定系数法求反比例函数.导学流程:一、【旧知回顾】:1.在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时,y ,则称x 为 ,y 叫x 的 .2.一次函数的解析式是: ;当 时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式.(以上这种求函数解析式的方法叫: . )二、【新知学习】:知识点一:(阅读课本P2页,完成下列内容)1、用函数解析式表示下列问题中的关系:(1)京沪线铁路全程为1463千米,某次列车的平均速度v (千米/小时)随此次列车的全程运行时间t (小时)的变化而变化(2)某住宅小区要种植一个面积为1000平方米的矩形草坪,草坪的长y (米)随宽x (米)的变化而变化 。
(3)已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S 随全市总人口n (人)的变化而变化 。
2、一般地,如果两个变量x 、y 之间的关系可以表示成y = (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。
可变形为:xy=k 或y=kx -1 针对练习一:1. 已知游泳池的容积为a m 3,向池内注满水所需时间t (h),随注水速度v (m 3/h),那么a = ,当 为定值时,t 、v 成_________关系.2.已知下列函数:(1) ,(2) ,(3)xy = 21(4) ,(5) ,(6)(7)y =x -4 ,其中y 是x 反比例函数的是知识点二:用待定系数法求反比例函数解析 例1、已知:y 与x 成反比例函数,当x=2 时, y=6(1)写出y 与x 的函数关系式。
(2)求当x=4 时, 求y 的值。
3x y =x y 2-=25+=x y x y 23-=31+=x y针对练习二: 1、当m =_____时,函数是反比例函数.2、已知y 与x 2成反比例,并且当x =3时y =4.(1)写出y 和x 之间的函数解析式为 ;(2)当x =1.5时y 的值为________.(3)当y=6时,x=达标检测,反思目标: 1、下列函数:(1) , (2) ,(3)xy =9 (4) ,(5) ,(6)y =2x -1, (7)y = x ,其中y 是x 反比例函数的是_____________. 2、若函数 是反比例函数,则m 的取值是中考连接:已知函数y =y 1+y 2 ,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5 。
人教版数学六年级下册反比例导学案(推荐3篇)

人教版数学六年级下册反比例导学案(推荐3篇)人教版数学六年级下册反比例导学案【第1篇】一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。
因此反比例函数的概念与意义的教学是基础。
二、学情分析由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.解决问题:能从实际问题中抽象出反比例函数并确定其表达式.情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.四、教学重难点重点:理解反比例函数意义,确定反比例函数的表达式.难点:反比例函数表达式的确立.五、教学过程(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式14631000(2)y=txk可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.由于是分式,当x=0时,分式无意义,所以x≠0。
当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。
此时y就不是反比例函数了。
举例:下列属于反比例函数的是(1)y=(2)xy=10(3)y=k—1x(4)y=—此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x—1成反比例,y+1与x成反比例,y+1与x—1成反比例,将如何设其解析式(函数关系式)已知y与x成反比例,则可设y与x的函数关系式为y=kx?1k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x—1成反比例,则可设y与x的函数关系式为y=已知y+1与x—1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
反比例函数的意义导学案3.doc

26.1.1《反比例函数》导学案学习目标:1.理解并掌握反比例函数的概念;2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式;3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想;一、创设情境问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为M63km,乘坐某次列车所用时间t (单位:h)随该列车平均速度v (单位:km/h )的变化而变化.(2)某住宅小区要种植一个面积为lOOOn?的矩形草坪,草坪的长为y随宽x的变化_________________(3)已知北京市的总面积为1.68X 104 km2 ,人均占有面积$ (单位:km2/人)随全市总人口〃(单位:人)的变化而变化.上面的函数关系式,都具有的形式,其中是常数。
二、归纳反比例函数的定义:如果两个变量x, y 之间的关系可以表示成形式,那么y是x的反比例函数,反比例函数的自变量x的取值范围是你还能将反比例函数的基本形式改写成什么样子?①②【跟踪练习】1.下列哪个等式中的y是x的反比例函数?(1 ) y=4x(2) 】=3X(3)y = 6x +1 (4) xy-=123(5 ) y=X5(6)y = ----X(7)5 y = -• x + 2(8) y =32x(9 ) -+ 3X(10) y=x+42.若函数y = (s+l)x”『-2是反比例函数,则m=.3.函数y = -一—中自变量x的取值范围是__________ .x + 2三、例题讲解例1、己知y是x的反比例函数,当x=2时,y二6(1)写出y与x的函数关系式:⑵求当炉4时,y的值。
【跟踪练习】已知*是x的反比例函数,并且当疔4时,尸一9.(1)写出y与x之间的函数关系式;(2)求尸2时x的值.四、自主探索,知识提升1、己知y与x-1成反比例,当x=2时y=l,则这个函数的表达式是( )A 1 「A、 y = --- B、 y =- C、y = —- D、y = --lx-1 x+1 X(提示:设y与x-l的关系式是y = -^-) x-12.己矢口 y与妒成反比例,并且当x=3时y=4.(1)写出y与x之间的函数关系式.(2)求x=l. 5时y的值.五、课时小结:反比例函数概念 六、课后检测题5. 若函数疙宣1竺+ (〃广-4)是y 关于x 的反比例函数,则m 二6. (1)函数y =-中,自变量x 的取值范围是X(2)如果函数y =是反比例函数,贝U k 尹x7. 如果函数),=竺£丰是反比例函数,那么m 的值是X8. 己知变量y 与x 成反比例,当x=4时,y=—8;则当y=4时,x 的值是A. y(x + l) 1B.x-\C. y —D. y =—* 3x2. 函数y =—— 中自变量X 的取值范围是x + 2.3. 若函数y = (3 + 〃?)尸扁是反比例函数,则 为的值为 ___4.已知*与X 成反比例,且当X=—2时,y=3,则y 与 X 之间的函数关系式 1.下列函数是反比例函数的是(),当 x=—3 时,y= 是。
第一节反比例函数导学案

第一节反比例函数导学案第一节反比例函数导学案学习目标:1.经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2.能正确区分两变量是否为反比例函数关系。
学习重点:反比例函数的概念及应用。
学习难点:正确理解反比例函数的含义。
学习过程:预习1.如果两个变量x 、y之间的关系可以表示成y是x的,反比例函数的自变量x 。
2. 复习1.什么叫做函数?2.什么叫做一次函数?它的一般形式是3. 什么叫做正比例函数?它的一般形式是。
新课一.情境引入今年暑假小明背了很重的背包和同学们去野营,其中有几位同学因为约好要进行滑板车比赛,所以每人均带了一辆滑板车。
在途中他们遇到了一段泥泞路段,如果绕道,需要花很长时间,怎么办?小华说:“我们把滑板车铺在路上就可以通过。
”亲爱的同学们你知道他这样做的道理吗?二.探究新知探究一反比例函数的概念1. 阅读课本143页的内容并解决问题2. 总结反比例函数的定义3. 反比例函数的解析式⑴ ⑵ ⑶ 三.自主学习,巩固新知课本144页做一做四.范例学习例1若函数y= (m2-1)x 3m2+m-5 为反比例函数,求m 的值。
解析反比例函数y=k(k≠0) 的另一个形式是y=kx x探究二用待定系数法求反比例函数的解析式例2已知y= y1+y2 ,y1与x成正比例,y2与x成反比例,当x=1时,y=4;当x=3时,y=5;求x=-1时y的值。
课堂练习1.下列函数解析式中y是x的反比例函数的是()A.y=1311 B.y=- C.y= D.y=x2xx 1x2.当时,函数y=(+2)x是反比例函数。
3.在下列表达式中x均表示自变量,那么那些是反比例函数?每一个反比例函数相应的k值是多少?⑴y=14x;⑵y= -1 ;⑶y= ; ⑷xy=2. 2xx2六.课堂小结-我们本节课学习了⑴⑵ ⑶ 七.课堂作业1.下列哪些式子表示y是x的反比例函数?为什么?⑴xy=11⑷y= ;⑵y= 5-x ;⑶y=x2x 12.计划建设铁路1200km,那么铺轨天数y(d)是每日铺轨量x(km/d)的反比例函数吗?写出y与x的关系式。
人教版九年级数学下册第二十六章26.1.1反比例函数导学案

26.1.1反比例函数【学习目标】1、理解并掌握反比例函数定义;能根据实际问题中的条件确定反比例函数的解析式及自变量的取值范围。
2、从实际问题情景中经历探索、分析和建立两个变量之间的反比例函数关系的过程。
3、用类比的思想方法,发展观察能力、探究能力及交流总结能力。
4、通过探索具体问题中数量关系和变化规律的过程,体验数学来源于生活,又应用于生活,提高应用数学的意识。
【学习重点】1、理解并掌握反比例函数的定义,掌握反比例函数的一般形式;2、能根据已知条件确定反比例函数的解析式。
【学习难点】经历探索和表示反比例函数的过程,体验用反比例函数表示变量之间的关系。
【学习过程】一、想一想:1、我们已经学过哪些函数?这些函数中分别有几个变量?2、我们用什么方法求函数的解析式?二、试一试:问题一、世纪广场的音乐喷泉伴随着音乐节奏,在灯光的照射下忽明忽暗,让乾州古城增添了几分神秘。
这样的效果就是通过改变电阻来控制电流的变化实现的.当电流I较小时,灯光较暗;反之,当电流I较大时,灯光较亮。
我们知道,电流I,电阻R,电压U之间满足关系式U=IR.当U=220V时. 你能用含有R的代数式表示I吗?问题二、在下列实际问题中,变量间的对应关系可用怎样的函数关系式表示? 1、吉首至长沙高速公路全长382公里,一辆汽车的平均速度V(单位:km/h)随该汽车行驶时间t(单位:h)的变化而变化;2、已知吉首市总面积1062平方公里,人均占有面积S(单位:km2/人)随全市总人口n(单位:人)的变化而变化;问题三、上述关系式中有几个变量?它们有什么共同特征?小结:一般的,形如的函数,叫做反比例函数,其中是自变量,是函数。
思考:x的值能不能取0,为什么?三、试一试:问题四、下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)x y 3=; (2)xy 32-=; (3)x y -=2; (4)2=xy ; (5)2x y =; (6)2x y =; (7)1-=x y ; (8)11-=x y 小结:反比例函数的三种形式:① ,② ,③ (k 为常数,k ≠0) 问题五、你能求出下列函数的关系式吗? 例题:已知y 是x 的反比例函数,当2=x 时,6=y .(1)求出y 与x 的函数关系式;(2)当4=x 时,求y 的值。
反比例函数导学案

26.1.1反比例函数【教学内容】课本2----3页内容。
【教学目标】知识与技能1.理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式过程与方法 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力情感、态度与价值观体验反比例函数与人类生活的密切联系,增强对反比例函数学习的求知欲,发展学生的探索与创新精神.【教学重难点】重点:理解反比例函数的概念,能根据已知条件写出函数解析式;难点:理解反比例函数的概念及建模;【导学过程】【知识回顾】1、在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时,y ,则称x 为 ,y 叫x 的 .2、一条直线经过点(2,3)、(4,7),求该直线的解析式。
这种求函数解析式的方法叫:【情景导入】下列问题中,变量间的对应关系可用怎样的函数关系式表示?并分析这些函数的共同特点。
(1)京沪线铁路全程为1463km ,乘坐某次列车所用时间t (单位:h )随该列车平均速度v (单位:km/h )的变化而变化;_________________(2)某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长为y 随宽x 的变化;____________(3)已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S(平方千米/人)随全市总人口数n (单位:人)的变化而变化。
_______________【新知探究】探究一、1、一般地,如果两个变量x 、y 之间的关系可以表示成y = (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.反比例函数的基本形式还能表示为2、下列等式中,哪些是反比例函数? (填序号)(1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23-= (6)31+=x y(7)y =x -4探究二、例1已知y 是x 的反比例函数,当x=2时,y=6.(1)写出y 与x 的函数关系式(2)求当x=4时,y 的值解;…….【知识梳理】本节课你学习了什么知识?【随堂练习】1、写出下列函数关系式,并指出它们各是什么函数(1)平行四边形面积是24cm 2,它的一边长xm 和这边上的高hcm 之间的关系是 .(2)小明用10元钱与买同一种菜,买这种菜的数量mkg 与单价n 元/kg•之间的关系是(3)老李家一块地收粮食1 000kg ,这块地的亩数S 与亩产量tkg/亩之间的关系是2、若y 是x-1的反比例函数,则x 的取值范围是3、若函数28)3(m x m y -+=是反比例函数,则m 的取值是4、已知y 与x 2成反比例,并且当x=3时y=4.(1)写出y 与x 之间的函数关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:反比例函数学习目标:1.理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式; 学习难点:理解反比例函数的概念及建模;知识链接:1、形如)0(≠=k kx y 的函数叫做正比例函数,2、形如)0k b (≠+=是常数,且、k b kx y 的函数叫做一次函数。
当b=0时称为正比例函数一、引入新知1、一般地,如果两个变量x 、y 之间的关系可以表示成y = (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.反比例函数的基本形式还能表示为 2、下列等式中,哪些是反比例函数? (填序号) (1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y(5)x y 23-= (6)31+=x y(7)y =x -43、苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为4、矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为5、函数21+-=x y 中自变量x 的取值范围是 6、(1二、探究、合作、交流:(根据掌握的知识,认真填写下列内容)1、已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 , 当x =-3时,y =2、已知y-2与x 成反比例,当x=3时,y=1,则y 与x 间的函数关系式是 。
3、当n 何值时,y =(n 2+2n )21nn x +-是反比例函数?。
4、已知y 与x 成反比例,且当x=2时,y=6,求y 与x 的函数关系式.5、已知y 与x -1成反比例函数,当x=2时y=1,则这个函数的表达式是( )A 、11-=x y B 、1-=x k y C 、11+=x y D 、11-=xy6、已知y 与x 2成反比例,并且当x=3时y=4.(1)写出y 与x 之间的函数关系式。
(2)求x=1.5时y 的值。
7、已知y=y 1+y 2,y 1与X 成正比例,y 2与x 成反比例,且当x=1时,y =0;当x =4时,y =9.求y 与x 的函数关系式8.若函数28)3(m x m y -+=是反比例函数,求m 。
三、当堂训练1、写出下列函数关系式,并指出它们各是什么函数(1)平行四边形面积是24cm 2,它的一边长xm 和这边上的高hcm 之间的关系是 .(2)小明用10元钱与买同一种菜,买这种菜的数量mkg 与单价n 元/kg•之间的关系是 (3)老李家一块地收粮食1 000kg ,这块地的亩数S 与亩产量tkg/亩之间的关系是 2、若y 是x-1的反比例函数,则x 的取值范围是 3、若函数28)3(m xm y -+=是反比例函数,则m 的取值是4、已知y 与x 2成反比例,并且当x=3时y=4.(1)写出y 与x 之间的函数关系式。
(2)求x=1.5时y 的值。
四、课后达标训练1、写出下列函数解析式:(1)体积是常数V 时,圆柱的底面积S 于高h 的关系;(2)柳树乡共有耕地S 公顷,该乡人均耕地面积y 于全乡人口x 的关系;(3)近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________.(4)某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为 .2、矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为 。
3、已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5. (1)求y 与x 的函数关系式. (2)当x =-2时,求函数y 的值 五、课后反思课题:反比例函数的性质(1)学习目标:1、了解反比例函数的图象的意义能描点画出反比例函数的图象;2、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。
学习重点:会作反比例函数的图象并掌握反比例函数的性质。
学习难点:探索并掌握反比例函数的性质。
知识链接:正比例函数y =kx (k ≠0)及一次函数y =kx +b (k 、b 是常数,k ≠0)的图像和性质。
画函数图象的方法与步骤——利用描点作图;列表:取自变量x 的哪些值? ——x 是不为零的任何实数,所以不能取x 的值的为零,但仍可以以零为基准,左右均匀,对称地取值。
描点: 依据什么(数据、方法)找点?连线: 在各个象限内按照自变量从小到大的顺序用两条平滑的曲线把所描的点连接起来。
一、预习导学1、一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是 。
其性质有(1)所过象限 (2)增减性 (3)与坐标轴的交点 (4)平行 。
正比例函数y =kx (k ≠0)呢?2、已知变量y 与x 成反比例,并且当x =2时,y =-3。
(1)求y 与x 的函数关系式; (2)当y =2时x 的值;3、建立平面直角坐标系,画出下列函数的图象 (1) x y 6=(2)xy 6-= 二、 探究、合作、交流,生成总结探讨1.观察上述所作图像思考下列问题: (1)反比例函数xky =的图象是由 组成的.(通常称为 ) (2)当k =6时,两支曲线分别位于第 象限内,在每一象限内......,y 的值 (3)当k =-6时,两支曲线分别位于第 象限内,在每一象限内......,y 的值 (4)x y 6=和xy 6-=的图象关于 对称。
归纳:反比例函数图象的特征及性质: (1)反比例函数xky =(k ≠0)的图象是由两个分支组成的曲线,又叫 。
当0>k 时,图象在 象限,在每一象限内,y 随x 的增大而 ; 当0<k 时,图象在 象限,在每一象限内 ,y 随x 的增大而 。
(2)与坐标轴的交点: (3)对称性: 三、当堂训练1.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )2.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是 3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则反比例函数解析式为 4.过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( ) (A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定 四、课后达标训练1.反比例函数y=1m x-的图象在第二、四象限,则m 的取值范围是________. 2.已知反比例函数y=5mx-的图象在每一个象限内,y 随x 增大而增大,则m________.3.如果点(1,-2)在双曲线上,那么该双曲线在第______象限.4.在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( )A .-1B .0C .1D .25.若点(m ,-2m )在反比例函数ky x=的图像上,那么这个反比例函数的图像在( ) A .第一、二象限B 。
第三、四象限C 。
第一、三象限D 。
第二、四象限6、在反比例函数y=kx(k<0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1>x 2>0,则y 1-y 2的值为 ( )(A )正数 (B )负数 (C )非正数 (D )非负数7、在直角坐标系中,若一点的横坐标与纵坐标互为倒数, 则这点一定在函数图象上 ________(填函数关系式). 8.若一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数y=kbx的图象一定在xky =象限.9.已知反比例函数,当时,y 随x 的增大而增大,求函数关系式。
10.已知反比例函数32)1(--=m x m y 的图象在第二、四象限,求m 值,并指出在每个象限内y 随x 的变化情况?五、课后反思课题:反比例函数的图像和性质(2)学习目标:1、能用待定系数法求反比例函数的解析式.2、能用反比例函数的定义和性质解决实际问题.学习重点:反比例函数图象性质的应用.学习难点:反比例函数图象图象特征的分析及应用,学会从函数图象上分析、解决问题。
学习准备:1、如何画反比例函数图象。
2、反比例函数有哪些性质。
知识链接:待定系数法求函数解析式的一般步骤:(1)写出函数解析式的一般式,其中包括未知的系数;(2)把自变量与函数的对应值代入函数解析式中, 得到关于待定系数的方程或方程组;(3)解方程(组)求出待定系数的值,从而写出函数解析式。
一、探究、合作、交流1、已知反比例函数的图象经过点A (2,6)(1)这个函数的图象分布在哪些象限?y 随x 的增大而如何变化? (2)点B (3,4)、C (-212,-445)和D (2,5)是否在这个函数的图象上? 2、若点A (-2,a )、B (-1,b )、C (3,c )在反比例函数xky =(k <0)图象上,则a 、b 、c 的大小关系怎样?3、如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1)、B (1,n )两点。
(1)求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围。
二、当堂训练1、判断下列说法是否正确 (1)反比例函数图象的每个分支只能无限接近x 轴和y 轴, 但永远也不可能到达x 轴或y 轴.( )(2)在y=3x中,由于3>0,所以y 一定随x 的增大而减小.( )(3)(3)已知点A (-3,a )、B (-2,b )、C (4,c )均在y=-2x的图象上,则a<b<c .( )(4)反比例函数图象若过点(a ,b ),则它一定过点(-a ,-b ).( )y a xa=--()226x >01、点(1,3)在反比例函数y=kx的图象上,则k= ,在图象的每一支上,y 随x 的增大而 . 2、设反比例函数y=3mx-的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 . 3、如图,Rt △ABO 的顶点A 是双曲线xky =与直线)1(+--=k x y 在第二象限的交点, AB ⊥x 轴于B 且S △ABO =23(1)求这两个函数的解析式(2)求直线与双曲线的两个交点A ,C 的坐标和△AOC 的面积。