柱、锥、台、球的结构特征 优秀教案

合集下载

1.1.1柱、锥、台、球的结构特征(优秀经典公开课比赛教案)

1.1.1柱、锥、台、球的结构特征(优秀经典公开课比赛教案)

第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

1.1.柱、锥、台、球的结构特征-人教A版必修二教案

1.1.柱、锥、台、球的结构特征-人教A版必修二教案

1.1.柱、锥、台、球的结构特征-人教A版必修二教案一、柱体的结构特征柱体是一种线塑体,它具有以下结构特征:1.每个截面都是圆形,而且圆心在这个截面的中心;2.每个截面之间距离相等,所以从任意角度看上去,都是圆形。

柱体在物理世界中十分常见,例如水管、电线杆等。

由于其圆形结构,柱体具有抗弯和抗压的能力较强,因此被广泛使用。

二、锥体的结构特征锥体是一种线塑体,它具有以下结构特征:1.由一个圆锥顶点到底面任意一点的直线段为母线,锥体的结构由该直线段和底面围成;2.底面是个圆形。

锥体在构造物理学中有着广泛的应用,例如锥形漏斗、冰淇淋锥等。

锥体在制作过程中,需要注意底面的圆心和母线的长度,以确保最终产品符合需求。

三、台体的结构特征台体是一种线塑体,它具有以下结构特征:1.由一个圆台顶点到底面圆心的直线段为轴线,台体的结构由该直线段和上下两个圆台围成;2.上下两个圆台面积大小相等。

台体的结构在物理实验中被广泛使用,例如水流研究、电场模拟等。

在设计制作台体时,需注意两个圆台的形状和尺寸,以达到理想的实验效果。

四、球体的结构特征球体是一种线塑体,它具有以下结构特征:1.每个表面都是一个圆形,而且所有圆心都在同一点;2.所有体内点到同一点的距离相等。

球体在物理学、地理学、天文学等领域有着广泛的应用。

例如在天文观测中,我们所看到的星星通常是球体形状的天体。

制作球体时,通常需要注意表面的光滑度、圆心位置和直径等因素。

五、小结本文介绍了四种线塑体:柱体、锥体、台体和球体,以及它们的结构特征。

在物理世界中,这四种形态常常出现,有着广泛的应用。

熟悉这些塑体的结构特征,对于理解相关的物理现象和设计制作模型等都十分重要。

以上仅为基础知识的介绍,希望能够引起读者对这些形体结构的关注,进而领悟常见的物理现象和背后的原理。

高中数学人教版必修2 1.1.1柱、锥、台、球的结构特征 教案(系列三)

高中数学人教版必修2 1.1.1柱、锥、台、球的结构特征 教案(系列三)

空间几何体的结构教学设计一、教学内容解析本节课选自人民教育出版社普通高中课程标准实验教科书数学2(必修)第一章《空间几何体》第1节《空间几何体的结构》。

几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。

空间几何体是几何学的重要组成部分,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用。

三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的几何直观能力、运用图形语言进行交流的能力、空间想象能力与一定的推理论证能力是高中阶段数学必修课程的一个基本要求。

在本章,学生将从对空间几何体的整体观察入手,通过直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质。

柱、锥、台、球的结构特征在立体几何教学中起着承上启下的作用。

承上——承接小学和初中阶段学生对几何图形的直观认识,先整体、进而局部认识空间图形,用语言精确地描述空间几何体的结构特征;启下——认识清楚了空间几何体的结构特征,就可以利用这些特征进一步认识几何体的大小和位置关系,进行定量计算。

柱体、锥体、台体、球体都是简单的几何体,复杂的几何体大都是由这些简单的几何体组合而成的。

有关柱体、锥体、台体、球体的研究是研究比较复杂的几何体的基础。

把现实世界中的物体抽象成几何图形,体现了数学模型以及数学建模的基本思想,同时,多个几何体具有同样的结构特征,则体现了特殊问题一般化的思想,利用不同的结构特征概括现实世界的物体,体现了分类讨论的基本方法。

教学中,通过建立现实世界中的物体和空间几何体的对应关系,并从细节上认识空间几何体的结构特征,对培养学生数学建模的思想和方法、发展学生的抽象思维能力和空间想象能力具有重要意义。

二、教学目标设置1.知识与技能了解柱、锥、台、球的定义,掌握柱、锥、台、球的结构特征及其关系。

2.过程与方法在描述和判断几何体结构特征的过程中,通过观察大量实例,运用课堂活动和合作学习的方式,培养观察能力、空间想象能力、抽象思维能力、几何直观能力、合情推理能力和运用图形进行交流的能力,渗透分类思想和类比方法,逐步培养自主探究的学习习惯。

人教版高中数学必修二柱、锥、台、球的结构特征公开课优质教案

人教版高中数学必修二柱、锥、台、球的结构特征公开课优质教案

人教版高中数学必修二柱、锥、台、球的结构特征公开课优质教案第一章空间几何体本章教材分析柱体、锥体、台体和球体是简单的几何体,复杂的几何体大都是由这些简单的几何体组合而成的.有关柱体、锥体、台体和球体的研究是研究比较复杂的几何体的基础.本章研究空间几何体的结构特征、三视图和直观图、表面积和体积等.运用直观感知、操作确认、度量计算等方法,认识和探索空间几何图形及其性质.本章中的有关概念,主要采用分析具体实例的共同特点,再抽象其本质属性空间图形而得到.教学中应充分使用直观模型,必要时要求学生自己制作模型,引导学生直观感知模型,然后再抽象出有关空间几何体的本质属性,从而形成概念.本章内容是在义务教育阶段学习的基础上展开的.例如,对于棱柱,在义务教育阶段直观认识正方体、长方体等的基础上,进一步研究了棱柱的结构特征及其体积、表面积.因此,在教材内容安排中,特别注意了与义务教育阶段“空间与图形”相关内容的衔接.值得注意的是在教学中,要坚持循序渐进,逐步渗透空间想象能力面的训练.由于受有关线面位置关系知识的限制,在讲解空间几何体的结构时,少问为什么,多强调感性认识.要准确把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单几何体的模型,使学生初步感受到信息技术在学习中的重要作用.为了体现教材的选择性,在练习题安排上加大了弹性,教师应根据学生的实际,合理地进行取舍.本章教学时间约需7课时,具体分配如下(仅供参考):1.1.1 柱、锥、台、球的结构特征约1课时1.1.2 简单组合体的结构特征约1课时1.2.1 中心投影与平行投影约1课时1.2.2 空间几何体的三视图1.2.3 空间几何体的直观图约1课时1.3.1 柱体、锥体、台体的表面积与体积约1课时1.3.2 球的体积和表面积约1课时本章复习约1课时§1.1 空间几何体的结构§1.1.1 柱、锥、台、球的结构特征一、教材分析本节教材先展示大量几何体的实物、模型、图片等,让学生感受空间几何体的结构特征,从整体上认识空间几何体,再深入细节认识,更符合学生的认知规律.值得注意的是:由于没有点、直线、平面的有关知识,所以本节的学习不能建立在严格的逻辑推理的基础上,这与以往的教材有较大的区别,教师在教学中要充分注意到这一点.本节教学尽量使用信息技术等手段,向学生展示更多具有典型几何结构特征的空间物体,增强学生的感受.二、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

优秀教案2-柱锥台球的结构特征(2)

优秀教案2-柱锥台球的结构特征(2)

1.1.1柱、锥、台、球的结构特征(2)教材分析本节内容是必修第二册第一章第一节空间几何体的结构特征的第二节内容,在认识棱柱、棱锥、棱台的结构特征的基础上让学生感受大量空间实物及模型认识球和简单组合体的结构特征是本节的重点,圆柱、圆锥、圆台、球的结构特征的概括总结是本节的难点。

在本节授课中,主要通过对生活中事物联系课本知识,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯.课时分配本节内容用1课时的时间完成,主要探究和概括圆柱、圆锥、圆台、球和简单组合体的结构特征.教学目标重点:让学生感受大量空间实物及模型认识圆柱、圆锥、圆台、球和简单组合体的结构特征.难点:圆柱、圆锥、圆台、球和简单组合体的结构特征的概括.知识点:圆柱、圆锥、圆台、球和简单组合体的结构特征.能力点:会表示旋转体;能判断组合体是由哪些简单几何体构成的;观察、概括能力.教育点:培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯.拓展点:培养学生的空间想象能力和对空间中平行和垂直关系的感觉.教具准备多媒体课件,实物模型教具课堂模式学案导学一、复习引入【师生活动】教师提问,借助模型帮助学生回顾多面体和旋转体的定义和棱柱、棱锥、棱台的结构特征。

【设计意图】让学生巩固复习多面体的结构特征,体会多面体与选择体构成的不同,从而以不同方式探究、认识旋转体的结构特征.【设计说明】给学生实物模型更有助于学生形成立体的想象图形.二、探究新知探究1:圆柱的结构特征[师生活动]师生共同观察讨论圆柱的结构特征和构成方式,以教师引导、展示实物和图片为辅,学生观察、讨论总结为主.师:在(1)(3)(4)(6)(8)(10)(11)(12)这些旋转体中,观察(1)(8)具有什么样的共同外部特征?,(1)(8)[设计意图]让学生在仔细观察,细心分析后从外部特征和构成方式两方面得出圆柱的结构特征,对圆柱的特征有进一步的认识.生:(1)(8)是圆柱,它们有两个平行的平面是等大的圆面,还有一个曲面.师:你能说出它们是什么平面图形通过怎样的旋转得到的旋转体吗?生:圆柱是以矩形的一边所在直线为旋转轴,其余各边旋转而形成的的曲面所围成的旋转体.师:旋转轴叫圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于圆柱轴的边旋转而成的面叫圆柱的侧面,圆柱的侧面又称圆柱的面;无论转到什么位置,不垂直于轴的边都叫圆柱侧面的母线。

高中数学必修二《柱、锥、台、球的结构特征》优秀教学设计

高中数学必修二《柱、锥、台、球的结构特征》优秀教学设计

1.1.1柱、锥、台、球的结构特征(1)学案一、教学目标1.知识与技能(1)通过观察大量图片,增强学生的直观感知.,认识日常生活中常见的几何体。

(2)能根据几何结构特征归纳出柱、锥、台、球的结构特征并理解其结构特征。

(3)能会用语言概述柱、锥、台、球的概念、分类及特点。

2.过程与方法在描述和判断几何体结构特征的过程中,通过观察大量实例,运用课堂活动和合作学习的方式,培养观察能力、空间想象能力、抽象思维能力、几何直观能力、合情推理能力和运用图形进行交流的能力,渗透分类思想和类比、归纳方法,逐步培养自主探究的学习习惯。

3.情感、态度与价值观通过对具体事物的抽象,培养探索能力、钻研精神和科学态度。

通过探索、质疑、讨论,感受数学探索的成就感及丰富美丽的几何世界,从而激发学习数学的热情,培养学习数学的兴趣,增强学习数学的信心。

4教学重点难点评论教学重点:从数学角度合理对空间几何体进行分类,准确描述各类几何体的结构特征,并能运用这些结构特征判断几何体的形状。

教学难点:准确理解空间几何体尤其是棱柱的概念,学会换角度看问题,透过现象看本质,准确判断“放倒”几何体的结构特征。

二、教学重点与难点1.重点:感受大量空间实物及模型,概括出柱、锥、台、球的结构特征。

2.难点:柱、锥、台、球的结构特征的概括。

三、课前导学阅读教材第2—6页,完成下列学习(一)空间几何体、多面体与旋转体1. 叫空间几何体.2.多面体:叫做多面体,其中叫做多面体的面,叫做多面体的棱,叫做多面体的顶点.3.旋转体:叫做旋转体,其中叫做旋转体的轴.(二)简单几何体1.棱柱的结构特征【问题】通过观察图1. 1-1中的(2)(5)(7)(9),你能根据其结构特点概括出棱柱的定义吗?(1)一般地,有两个面();其余各面都是(),并且每相邻两个四边形的( )都( ), 由这些面所围成的多面体叫做棱柱.两个( ) 叫底面;简称底;( )叫棱柱的侧面;相邻侧面的( )叫棱柱的侧棱;侧面与底面的( )叫棱柱的顶点.棱柱的分类: 底面是三角形、四边形、五边形……的棱柱分别叫做( )、( )、( ) …….(2)棱柱的表示:( )底面各顶点的字母表示棱柱,如图该六棱柱可表示为( )。

111柱、锥、台、球的结构特征教案

111柱、锥、台、球的结构特征教案

第一课时柱、锥、台、球的结构特征(一)教学目标1知识与技能(1)通过实物操作,增强学生的直观感知(2)能根据几何结构特征对空间物体进行分类(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类•2. 过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征(2)让学生观察、讨论、归纳、概括所学的知识.3. 情感、态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象概括能力(二)教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括(三)教学方法通过提出问题,学生观察空间实物及模型,先独立思考空间几何体的结构特征,然后棱锥的结构特征棱台的结构特征圆柱的结构特征例1如图,过BC的截面截去长方形的一角,所得的几何体是不是棱柱?为底即知所得几何体是棱柱hiIn例2观察螺杆头部模型, 有多少对平行的平面?能作为棱柱底面的有几对?解析:略1 .观察教材节2页的图 (14)(15)它们有什么共同特征?2.请类比棱柱、得出相关概念,分类及表示•1 .观察教材第2页中图 (13)、(16),思考它们可以怎样得到?有什么共同特征?2 •请仿照棱锥中关于侧面、侧棱、顶点的定义,给棱台相关概念下定义•观察下面这个几何体(圆柱)及得到这种几何体的方法,思考它与棱柱的共同特点,给它定个名称并下定义•形认识棱柱有关概念.教师投影例一并读题• 有的学生可能会认为不是棱柱,因为如果选择上下两平面为底,则不符合棱柱结构特征的第二条•引导学生讨论:如何判定一个几何体是不是棱柱?教学时应当把学生的注意通过改变棱柱放置力引导到用概念进行判断上的位置(变来,即看所给的几何体是否符式),引导合棱柱定义的三个条件•学生应用教师投影例2并读题•概念判别教师引导学生分析得出,几何体•加平行平面共有四对,但能作为深对棱柱棱柱底面的只有一对,即上下结构特征两个平行平面•的认识•引导学生探究:棱柱的哪些平行的面能作为底面,此时侧面是什么?哪些平行的平面不能作为底面?学生进行观察、讨论、然从分后归纳,教师注意引导,整理•析具体棱得出棱锥的结构特征,有关概锥出发,通念分类及表示方法•过概括棱棱锥的结构特征:锥的共同1 •有一个面是多边形•特点,得出2.其余各面都是有一个公棱锥的结共点的三分形•构特征•教师在学生讨论中可引导学生思考棱台可以怎样得到,从而迅速得出棱台的结构特征.由一个平行于底面的平面去截棱锥,底面与截面之间的部分•教师演示,学生观察,然后学生给出圆柱的名称及定义,教师给出侧面、底面、轴的定义•以矩形一边所在直线为旋转轴,其余三边旋转而成的面所围成的旋转体叫做圆柱•突出棱台的形成过程,把握棱台的结构特征.突出圆柱的形成过程,把握圆柱的结构特征.备用例题例1下列命题中错误的是( )A •圆柱的轴截面是过母线的截面中面积最大的一个B •圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D •圆锥所有的轴截面是全等的等腰三角形【解析】圆锥的母线长相长,设为I,若圆锥截面三角形顶角为,圆锥轴截面三角形顶角为,则O v < •当 < 90°时,截面面积S = -I 2 sin < - I 2 sin .当90°v v2 21 2 1 2180°时•截面面积S^ -1 2 si n90 -I2,故选B.2 2例2根据下列对几何体结构特征的描述,说出几何体的名称•(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;(2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的图形•【分析】要判断几何体的类型,首先应熟练掌握各类几何体的结构特征【解析】(1)如图1,该几何体满足有两个面平行,其余六个面都是矩形,可使每相邻两个面的公共边都相互平行,故该几何体是六棱柱•(2)如图2,等腰梯形两底边中点的连线将梯形平分为两个直角梯形,每个直角梯形旋转180°形成半个圆台,故该几何体为圆台•点评:对于不规则的平面图形绕轴旋转问题,要对原平面图形作适当的分割,再根据圆柱、圆锥、圆台的结构特征进行判断•例3把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长是10cm,求圆锥的母线长•【分析】画出圆锥的轴截面,转化为平面问题求解•1【解析】设圆锥的母线长为ycm,圆台上、下底面半径分别是xcm、4xcm.作圆锥的轴截面如图•在Rt△ SOA中,O A'OA, /• SA':SA=1O' A'OA,即(y-10) : y=x : 4x. /• y=13—3•••圆锥的母线长为13 - cm 图4—1—83【点评】圆柱、圆锥、圆台可以看做是分别以矩形的一边、直角三角形的一直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的几何体,其轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题一般要作出轴截面.。

《柱、锥、台、球的结构特征》教学设计(优质课)

《柱、锥、台、球的结构特征》教学设计(优质课)

柱、锥、台、球的结构特征(一)教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征.(2)让学生观察、讨论、归纳、概括所学的知识.3.情感、态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象概括能力.(二)教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括.(三)教学方法通过提出问题,学生观察空间实物及模型,先独立思考空间几何体的结构特征,然后相互讨论、交流,最后得出完整结论....有两个面互相平行;形;...解析:以A′ABB′和D底即知所得几何体是棱柱解析:略.个几何体是不是棱柱?....棱锥的结构特征:.... 1.观察下面这个几何体(圆锥)观察球的模型,思考球可以用什备用例题例1 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所有过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆D .圆锥所有的轴截面是全等的等腰三角形【解析】圆锥的母线长相长,设为l ,若圆锥截面三角形顶角为α,圆锥轴截面三角形顶角为θ,则0<α≤θ. 当θ≤90°时,截面面积S = αsin 212l ≤θsin 212l . 当90°<θ<180°时.截面面积S ≤222190sin 21l l =︒⋅,故选B.例2 根据下列对几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形; (2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的图形.【分析】要判断几何体的类型,首先应熟练掌握各类几何体的结构特征.【解析】(1)如图1,该几何体满足有两个面平行,其余六个面都是矩形,可使每相邻两个面的公共边都相互平行,故该几何体是六棱柱.图2图1(2)如图2,等腰梯形两底边中点的连线将梯形平分为两个直角梯形,每个直角梯形旋转180°形成半个圆台,故该几何体为圆台.点评:对于不规则的平面图形绕轴旋转问题,要对原平面图形作适当的分割,再根据圆柱、圆 锥、圆台的结构特征进行判断.例3 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长是10cm ,求圆锥的母线长.【分析】 画出圆锥的轴截面,转化为平面问题求解. 【解析】 设圆锥的母线长为y cm ,圆台上、下底面半径分别是x cm 、4x cm.作圆锥的轴截面如图. 在R t△SOA 中,O′A′∥OA ,∴SA ′∶SA= O′A′∶OA ,即(y -10)∶y=x ∶4x . ∴y =1331.∴圆锥的母线长为1331cm【点评】圆柱、圆锥、圆台可以看做是分别以矩形的一边、直角三角形的一直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的几何体,其轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题一般要作出轴截面.图4—1—8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1·1空间几何体的结构
【课题】:1、1、1柱、锥、台、球的结构特征
【设计与执教者】:广东仲元中学许红艳**********************
【教学时间】:2007.11
【学情分析】:几何学是研究现实世界中物体的形状、大小与位置关系的学科.空间几何体是几何学的重要组成部分,它在土木建筑、机械设计、航海测绘的大量实际问题中都有广泛的应用.本节我们从对空间几何体的整体观察、分析常见立体图形结构入手,建立空间概念,学习描述简单几何体的结构特征,培养观察分析及空间想象能力和逻辑思维能力.
【教学目标】:
1、通过观察模型、图片,认识棱柱、棱锥、棱台以及球的几何特征,进而理解棱柱、棱锥、
棱台和球的概念;
2、用运动的观点形成棱柱、棱锥、棱台以及球的概念,并用运动变化的观点理解棱柱、棱
锥、棱台的概念以及它们相互之间的关系;
3、了解棱柱、棱锥、棱台以及球的基本作图方法,会画出它们的空间图形;
4、重视立体几何知识与平面几何知识间的“类比”;体会将“空间问题转化为平面问题”
的“转化”思想;
【重点与难点】
本节重点是:形成柱、锥、台以及球的概念;认识柱、锥、台、球的结构特征,培养空间想象能力、几何只管能力、运用图形语言进行交流的能力.
难点是:作棱柱、棱锥、棱台的直观图;棱台的画法和判断以及空间想象能力的培养.
【教法、学法设计】:
1、尽量做到从实际提出问题,并利用实物模型、电脑演示观察大量空间图形,逐步从感性认识上升到理性认识.
2、加强从模型到图像,从图像到模型的观察,加强画空间图形的能力,逐步培养空间想象
能力.
3、加强数学文字语言、图形语言、符号语言的相互转化.
【教学过程设计】:。

相关文档
最新文档