学期高二期末考试数学(文)(扫描版)(附答案) (1)

合集下载

文科数学高二期末考试试卷答案

文科数学高二期末考试试卷答案

高二年级2022年12月月考文科数学答案一、 选择题ACDDB BACCA BD二、 填空题13、4 14、15 15、16、_ [0,42)210三、解答题17、解:命题p 真:1﹣m >2m >0⇒, 命题q 真:,且m >0,⇒0<m <15, 若p ∨q 为真,p ∧q 为假, p 真q 假,则空集;p 假q 真,则; 故m 的取值范围为.19、解:初中生中,阅读时间在小时内的频率为, (1)[30,40)1−(0.005+0.03+0.04+0.005)×10=0.20所有的初中生中,阅读时间在小时内的学生约有人;∴[30,40)0.2×1800=360同理,高中生中,阅读时间在小时内的频率为, [30,40)1−(0.005+0.025+0.035+0.005)×10=0.30学生人数约有人,0.30×1200=360该校所有学生中,阅读时间在小时内的学生人数约有人[30,40)360+360=720.由分层抽样知,抽取的初中生有名,高中生有名, (2)100×18001800+1200=60100−60=40记“从阅读时间不足个小时的样本学生中随机抽取人,至少抽到名初中生”为事件,1032A初中生中,阅读时间不足个小时的学生频率为,样本人数为人; 100.005×10=0.050.05×60=3高中生中,阅读时间不足个小时的学生频率为,样本人数为人 100.005×10=0.050.05×40=2.记这名初中生为,这名高中生为,公众号高中僧试题下载3A 、B 、C 2d 、e 则从阅读时间不足个小时的样本学生中随机抽取人,所有可能结果共种,10310即:,,,,,,,,,;ABC ABd ABe ACd ACe Ade BCd BCe Bde Cde 而事件的结果有种,A 7它们是:,,,,,,;ABC ABd ABe ACd ACe BCd BCe 至少抽到名初中生的概率为; ∴2P(A)=710天内,初中生平均每人阅读时间为小时, (3)605×0.05+15×0.3+25×0.4+35×0.2+45×0.05=24()国家标准下天内初中生每人需阅读小时,6060×0.5=30()因为,该校需要增加初中学生课外阅读时间.24<30(2)由题意可得,设直线P 的方程为:,设 2(1,0)F Q 21x my =+P (x 1,y 1),Q 2(x 2,y 2)则M (x 2,y 2)联立,整理可得:, 221143x my x y =+⎧⎪⎨+=⎪⎩22(43)690m y my ++-=可得:,, 122643m y y m -+=+122943y y m -=+因为,,所以可得| =2| ||,PN =2NQ 2PN NQ 2所以 S △Q 2MN =13S △Q 2MP =23S △OPQ 2=23∙12|OF 2|∙|y 1−y 2|111333===,143==令,所以在,单调递增,所以,当且仅当时取等号,则1t=13y tt=+[1)+∞314y+=…1t=S△Q2MN=1.所以面积的取值范围,.△Q2MN(01]。

高二下学期期末考试数学(文)Word版含答案

高二下学期期末考试数学(文)Word版含答案

θ-高二第二学期期末考试文科数学试卷命题人:高三文科数学备课组—、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}230B x x x =-≥,则AB =( )A .{}1- B .{}1,0-C .{}1,3- D .{}1,0,3-2.若复数z 满足()1i 12i z -=+,则z =( )A .52B .32C 10D .63.已知α为锐角,5cos 5α=,则tan 4απ⎛⎫-= ⎪⎝⎭( )A .13B .3C .13-D .3- 4.设命题p :1x ∀< ,21x <,命题q :00x ∃> ,0012x x >( )A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()()p q ⌝∧⌝5.已知变量x ,y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,,,则2z x y =+的最大值为( )A .5B .4C .6D .06.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,直角三角形中较小的锐角.若在该大正方形区域内随机地取一点,则该点落在中间小正方形内的概率是( )A .232- B .32C .D .127.下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A 1,A 2,…,A 16,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( ) A .6 B .10 C .91 D .928. 已知等比数列{a n },且a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( )A. 4B. 6C. 8D. -99. 设曲线2()1cos ()f x m x m R =+∈上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为( )10.将函数2sin cos 33y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对 应的函数恰为奇函数,则ϕ的为最小值为( )A .12πB .6πC .4πD .3π11.已知正三棱锥P-ABC 的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为( )A .4π B.12πC.316πD.364π12. 已知函数2(1)(0)()2x f f f x e x x e '=⋅+⋅-,若存在实数m 使得不等式 2()2f m n n ≤-成立,则实数n 的取值范围为( )A. [)1-,1,2⎛⎤∞-⋃+∞ ⎥⎝⎦ B. (]1,1,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭C. (]1,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭D. [)1-,0,2⎛⎤∞-⋃+∞ ⎥⎝⎦二、填空题:本大题共4小题,每小题5分,共20分aEDCAP13.已知向量(1,2),(,1)a b x ==,2,2u a b v a b =+=-,且u ∥v ,则实数x 的值是___.15. 已知点P (x ,y )在直线x+2y=3上移动,当2x+4y取得最小值时,过点P 引圆16.已知12,F F 分别是椭圆22221x y a b+=(0)a b >>的左、右焦点,P 是椭圆上一点(异于左、右顶点),过点P 作12F PF ∠的角平分线交x 轴于点M ,若2122PM PF PF =⋅,则该椭圆的离心率为.三、解答题:本大题共6小 题 ,共70分.解答应写出文字说明,证明过程或演算步骤 17. (本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足(1)求角C 的大小;(2)若bsin (π﹣A )=acosB ,且,求△ABC 的面积.18.(本小题满分12分)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,ABCD PA 底面⊥,ED PA ,且22PA ED ==.(1)证明:平面PAC ⊥平面PCE ;(2) 若 o 60=∠ABC ,求三棱锥P ACE -的体积19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周总利润的平均值.附:相关系数公式∑∑∑===----=ni ini ini iiy yx x y yx x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20. (本小题满分12分)已知椭圆()2222:10x y E a b a b+=>>的离心率为2,且过点⎛ ⎝⎭.(1)求E 的方程; (2)是否存在直线:l y kx m =+与E 相交于,P Q 两点,且满足:①OP 与OQ (O 为坐标原点)的斜率之和为2;②直线l 与圆221x y +=相切,若存在,求出l 的方程;若不存在,请说明理由. 21(本小题满分12分)已知函数f (x )=x 2+1,g (x )=2alnx+1(a ∈R ) (1)求函数h (x )=f (x )-g (x )的极值;(2)当a=e 时,是否存在实数k ,m ,使得不等式g (x )≤kx+m ≤f (x )恒成立?若存 在,请求实数k ,m 的值;若不存在,请说明理由.请考生在22〜23三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos ,1sin x t y t αα=+⎧⎨=+⎩(t 为参数,α为倾斜角),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=. (1)求曲线C 的普通方程和参数方程;(2)设l 与曲线C 交于A ,B 两点,求线段||AB 的取值范围. 23. (本小题满分10分)选修4-5:不等式选讲 巳知函数f(x)=|x-2|+2|x-a|(a ∈R). (1)当a=1时,解不等式f(x)>3;(2)不等式1)(≥x f 在区间(-∞,+∞)上恒成立,求实数a 的取值范围.2017-2018学年度高二第二学期期末考试文科数学试卷答案一、选择题1-5 DCABB 6-10 ABADB 11-12 DA 二、填空题13. 14.15. 16 .22三、 解答题17.解:(1)在△ABC 中,由,由余弦定理:a 2+b 2﹣c 2=2abcosC , 可得:2acsinB=2abcosC .由正弦定理:2sinCsinB=sinBcosC∵0<B <π,sinB ≠0, ∴2sinC=cosC ,即tanC=,∵0<C <π, ∴C=. (2)由bsin (π﹣A )=acosB , ∴sinBsinA=sinAcosB , ∵0<A <π,sinA ≠0, ∴sinB=cosB ,∴,根据正弦定理,可得,解得c=118.(1)证明:连接BD,交AC于点O,设PC连接OF,EF.因为O,F分别为AC,PC的中点,所以OF PA,且12OF PA=,因为DE PA,且12DE PA=,所以OF DE,且OF DE=.………………1分所以四边形OFED为平行四边形,所以OD EF,即BD EF.…………2分因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA BD⊥.因为ABCD是菱形,所以BD AC⊥.因为PA AC A=,所以BD⊥平面PAC.……………4分因为BD EF,所以EF⊥平面PAC.………………5分因为FE⊂平面PCE,所以平面PAC⊥平面PCE.……6分(2)解法1:因为60ABC∠=,所以△ABC是等边三角形,所以2AC=.……7分又因为PA⊥平面ABCD,AC⊂平面ABCD,所以PA AC⊥.所以.………8分因为面PAC,所以是三棱锥的高.……9分因为EF DO BO===10分所以13P ACE E PAC PACV V S EF--∆==⨯……11分1233=⨯=.…12分解法2:因为底面ABCD为菱形,且︒=∠60ABC,所以△ACD为等边三角形.………7分取AD的中点M,连CM,则ADCM⊥,且3=CM.…8分因为⊥PA 平面ABCD ,所以CM PA ⊥,又A AD PA = ,所以CM ⊥平面PADE ,所以CM 是三棱锥C PAE -的高.……………9分 因为122PAE S PA AD ∆=⨯=.……10分 所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯…………11分1233=⨯=.………………12分 19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==. (1)分因为51()()(3)(1)000316iii x x yy =--=-⨯-++++⨯=∑,……2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ……………………3分==…………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.…………6分 (2)记商家周总利润为Y 元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行, 周总利润Y =1×3000-2×1000=1000元.……………………8分 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 周总利润Y =2×3000-1×1000=5000元.………………………9分 当X<50时,共有5周,此时3台光照控制仪都运行, 周总利润Y =3×3000=9000元.………………10分 所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………12分20. 解:(1)由已知得221314c a a b=+=, 解得224,1a b ==,∴椭圆E 的方程为2214x y +=; (2)把y kx m =+代入E 的方程得:()()222148410k xkmx m +++-=,设()()1122,,,P x y Q x y ,则()2121222418,1414m kmx x x x k k--+==++,① 由已知得()()12211212211212122OF OQ kx m x kx m x y y y x y x k k x x x x x x +++++=+===, ∴()()1212210k x x m x x -++=,②把①代入②得()()2222811801414k m km k k ---=++, 即21m k +=,③又()()2221641164k m k k ∆=-+=+,由224010k k m k ⎧+>⎨=-≥⎩,得14k <-或01k <≤,由直线l 与圆221x y +=1=④③④联立得0k =(舍去)或1k =-,∴22m =, ∴直线l的方程为y x =-21.解:(1)h (x )=f (x )﹣g (x )=x 2﹣2alnx ,x >0所以 h′(x )=当a ≤0,h′(x )>0,此时h (x )在(0,+∞)上单调递增,无极值, 当a >0时,由h′(x )>0,即x 2﹣a >0,解得:a >或x <﹣,(舍去)由h′(x )<0,即x 2﹣a <0,解得:0<x <,∴h (x )在(0,)单调递减,在(,+∞)单调递增, ∴h (x )的极小值为h ()=a ﹣2aln=a ﹣alna ,无极大值;(2)当a=e 时,由(1)知min ()h x =h ()=h ()=e ﹣elne=0∴f (x )﹣g (x )≥0, 也即 f (x )≥g (x ),当且仅当x=时,取等号;以(1)e +为公共切点,f′()=g′()2e =所以y=f (x )与y=g (x )有公切线,切线方程y=2x+1﹣e ,构造函数 2()()1)(h x f x e x =--+=,显然()0h x ≥1()e f x ∴+-≤构造函数 ()1)()2ln k x e g x e x e =+--=--(0)x >()x k x x'=由()0k x '> 解得 x >()0k x '< 解得 0x <<所以()k x 在上递减,在)+∞上递增min ()0k x k ∴==,即有1)()e g x +-≥从而 ()1()g x e f x ≤+-≤,此时1k m e ==-22. 解:(Ⅰ)因为曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=, 所以曲线C 的普通方程为224640x y x y +--+=, 即22(2)(3)9x y -+-=,所以曲线C 的参数方程为23cos 33sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数).(Ⅱ)把代入1cos 1sin x t y t αα=+⎧⎨=+⎩代入22(2)(3)9x y -+-=,并整理得22(cos 2sin )40t t αα-+-=, 设A ,B 对应的参数分别为1t ,2t , 所以122(cos 2sin )t t αα+=+,124t t =-,所以1212||||||||AB t t t t =+=-=====设4cos 5ϕ=,3sin 5ϕ=,∴||AB =,∵1sin(2)1αϕ-≤-≤,∴1610sin(2)263αϕ≤-+≤,∴4||6AB ≤≤, ∴||AB 的取值范围为[]4,6.23. 解:(Ⅰ)解得解得解得…………………3分不等式的解集为………………5分(Ⅱ);;;的最小值为;………………8分则,解得或.………………10分2017-2018学年度高二第二学期期末考试文科数学试卷答案一、选择题1-5 DCABB 6-10 ABADB 11-12 DA二、填空题13. 14.15. 16 .2 2三、解答题17.解:(1)在△ABC中,由,由余弦定理:a2+b2﹣c2=2abcosC,可得:2acsinB=2abcosC.由正弦定理:2sinCsinB=sinBcosC∵0<B<π,sinB≠0,∴2sinC=cosC,即tanC=,∵0<C<π,∴C=.(2)由bsin(π﹣A)=acosB,∴sinBsinA=sinAcosB,∵0<A<π,sinA≠0,∴sinB=cosB,∴,根据正弦定理,可得,解得c=118.(1)证明:连接BD,交AC于点O,设PC连接OF,EF.因为O,F分别为AC,PC的中点,所以OF PA,且12OF PA=,因为DE PA,且12DE PA=,所以OF DE,且OF DE=.………………1分所以四边形OFED为平行四边形,所以OD EF,即BD EF.…………2分因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA BD⊥.因为ABCD是菱形,所以BD AC⊥.因为PA AC A=,所以BD⊥平面PAC.……………4分因为BD EF,所以EF⊥平面PAC.………………5分因为FE⊂平面PCE,所以平面PAC⊥平面PCE.……6分(2)解法1:因为60ABC∠=,所以△ABC是等边三角形,所以2AC=.……7分又因为PA⊥平面ABCD,AC⊂平面ABCD,所以PA AC⊥.所以.………8分因为面PAC,所以是三棱锥的高.……9分因为EF DO BO===10分所以13P ACE E PAC PACV V S EF--∆==⨯……11分123=⨯=.…12分解法2:因为底面ABCD为菱形,且︒=∠60ABC,所以△ACD为等边三角形.………7分取AD的中点M,连CM,则ADCM⊥,且3=CM.…8分因为⊥PA平面ABCD,所以CMPA⊥,又AADPA=,所以CM⊥平面PADE,所以CM是三棱锥C PAE-的高.……………9分因为122PAE S PA AD ∆=⨯=.……10分 所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯…………11分123=⨯=.………………12分 19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==. (1)分因为51()()(3)(1)000316iii x x yy =--=-⨯-++++⨯=∑,……2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ……………………3分==…………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.…………6分 (2)记商家周总利润为Y 元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行, 周总利润Y =1×3000-2×1000=1000元.……………………8分 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 周总利润Y =2×3000-1×1000=5000元.………………………9分 当X<50时,共有5周,此时3台光照控制仪都运行, 周总利润Y =3×3000=9000元.………………10分 所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………12分 20. 解:(1)由已知得221314c a a b=+=,解得224,1a b ==,∴椭圆E 的方程为2214x y +=; (2)把y kx m =+代入E 的方程得:()()222148410k xkmx m +++-=,设()()1122,,,P x y Q x y ,则()2121222418,1414m kmx x x x k k--+==++,① 由已知得()()12211212211212122OF OQ kx m x kx m x y y y x y x k k x x x x x x +++++=+===, ∴()()1212210k x x m x x -++=,②把①代入②得()()2222811801414k m km k k---=++, 即21m k +=,③又()()2221641164k m k k ∆=-+=+,由224010k k m k ⎧+>⎨=-≥⎩,得14k <-或01k <≤,由直线l 与圆221x y +=1=④③④联立得0k =(舍去)或1k =-,∴22m =, ∴直线l的方程为y x =-21.解:(1)h (x )=f (x )﹣g (x )=x 2﹣2alnx ,x >0所以 h′(x )=当a ≤0,h′(x )>0,此时h (x )在(0,+∞)上单调递增,无极值, 当a >0时,由h′(x )>0,即x 2﹣a >0,解得:a >或x <﹣,(舍去)由h′(x )<0,即x 2﹣a <0,解得:0<x <,∴h (x )在(0,)单调递减,在(,+∞)单调递增, ∴h (x )的极小值为h ()=a ﹣2aln=a ﹣alna ,无极大值;(2)当a=e 时,由(1)知min ()h x =h ()=h ()=e ﹣elne=0∴f (x )﹣g (x )≥0, 也即 f (x )≥g (x ),当且仅当x=时,取等号;以(1)e +为公共切点,f′()=g′()2e =所以y=f (x )与y=g (x )有公切线,切线方程y=2x+1﹣e ,构造函数 2()()1)(h x f x e x =--+=,显然()0h x ≥1()e f x ∴+-≤构造函数 ()1)()2ln k x e g x e x e =+--=--(0)x >()x k x x'=由()0k x '> 解得 x >()0k x '< 解得 0x <<所以()k x 在上递减,在)+∞上递增min ()0k x k ∴==,即有1)()e g x +-≥从而 ()1()g x e f x ≤+-≤,此时1k m e ==-22. 解:(Ⅰ)因为曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=, 所以曲线C 的普通方程为224640x y x y +--+=, 即22(2)(3)9x y -+-=, 所以曲线C 的参数方程为23cos 33sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数).(Ⅱ)把代入1cos 1sin x t y t αα=+⎧⎨=+⎩代入22(2)(3)9x y -+-=,并整理得22(cos 2sin )40t t αα-+-=, 设A ,B 对应的参数分别为1t ,2t ,所以122(cos 2sin )t t αα+=+,124t t =-,所以1212||||||||AB t t t t =+=-=====设4cos 5ϕ=,3sin 5ϕ=,∴||AB =,∵1sin(2)1αϕ-≤-≤,∴1610sin(2)263αϕ≤-+≤,∴4||6AB ≤≤, ∴||AB 的取值范围为[]4,6.23. 解:(Ⅰ)解得解得解得…………………3分不等式的解集为………………5分(Ⅱ);;;的最小值为;………………8分则,解得或.………………10分。

山西省太原市2018-2019学年高二上学期期末考试数学文试题(含答案)

山西省太原市2018-2019学年高二上学期期末考试数学文试题(含答案)

太原市 2018-2019 学年高二上学期期末考试数学(文)试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分)1. 双曲线22134x y -=的实轴长为A 、2B 、4C 、3D 、23 【答案】D2. 命题:“∀x ∈R ,3x >0 ”的否定是A 、∀x ∈R ,3x ≤0B 、∀x ∈R ,3x <0C 、∃x 0∈R ,03x ≤0D 、∃x 0∈R ,03x <0【答案】 C3. 曲线x y e x =+在 x = 0 处的切线的斜率等于A 、eB 、e +1C 、1D 、2 【答案】 D【考点】 导数的几何意义【解析】 因为 y e ' 1 + = x ,所以当 x = 0 时, y e ' 1 2 = + = 0 ,故选 D 4. 设 x ∈R ,则“ 1< x < 2 ” 是“ 1< x <3 ” 的 A 、充分而不必要条件 B 、必要而不充分条件 C 、充要条件 D 、既不充分也不必要条件 【答案】A5. 抛物线 x 2 = 4y 的焦点到准线的距离是 A 、1 B 、2 C 、4 D 、12【答案】B6. 若θ 是任意实数,则方程 x 2 + y 2sin θ=4 表示的曲线不可能是() A 、椭圆 B 、双曲线 C 、 抛物线 D 、圆 【答案】 C7. 函数 y = x 3 - 3x 的单调递减区间是()A ( - ∞,0)B (0,+∞)C (-1,1)D ( - ∞,-1),(1,+ ∞ ) 【答案】 C 8. 已知命题“ ” 为真命题,则实数 a 的取值范围是() A 、(94-+∞) B 、 (4,+∞) C 、 (-2,4) D 、(-2,+∞) 【答案】 D 9. 函数 21()ln 2f x x x =-的图像大致是()【答案】 A10. 若函数()ln f x kx x =-在区间 (2,+∞) 单调递增,则实数 k 得取值范围是 A 、(+∞,-2] B 、[12,+∞) C [2,+∞) D 、 (-∞,12] 【答案】 B11. 已知双曲线 C 与椭圆E :221925x y +=有共同的焦点,它们的离心率之和为145,则双曲线 C 的标准方程为()【答案】 D12. 函数 f (x )的定义域为 R , f (1) =6 ,对任意 x ∈ R ,'()f x >2,则(ln )2ln 4f x x >+的解集为() A 、(0,e ) B 、( e ,+∞) C 、( 0,1) D 、( 1,+∞)【答案】 B二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)13. 椭圆2212516x y +=的焦距为【答案】 614. 命题“如果 x + y > 3,那么 x > 1且 y > 2”的逆否命题为 . 【答案】 如果 x ≤1或 y ≤ 2 ,那么 x + y ≤ 315. 曲线 y = 2ln x 在点 (1,0)处的切线方程为 .16. 已知双曲线E :22221(0,0)x y a b a b-=>>的右顶点为 A ,抛物线 y 2 = 8ax 的焦点坐标为 F 。

2022-2023学年四川省遂宁市安居区育才中学校高二上学期期末考试数学(文)试题(解析版)

2022-2023学年四川省遂宁市安居区育才中学校高二上学期期末考试数学(文)试题(解析版)

2022-2023学年四川省遂宁市安居区育才中学校高二上学期期末考试数学(文)试题一、单选题1.若直线的倾斜角为120°,则直线的斜率为( )AB .CD .【答案】B【分析】求得倾斜角的正切值即得.【详解】k =tan120°=故选:B .2.有下列事件:①在标准大气压下,水加热到80℃时会沸腾;②实数的绝对值不小于零;③某彩票中奖的概率为1100000,则买100000张这种彩票一定能中奖;④连续两次抛掷一枚骰子,两次都出现2点向上.其中必然事件是( ) A .② ③ B .③④ C .①②③④ D .②【答案】D【解析】根据随机事件、必然事件的定义,逐项判定,即可求解.【详解】因为在标准大气压下,水加热到100℃才会沸腾,所以①不是必然事件; 因为实数的绝对值不小于零,所以②是必然事件; 因为某彩票中奖的概率为1100000,仅代表可能性,所以买100000张这种彩票不一定能中奖,即③不是必然事件;抛掷一枚骰子,每一面出现都是随机的,所以④是随机事件. 故选:D .3.过点(1,3)-且与直线230x y -+=平行的直线方程是( ) A .250x y --= B .270x y -+= C .210x y +-= D .250x y +-=【答案】B【分析】设直线方程为20x y c -+=,(3)c ≠,将点(1,3)-代入即可求解. 【详解】设直线方程为20x y c -+=,(3)c ≠, 直线过点(1,3)-,∴代入直线方程的1230c --⨯+=,得7c =,则所求直线方程为270x y -+=, 故选:B .4.已知O 的圆心是坐标原点O ,且被直线250x y -+=截得的弦长为4,则O 的方程为( ) A .224x y += B .228x y += C .228x y += D .229x y +=【答案】D【分析】设圆O 的方程为222x y r +=,结合圆的弦长公式,列出方程,求得2r 的值,即可求解. 【详解】由题意,设圆O 的标准方程为222x y r +=, 则圆心(0,0)O 到直线250x y -+=的距离为22552(1)d ==+-,又由圆O 被直线250x y -+=截得的弦长为4, 可得2224r d -=,化简得22(5)4r -=,解得29r =, 即圆的方程为229x y +=. 故选:D.5.如图,长方体ABCD A B C D -''''中,底面ABCD 是边长为10的正方形,高AA '为12,点P 为体对角线BD '的中点,则P 点坐标为( )A .()5,6,5B .()6,6,5C .()5,5,6D .()6,5,5【答案】C【分析】先求出点B 和点D 的坐标,再利用中点坐标公式即可求解.【详解】长方体ABCD A B C D -''''中,底面ABCD 是边长为10的正方形,高AA '为12, 所以()0,0,12D ',()10,10,0B ,所以对角线BD'的中点P点坐标为010010012,,222P+++⎛⎫⎪⎝⎭即()5,5,6,故选:C.6.某农村中学高中部有高一、高二、高三共有200名学生,为调查他们的体育锻炼情况,通过分层抽样获得了20名学生一周的锻炼时间,数据如下表(单位:小时):则根据上述样本数据估计该校学生一周的锻炼时间不小于7小时的人数为()A.100 B.120 C.140 D.160【答案】C【分析】根据分层抽样的性质即可求解.【详解】由表格中,可得样本数据中该校学生一周的锻炼时间不小于7小时的人数为:20614-=人,所以,该校学生一周的锻炼时间不小于7小时的人数为:1420014020⨯=人.故选:C.7.若实数x、y满足约束条件20x yx yx+-≤⎧⎪-≤⎨⎪≥⎩,则12yzx+=-的最小值为()A.-2 B.3 2 -C.-1 D.1 2 -【答案】A【解析】画出约束条件20x yx yx+-≤⎧⎪-≤⎨⎪≥⎩的可行域,再由12yzx+=-为点()x y,与点P()21-,确定的直线的斜率求解.【详解】画出约束条件2000x y x y x +-≤⎧⎪-≤⎨⎪≥⎩的可行域如图所示阴影部分:因为12y z x +=-可以看作经过点()x y ,与点P ()21-,的直线的斜率, 结合图像易知,当直线经过点()11A ,时,斜率最小, 所以12y z x +=-的最小值为11212+=--, 故选:A8.某医院某科室有5名医护人员,其中有医生2名,护士3名.现要抽调2人前往新冠肺炎疫情高风险地区进行支援,则抽调的2人中恰好为1名医生和1名护士的概率是( ) A .16B .25C .35D .23【答案】C【分析】根据条件列举出所有的情况,找出其中恰好为1名医生1名护士的种类数,相除即可. 【详解】设5名医护人员,2名医生a ,b ,3名护士c ,d ,e ,则抽调2人的情况有ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de 共10种不同结果, 其中恰好为1名医生和1名护士的不同结果有6种, 故所求概率为63105= 故选:C.9.下列推理错误的是( )A .∈A l ,A α∈,B l ∈,B α∈⇒l ⊂α B .A α∈,A β∈,B α∈,B β∈⇒AB αβ=C .l α⊄,∈A l ⇒A αD .∈A l ,l α⊂⇒A α∈ 【答案】C【分析】根据公理1,判断A ,C ,D ,根据公理2,判断B ,【详解】由 ∈A l ,A α∈,B l ∈,B α∈根据公理1可得l ⊂α,A 对, 由∈A l ,l α⊂根据公理1可得A α∈,D 对, 由l α⊄,∈A l 可得A α或A α∈,C 错, 由A α∈,A β∈,B α∈,B β∈根据公理2可得AB αβ=,B 对,故选:C10.已知直线l 经过两直线l 1:3x ﹣y +12=0,l 2:3x +2y ﹣6=0的交点,且与直线x ﹣2y ﹣3=0垂直,则坐标原点O 到直线l 的距离为( ) A .255B .2C .55D .3【答案】A【分析】先联立方程求得交点坐标,再利用直线垂直求得直线l 的斜率,从而求得直线l 的方程,进而利用点线距离公式即可得解.【详解】联立方程组可得31203260x y x y -+=⎧⎨+-=⎩,解得26x y =-⎧⎨=⎩,故交点A 的坐标为()2,6-,因为直线x ﹣2y ﹣3=0的斜率为12,又直线l 与直线x ﹣2y ﹣3=0垂直,所以直线l 的斜率为﹣2, 故直线l 的方程为()622y x -=-+,即2x +y ﹣2=0;所以原点O 到直线l 的距离为222010225521d ⨯+⨯-==+. 故选:A.11.圆22(1)1x y -+=及22(1)1y x +-=围成的平面阴影部分区域如图所示,向正方形OACB 中随机投入一个质点,则质点落在阴影部分区域的概率为( )A .13π- B .12π- C .4π D .5π【答案】B【分析】利用几何概型的概率公式即可求解.【详解】圆22(1)1x y -+=及22(1)1y x +-=分别以1,0A 和()0,1B 为圆心, 半径都是1.连接OC ,可知阴影部分由分别以,A B 为圆心, 1为半径的两个四分之一弓形组成,阴影部分的面积为2111π21111422S π⎛⎫=⨯-⨯⨯=- ⎪⎝⎭,正方形的面积为111S =⨯=, 所以质点落在阴影部分区域的概率为1π12S S =-, 故选:B.12.已知点(1,0)P 及圆22:2C x y +=,点 M ,N 在圆C 上,若PM PN ⊥,则||MN 的取值范围为( ) A .[31,31]-+ B .[22,22]-+C .[23,23]-+D .[22,23]-+【答案】A【解析】如图所示,当四边形PMQN 为正方形且MN OP ⊥时,||MN 取得最小值或最大值,求出M 的坐标即可得出答案. 【详解】如图所示,当四边形PMQN 为正方形且MN OP ⊥时,||MN 取得最小值或最大值. 由图可知PM 所在直线斜率1k =,则PM 方程为1y x =-,则PM 与圆222x y +=的两个交点分别为M 、M ',2221x y y x ⎧+=⎨=-⎩,解得M xM x '所以M,M ', 则||MN的最小值为:2||1M y =,最大值为:2||1M y '=, 所以||MN的取值范围为11]. 故选:A .【点睛】解题的关键是根据题意,根据对称性,求得PM 的方程,进而可求得M 点坐标,即可求得答案,考查数形结合的解题思想,考查了计算能力,属中档题.二、填空题13.在区间[0,4]上随机地取一个数x ,则事件“111x -≤-≤”发生的概率为___________ 【答案】12##0.5【分析】利用几何概型求解即可. 【详解】在区间[0,4]的长度为4,111x -≤-≤,解得[]0,2x ∈,长度为2, 故在区间[0,4]上随机地取一个数x , 则事件“111x -≤-≤”发生的概率为2142P ==. 故答案为:1214.设x ,y 满足约束条件2120y x y x x ≥-⎧⎪≤+⎨⎪≥⎩,则x y +的最大值为________.【答案】8【分析】作出可行域,平移目标函数找到取最大值的点,代入可求最大值. 【详解】作出不等式组表示的可行域,如图,设z x y =+,由图可知,当直线z x y =+经过点A 时,取到最大值,联立212y x y x =-⎧⎨=+⎩可得(3,5)A ,代入可得z 取得最大值8.【点睛】本题主要考查线性规划求解最值,作出可行域先确定最值点是求解关键,侧重考查直观想象,逻辑推理的核心素养.15.已知直线:1l y kx =-与圆22:430C x y x +-+=相切,则正实数k 的值为___________.【答案】43【分析】利用圆心到直线的距离等于半径即可求解. 【详解】:110l y kx kx y =-⇒--=, ()2222:43021C x y x x y +-+=⇒-+=,圆心为()2,0,1r =,22111k k -=+,解得43k =或0k =,所以正实数k 的值为43故答案为:4316.设,,αβγ为两两不重合的平面, ,,l m n 为两两不重合的直线,给出下列四个命题: ①若,,//,//m n m n ααββ,则//αβ; ②若,m n αβ⊥⊥且,m n ⊥则αβ⊥ ③若l //,ααβ⊥,则l β⊥; ④若,,,l m n l αββγγα===//γ ,则m //n则上述命题中正确的是_________【答案】②④【分析】根据平行垂直的判定与性质逐项分析即可.【详解】对于① 由于不确定m,n 是否相交,所以推不出//αβ ②因为,m n ⊥m α⊥,所以n ⊂α或//n α, 可知α必过β的一条垂线,所以αβ⊥正确.③若l //,ααβ⊥,可能l //β,推不出l β⊥④,,,l m n l αββγγα===//γ,可推出//,//l m l n ,所以m //n 正确.故填②④.【点睛】本题主要考查了线面垂直,线面平行,面面垂直,面面平行的判定和性质,属于中档题.三、解答题17.如图所示的多面体中, AC ⊥BC ,四边形ABED 是正方形,平面ABED ⊥平面ABC ,点F ,G ,H 分别为BD ,EC ,BE 的中点,求证:(1) BC ⊥平面ACD (2)平面HGF ∥平面ABC .【答案】(1)证明见解析;(2)证明见解析.【解析】(1)利用面面垂直的性质证得AD ⊥平面ABC ,得出AD BC ⊥即可; (2)利用中位线关系证明,HG HF 平行于平面ABC 即可. 【详解】(1)由题:平面ABED ⊥平面ABC ,交线为AB , 四边形ABED 是正方形,所以AD AB ⊥,AD ⊆平面ABED , 所以AD ⊥平面ABC ,BC ⊆平面ABC ,AD BC ⊥, 由题AC ⊥BC , ,AD AC 是平面ACD 内的两条相交直线, 所以BC ⊥平面ACD(2)在EBC ∆中,H G 分别是,EB EC 的中点,所以//HG BC ,HG ⊄平面ABC ,BC ⊆平面ABC ,所以//HG 平面ABC ,在EBD ∆中,H F 分别是,EB DB 的中点,所以//,//HF ED ED AB , 所以//HF AB ,HF ⊄平面ABC ,⊆AB 平面ABC ,所以//HF 平面ABC ,,HF HG 是平面HGF 内两条相交直线,所以平面HGF ∥平面ABC.【点睛】此题考查通过面面垂直的性质证明线面垂直,通过线面平行关系证明面面平行. 18.已知直线1l :20mx y m +--=,2l :340x y n +-=.(1)求直线1l 的定点P ,并求出直线2l 的方程,使得定点P 到直线2l 的距离为85;(2)过点P 引直线l 分别交x ,y 轴正半轴于A 、B 两点,求使得AOB 面积最小时,直线l 的方程. 【答案】(1)()1,2,3430x y +=-或34190x y +-= (2)240x y +-=【分析】(1)消掉直线中的参数即可得定点,利用点到直线的距离公式即可求解; (2)利用基本不等式即可求解.【详解】(1)直线1l :20mx y m +--=, 即()120m x y -+-=,令10x -=,求得1x =,2y =,可得直线1l 的定点()1,2P .定点()1,2P 到直线2l :340x y n +-=的距离为85=∴3n =或19n =,故直线2l :3430x y +=-或34190x y +-=.(2)设过点P 引直线l 分别交x ,y 轴正半轴于A 、B 两点, 设(),0A a 、()0,B b ,则P 、A 、B 三点共线,202110ba --=--, ∴2ab a b =+≥令0t ab =>,则有:280t t -≥, 解得:0t <(舍)或8t ≥, ∴t 的最小值为:8.∴AOB 面积为12ab 最小值为:4,此时,2a =,4b =,直线l 的斜率为2-, 直线l 的方程为:()221y x -=--, 即240x y +-=.19.已知直线l 经过两点()2,1A --,()6,3B (1)求直线l 的方程;(2)圆C 的圆心C 在直线l 上,并且与x 轴相切于点(2,0),求圆C 的方程; (3)若过B 点向(2)中圆C 引切线BS ,BT ,S ,T 分别是切点,求ST 直线的方程. 【答案】(1)20x y -= (2)22(2)(1)1x y -+-= (3)42110x y +-=【分析】(1)根据直线方程的两点式求解 (2)设出圆心(2,)C b b ,根据圆与x 轴相切求解. (3) 四点,,,B S C T 四点共圆,两个圆公共弦所在直线方程.【详解】(1)由题可知:直线l 经过点A ()2,1--,B (6,3),由两点式可得直线l 的方程为:()()()()123162y x ----=----,整理得:20x y -=.(2)依题意,可设圆C 的圆心为(2,)C b b ,圆的方程为:222(2)()x b y b r -+-=, ∵圆C 与x 轴相切于点(2,0),∴22b =,解得1b =,∴半径1r =, ∴圆C 的方程为22(2)(1)1x y -+-=.(3)由于,CS BS CT BT ⊥⊥,则四点,,,B S C T 四点共圆,这个圆以BC 为直径其方程为()()22425x y -+-=,ST 为两圆的公共弦, 把两圆方程化为一般方程224240x y x y +--+=和2284150x y x y +--+=, 两式相减得公共弦方程:42110x y +-=.20.芯片作为在集成电路上的载体,广泛应用在手机、军工、航天等多个领域,是能够影响一个国家现代工业的重要因素.根据市场调研与统计,某公司七年时间里在芯片技术上的研发投入x (亿元)与收益y (亿元)的数据统计如下:(1)由折线图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明; (2)根据折线图的数据,求y 关于x 的线性回归方程(系数精确到整数部分);(3)为鼓励科技创新,当研发技术投入不少于15亿元时,国家给予公司补贴4亿元,预测当芯片的研发投入为16亿元时公司的实际收益.附:样本(),(1,2,,)i i x y i n =⋅⋅⋅的相关系数()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑线性回归方程y bx a =+中的系数()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-,当||[0.75,1]r ∈时,两个变量间高度相关.参考数据:()()71400i i i x xy y =--≈∑,()72198i i x x=-≈∑,()7211800i i y y=-≈∑.【答案】(1)答案见解析;(2)412y x =+;(3)80亿元. 【分析】(1)计算出0.950.75r ≈>即可得结果;(2)计算出系数b ,a ,即可得y 关于x 的线性回归方程; (3)将16x =代入线性回归方程即可.【详解】(1)()()()()71772211981800iii i i i i x x y y r x xy y===--=⨯-⋅-∑∑∑400200.950.7542021==≈>, 所以y 与x 两个变量高度相关,可以用线性回归模型拟合.(2)因为()()()7172140020049849iii ii x x y y b x x ==--===≈-∑∑, 所以27220046127497a y bx =-=-⨯≈, 故y 关于x 的线性回归方程为412y x =+. (3)当16x =时,4161276y =⨯+=亿元,故当16x =亿元时,公司的实际收益的预测值为76480+=亿元.21.第24届冬季奥林匹克运动会将于2022年2月在中国北京举行.为迎接此次冬奥会,北京市组织大学生开展冬奥会志愿者的培训活动,并在培训结束后统一进行了一次考核.为了了解本次培训活动的效果,从A 、B 两所大学随机各抽取10名学生的考核成绩,并作出如图所示的茎叶图.考核成绩 [60,85] [86,100] 考核等级 合格 优秀(1)计算A 、B 两所大学学生的考核成绩的平均值;(2)由茎叶图判断A 、B 两所大学学生考核成绩的稳定性;(不用计算)(3)将学生的考核成绩分为两个等级,如下表所示.现从样本考核等级为优秀的学生中任取2人,求2人来自同一所大学的概率.【答案】(1)80,80;(2)A 所大学学生的成绩比B 所大学学生的成绩稳定;(3)25.【分析】(1)直接利用平均数公式计算得解;(2)直接观察茎叶图判断A 、B 两所大学学生考核成绩的稳定性; (3)直接利用古典概型的概率公式求解. 【详解】(1)64757878797285869192800801010A x +++++++++===67627079788784859593800801010B x +++++++++===(2)由茎叶图可知,A 所大学学生的成绩比B 所大学学生的成绩稳定. (3)记事件M 为“从样本考核等级为优秀的学生中任取2人,2人来自同一所大学”.本中,A 校考核等级为优秀的学生共有3人,分别记为a ,b ,c ,B 校考核等级为优秀的学生共有3人,分别记为A ,B ,C ,从这6人中任取2人,所有的基本事件个数为ab ,ac ,aA ,aB ,aC ,bc ,bA ,bB ,bC ,cA ,cB ,cC ,AB ,AC ,BC 共15种,而事件M 包含的基本事件是ab ,ac ,bc ,AB ,AC ,BC 共6种, 因此()62155P M ==. 【点睛】方法点睛:求古典概型的概率的解题步骤:(1)求出总的基本事件的总数;(2)求出事件A 的基本事件的总数;(3)代入古典概型的概率公式求解.22.如图,圆22():21M x y -+=,点(1,)P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B .(1)若1t =,求PA ,PB 所在直线方程; (2)若两条切线P A ,PB 与y 轴分别交于S 、T 两点. ①求PST 面积的最小值.②在①的条件下,过点P 的直线1l 与圆22():21M x y -+=相交,且圆M 上恰有3个点到直线1l 的距离相等,求此时直线1l 的方程. 【答案】(1)1y =,3410x y +-= (2)2②351)y x =+【分析】(1)根据直线与圆相切时,圆心到直线的距离等于半径即可求解;(2) ①分别表示出S 、T 的坐标,从而表示ST 的长度,从而可讨论三角形面积的最值;②由于圆M 上恰有3个点到直线1l 的距离相等,所以圆心M ()2,0到直线1l 的距离等于圆M 半径的一半,即可求解.【详解】(1)由圆()22:21M x y -+=的方程可知:圆心()2,0M ,半径为1,过点(1,1)P -引圆M 的切线方程斜率显然存在可设为:()11y k x =++,所以圆心(2,0)M 到直线()11y k x =++的距离1d =,229611k k k ++=+,2860k k +=,∴0k =,或34k =-,由图可有0PA k =,所以直线PA 的方程为1y =;又34PB k =-,所以直线PB 的方程为3(1)14y x =-++,即3410x y +-=.(2)(2)①设切线方程为(1)y t k x -=+,即0kx y k t -++=,故圆心(2,0)M 到直线0kx y k t -++=的距离1d ==,即228610k kt t ++-=,设P A ,PB 的斜率分别为1k ,2k ,则1234t k k +=-,21218t k k -=,把0x =代入0kx y k t -++=,得y k t =+,1212|()||∣∴=+-+=-==ST k t k t k k∴当0=t 时,ST .又点P 到直线ST (y 轴)的距离为1,所以PST 面积的最小值112=, ②由①知(1,0)P -,直线斜率显然存在,所以设直线1l :(1)y k x =+, 要使圆M 上恰有3个点到直线1l 的距离相等,则需圆心M ()2,0到直线1l 的距离等于圆M 半径的一半,12=,解得k =1l 的方程为1)y x =+.。

2021年高二上学期期末考试文科数学试卷 含答案

2021年高二上学期期末考试文科数学试卷 含答案

乙甲2643975897010231158732102021年高二上学期期末考试文科数学试卷 含答案高二数学(文科)试题 xx 年1月(考试时间120分钟.共150分)一、选择题:本大题共12小题,每小题5分,共60分,在每一小题给出的四个选项中,只有一项是符合题目要求的,答案填写在答题卷上.1.从学号为~的高一某班名学生中随机选取名同学参加体育测试,采用系统抽样的方法,则所选名学生的学号可能是 A. B. C. D.2.已知,,,,则下列命题为真命题的是A .B .C .D .3.有100张卡片(从1号到100号),从中任取1张,取到卡片是7的倍数的概率是 A . B . C . D .4.某赛季,甲、乙两名篮球运动员都参加了场比赛,他们每场 比赛得分的情况用如图所示的茎叶图表示,若甲运动员的中位 数为,乙运动员的众数为,则的值是 A . B . C . D .5.已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率是 A . B . C . D .6.函数在处的切线方程是 A . B . C . D .7.设双曲线的虚轴长为,焦距为,则双曲线的渐近线方程为 A . B . C . D .8.设,“”是“” 的 A .充分但不必要条件 B .必要但不充分条件 C .充要条件D .既不充分也不必要条件9.在区间上随机取一个实数,则方程表示焦点在轴上的椭圆的概率为 A . B . C . D .左视图俯视图主视图输出SN extS =S +i 20To i =2For S=010.一个几何体的三视图如图所示,主视图与左视图都是腰长为底为的 等腰三角形,俯视图是边长为的正方形,那么此几何体的侧面积为 A . B . C . D .11.如图是计算的值的一个程序框图, 其中判断框内应填的是A .B .C .D .12.函数在区间(为自然对数的底)上的最大值为 A . B . C . D .二、填空题:本大题共4小题,每小题5分,共20分,答案填写在答题卷上. 13.读程序,输出的结果是 .14.已知函数的图像与直线在原点处相切,函数 有极小值,则的值为________. 15.已知点在抛物线的准线上,过点的直线与在第一象限相切于点,记的焦点为,则直线的斜率是 .16.将边长为正方形沿对角线折成直二面角,有如下四个结论: (1);(2)是等边三角形;(3)四面体的表面积为.则正确结论的序号为 . 三、解答题(本大题共6小题,共70分) 17.(本小题满分10分)一个盒子中装有个红球和个白球,这个球除颜色外完全相同. (1)无放回的从中任取次,每次取个,取出的个都是红球的概率; (2)有放回的从中任取次,每次取个,取出的个都是红球的概率.10.150.200.100.101530[50,60)[40,50)[30,40)[20,30)[10,20)[0,10)n合计频率频数分组18.(本小题满分12分) 设命题实数满足(其中),命题实数满足:. (1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围. 19.(本小题满分12分)某市政府为了确定一个较为合理的居民用电标准,必须先了解全市 居民日常用电量的分布情况.现采用抽样调查的方式,获得了位居民在年的月均用电量(单位:度)数据,样本统计结果如下图表:(1)求的值和月均用电量的平均数估计值;(2)如果用分层抽样的方法从用电量小于度的居民中抽取位居民,再从这位居民中选人,那么至少有位居民月均用电量在至度的概率是多少?20.(本小题满分12分)四棱锥中,四边形为正方形,⊥平面, ,,分别为、的中点. (1)证明:∥平面; (2)求三棱锥的体积.21.(本小题满分12分)已知椭圆:的离心率为,是椭圆的右焦点,点,若直线的斜率为,为坐标原点. (1)求椭圆的方程;(2)过点倾斜角为的直线与相交于两点,求的面积.22.(本小题满分12分) 已知函数,其中为常数. (1)当时,求的极值;(2)若是区间内的单调函数,求实数的取值范围.赣州市xx ~xx 学年度第一学期期末考试高二数学(文科)参考答案一、选择题1~5.BCAAD;6~10.ACACC;11~12.CA.二、填空题13.209; 14.-1; 15.; 16.(1)(2)(3).三、解答题17.解:(1)记两个红球为,;两个白球为,,无放回的取球共有情况:,,,,,共情况,取到两个红球的情况种…………………………………3分所以……………………………………………………………………………5分(2)有放回的取两个球共有,,,,共情况,取到两个红球的情况种……………8分……………………………………………………………………………10分18.解:因为,………………………………………………4分(1)若为真,因此:……………………………………………5分则的取值范围是:…………………………………………………………6分(2)若是的必要不充分条件,则有,解得:………………………………………………………………9分所以实数的取值范围是………………………………………………12分19.解:(1)因为频数等于45时频率为0.45,所以………………2分月均用电量的平均数:x=⨯+⨯+⨯+⨯+⨯+⨯=……………6分50.1150.1250.3350.2450.15550.1531.5(2)用电量小于30度的居民共有50位,用分层抽样的方法从用电量小于30度的居民中抽取5位居民,则第一组抽1人,第二组抽1人,第三组抽3人………………………………8分从这5位居民中选2人,共有10种选法,至少有1位居民月均用电量在20至30度的共有9种………………………………………10分至少有1位居民月均用电量在20至30度的概率是……………………………………12分20.解:(1)取中点,连接………………………………………………1分因为分别是的中点,所以∥,……………………2分而∥,所以∥………………………………3分因此四边形是平行四边形,所以∥……………………………………4分 平面,平面所以∥平面………………………………………………………………………6分 (2)………………………………………………………………………8分 ………………………………………………………………………10分 …………………………………………………………………12分 21.(1)由条件可知,,得……………………………………………2分 又,所以…………………………………………………4分故的方程为:………………………………………………………………5分 (2)直线的斜率为:,所以方程为:……………………………6分 设,是方程组的两解消除y 化简得:…………………………………………………8分 ………………………10分原点到直线的距离:……………………………………………………11分 所以:……………………………………………………………12分22.解:(1)当时,0)()1)(12(12112)(2>-+=--=--='x xx x x x x x x x f …………2分所以在区间 内单调递减,在内单调递增……………………………4分 于是有极小值,无极大值……………………………………………………6分 (2)易知在区间内单调递增,所以由题意可得在内无解…………………………………8分 即或…………………………………………………………………10分解得实数的取值范围是……………………………………………12分 z34032 84F0 蓰W30629 77A5 瞥 K32861 805D 聝28312 6E98 溘EY/B26610 67F2 柲29205 7215 爕。

2021年高二下学期期末考试数学(文)试卷 含答案

2021年高二下学期期末考试数学(文)试卷 含答案

2021年高二下学期期末考试数学(文)试卷含答案考生注意:1、本试卷分选择题和非选择题两部分,共150分,共4页,考试时间120分钟,考试结束后,只交答题卡。

2、客观题请用2B铅笔填涂在答题卡上,主观题用黑色碳素笔写在答题卡上。

第Ⅰ卷(选择题,满分60分)一、选择题:本大题共小题,每小题分,共分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、复数()A.B.C.D.2、下面对相关系数描述正确的是()A.表明两个变量负相关B.表明两个变量正相关C.只能大于零D.越接近于,两个变量相关关系越弱3、下列推理正确的是()A.把与类比,则有B.把与类比,则有C.把与类比,则有D.把与类比,则有4、曲线在处的切线方程为()A.B.C.D.5、用反证法证明命题:“,,,且,则中至少有一个复数”时的假设为()A.中至少有一个正数B.全为正数C.全都大于等于零D.中至多有一个负数6、在如下的列联表中,若分类变量和有关系,比值相差大的应该是()A .与B . 与C . 与D . 与7、右边程序框图运行之后输出的值为 ( ) A .B .C .D .8、复数满足,则复数对应点的集合表示的图形是 ( ) A .直线 B .圆 C .椭圆 D .双曲线 9、已知,,猜想的表达式为 ( ) A . B . C . D .10、设,若函数有大于零的极值点,则 ( )A .B .C .D .11、已知,为的导函数,则的图象为 ( )A .B .C .D . 12、已知为上的连续可导函数,当时,,则函数的零点的个数为 ( )A .B .C .D .或第Ⅱ卷 (非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分。

将答案填在答题卡相应的位置上) 13、复数的共轭复数是__________。

14、右表是降耗技术改革后生产甲产品的过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对 应数据,根据表中数据,求出关于的线性回归方程 ,那么表中的值为_________。

安徽省黄山市2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

安徽省黄山市2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

黄山市2018~2019学年度第一学期期末质量检测高二(文科)数学试题第Ⅰ卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若直线a平行于平面α,则下列结论错误..的是( )A. 直线a上的点到平面α的距离相等B. 直线a平行于平面α内的所有直线C. 平面α内有无数条直线与直线a平行D. 平面α内存在无数条直线与直线a成90°角【答案】B【解析】【分析】由题意,根据两直线的位置关系的判定,以及直线与平面的位置关系,逐一判定,即可得到答案.【详解】由题意,直线a平行于平面α,则对于A中,直线a上的点到平面α的距离相等是正确的;对于B中,直线a与平面α内的直线可能平行或异面,所以不正确;对于C中,平面α内有无数条直线与直线a平行是正确的;对于D中,平面α内存在无数条直线与直线a 成90°角是正确的,故选D.【点睛】本题主要考查了空间中两直线的位置关系的判定,其中解答中熟记空间中两条直线的三种位置关系是解答的关键,着重考查了推理与论证能力,属于基础题.2.在空间直角坐标系中,点关于平面的对称点是( )A. B. C. D.【答案】D【解析】【分析】空间直角坐标系中任一点关于坐标平面的对称点为,即可求得答案【详解】根据空间直角坐标系中点的位置关系可得点关于平面的对称点是故选【点睛】本题考查了对称点的坐标的求法,解决此类问题的关键是熟练掌握空间直角坐标系,以及坐标系中点之间的位置关系,属于基础题。

3.已知,则“”是“直线与直线垂直”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】当时,判断两直线是否垂直,由此判断充分性,当两直线垂直时,根据两直线垂直的性质求出的值,由此判断必要性,从而得到答案【详解】充分性:当时,两条直线分别为:与此时两条直线垂直必要性:若两条直线垂直,则,解得故“”是“直线与直线垂直”的充分不必要条件故选【点睛】本题是一道有关充分条件和必要条件的题目,需要分别从充分性和必要性两方面分析,属于基础题。

2022-2023学年四川省内江市高二上学期期末考试数学(文)试题(解析版)

2022-2023学年四川省内江市高二上学期期末考试数学(文)试题(解析版)

2022-2023学年四川省内江市高二上学期期末考试数学(文)试题一、单选题1.某个年级有男生180人,女生160人,用分层抽样的方法从该年级全体学生中抽取一个容量为68的样本,则此样本中女生人数为( ) A .40 B .36 C .34 D .32【答案】D【分析】根据分层抽样的性质计算即可. 【详解】由题意得:样本中女生人数为1606832180160⨯=+.故选:D2.已知向量()3,2,4m =-,()1,3,2n =--,则m n +=( ) A .22 B .8 C .3 D .9【答案】C【分析】由向量的运算结合模长公式计算即可. 【详解】()()()3,2,41,3,22,1,2m n +=-+--=-- ()()2222123m n +=-+-+=故选:C3.如图所示的算法流程图中,第3个输出的数是( )A .2B .32C .1D .52【答案】A【分析】模拟执行程序即得.【详解】模拟执行程序,1,1A N ==,输出1,2N =;满足条件,131+=22A =,输出32,3N =;满足条件,31+=222A =,输出2,4N =;所以第3个输出的数是2. 故选:A.4.一个四棱锥的三视图如图所示,则该几何体的体积为( )A .8B .83C .43D .323【答案】B【分析】把三视图转换为几何体,根据锥体体积公式即可求出几何体的体积. 【详解】根据几何体的三视图可知几何体为四棱锥P ABCD -, 如图所示:PD ⊥平面ABCD ,且底面为正方形,2PD AD == 所以该几何体的体积为:1822233V =⨯⨯⨯=故选:B5.经过两点(4,21)A y +,(2,3)B -的直线的倾斜角为3π4,则y =( ) A .1- B .3-C .0D .2【答案】B【分析】先由直线的倾斜角求得直线的斜率,再运用两点的斜率进行求解.【详解】由于直线AB 的倾斜角为3π4, 则该直线的斜率为3πtan14k ==-, 又因为(4,21)A y +,(2,3)B -, 所以()213142y k ++==--,解得=3y -.故选:B.6.为促进学生对航天科普知识的了解,进一步感受航天精神的深厚内涵,并从中汲取不畏艰难、奋发图强、勇于攀登的精神动力,某校特举办以《发扬航天精神,筑梦星辰大海》为题的航天科普知识讲座.现随机抽取10名学生,让他们在讲座前和讲座后各回答一份航天科普知识问卷,这10名学生在讲座前和讲座后问卷答题的正确率如下图,下列叙述正确的是( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座前问卷答题的正确率的极差小于讲座后正确率的极差 【答案】B【分析】根据题意以及表格,可分别计算中位数、平均数、极差等判断、排除选项是否正确,从而得出答案.【详解】讲座前问卷答题的正确率分别为:60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,中位数为70%75%72.5%70%2+=> ,故A 错误; 讲座后问卷答题的正确率的平均数为0.80.8540.920.951289.5%85%10+⨯+⨯++⨯=> ,故B 正确;由图知讲座前问卷答题的正确率的波动性大于讲座后正确率的波动性,即讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C 错误;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前正确率的极差为95%-60%=35%,20%<35%,故D 错误. 故选:B.7.两条平行直线230x y -+=和340ax y -+=间的距离为d ,则a ,d 分别为( )A .6a =,d =B .6a =-,d =C .6a =-,d =D .6a =,d =【答案】D【分析】根据两直线平行的性质可得参数a ,再利用平行线间距离公式可得d . 【详解】由直线230x y -+=与直线340ax y -+=平行, 得()()2310a ⨯---⨯=,解得6a =,所以两直线分别为230x y -+=和6340x y -+=,即6390x y -+=和6340x y -+=,所以两直线间距离d = 故选:D.8.从1,2,3,4,5这五个数字中随机选择两个不同的数字,则它们之和为偶数的概率为A .15B .25C .35D .45【答案】B【分析】先求出基本事件总数n 25C 10==,再求出这两个数字的和为偶数包含的基本事件个数m 2223C C =+,由此能求出这两个数字的和为偶数的概率【详解】从1、2、3、4、5、这五个数字中,随机抽取两个不同的数字,基本事件总数n 25C 10==,这两个数字的和为偶数包含的基本事件个数m 2223C C =+=4,∴这两个数字的和为偶数的概率为p m 40.4n 10===. 故选B .【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.9.已知三条不同的直线l ,m ,n 和两个不同的平面α,β,则下列四个命题中错误的是( ) A .若m ⊥α,n ⊥α,则m //nB .若α⊥β,l ⊂α,则l ⊥βC .若l ⊥α,m α⊂,则l ⊥mD .若l //α,l ⊥β,则α⊥β【答案】B【分析】根据线面垂直的性质定理可知A 正确;根据面面垂直的性质定理可知B 不正确; 根据线面垂直的定义可知C 正确;根据面面垂直的判定可知D 正确.【详解】对A ,根据线面垂直的性质,垂直于同一平面的两条直线互相平行可知A 正确; 对B ,根据面面垂直的性质定理可知,若α⊥β,l ⊂α,且l 垂直于两平面的交线,则l ⊥β,所以B 错误;对C ,根据线面垂直的定义可知,C 正确;对D ,因为l //α,由线面平行的性质可知在平面α内存在直线//m l ,又l ⊥β,所以m β⊥,而m α⊂,所以α⊥β,D 正确. 故选:B .10.数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,这条直线后人称之为三角形的欧拉线.已知ABC ∆的顶点(0,0),(0,2),( 6.0)A B C -,则其欧拉线的一般式方程为( ) A .31x y += B .31x y -= C .30x y += D .30x y -=【答案】C【分析】根据题意得出ABC 为直角三角形,利用给定题意得出欧拉线,最后点斜式求出方程即可. 【详解】显然ABC 为直角三角形,且BC 为斜边, 所以其欧拉线方程为斜边上的中线, 设BC 的中点为D ,由(0,2),( 6.0)B C -, 所以()3,1D -,由101303AD k -==--- 所以AD 的方程为13y x =-,所以欧拉线的一般式方程为30x y +=. 故选:C.11.已知P 是直线:70l x y +-=上任意一点,过点P 作两条直线与圆22:(1)4C x y ++=相切,切点分别为A 、B .则四边形PACB 面积最小值为( )A .BC .D .28【答案】A【分析】当PC l ⊥时,||PC 取得最小值,根据切线长的表达式可知,||PA 最小,此时四边形PACB面积2S PA AC PA ==最小,求解即可.【详解】圆22:(1)4C x y ++=的圆心(1,0)C -,半径为2,当PC l ⊥时,||PC 取得最小值,即||PC 的最小值为点C 到直线l 的距离|8|422d -==, ∵2224PA PC AC PC =-=-,∴||PA 的最小值为27,∵四边形PACB 面积2S PA AC PA ==, ∴四边形PACB 面积S 的最小值为47. 故选:A .12.已知棱长为1的正方体1111ABCD A B C D -中,下列数学命题不正确的是A .平面1//ACB 平面11ACD 3B .点P 在线段AB 上运动,则四面体111PA BC 的体积不变 C .与所有122D .M 是正方体的内切球的球面上任意一点,N 是1AB C 外接圆的圆周上任意一点,则||MN 的最32-【答案】D【解析】根据面面平行的判定定理以及平行平面的距离进行证明,即可判断选项A ; 研究四面体的底面面积和高的变化判断选项B ;与所有12棱都相切的球的直径等于面的对角线1B C 的长度,求出球半径进行计算,即可判断选项C ; 根据正方体内切球和三角形外接圆的关系可判断选项D .【详解】对于选项A ,111//,AB DC AB ⊄平面111,AC D DC ⊂平面11AC D ,1//AB ∴平面11AC D ,同理可证//AC 平面11AC D ,11,,AB AC A AB AC =⊂平面1ACB ,∴平面1//ACB 平面11AC D ,正方体的对角线13BD =B 到平面1ACB 的距离为h , 则11221311,(2)11332B ACBC ABB V V h --=⨯=⨯⨯⨯,3h ,则平面1ACB 与平面11AC D 的距离为332d h == 故A 正确;对于选项B ,点P 在线段AB 上运动,点P 到底面111A B C 的距离不变, 底面积不变,则体积不变,故B 正确;对于选项C ,与所有12条棱都相切的球直径等于面的对角线12BC 23422(3V ππ=⨯⨯=C 正确;对于选项D ,设正方体的内切球的球心和外接球的球心为O , 则1ACB 的外接圆是正方体外接球的一个小圆,M 是正方体的内切球的球面上任意一点,N 是1AB C 外接圆的圆周上任意一点,∴线段MN 的最小值为正方体的外接球的半径减去正方体内切球的半径,正方体1111ABCD A B C D -棱长为1, ∴线段MN 312,故D 错误.故选:D.【点睛】本题考查命题的真假判断,涉及到空间几何体的结构,面面平行的判断,球的内切问题,涉及的知识点较多,综合性较强,属于较难题.二、填空题13.已知x 、y 满足约束条件202020x y x y -≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最大值是________.【答案】6【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件作出可行域如图:将目标函数2z x y =+转化为2y x z =-+表示为斜率为2-,纵截距为z 的直线, 当直线2y x z =-+过点B 时,z 取得最大值, 显然点()2,2B ,则max 2226z =⨯+=. 故答案为:6.14.直线l 与圆22(1)(1)1x y ++-=相交于,A B 两点,且()0,1A .若2AB l 的斜率为_________. 【答案】1±【分析】设直线方程,结合弦长求得圆心到直线的距离,利用点到直线的距离公式列出等式,即可求得答案.【详解】根据题意,直线l 与圆 22(1)(1)1x y ++-= 相交于,A B 两点,且()0,1A , 当直线斜率不存在时,直线0x = 即y 轴,显然与圆相切,不符合题意; 故直线斜率存在,设直线l 的方程为1y kx =+ ,即10kx y -+= , 因为圆22(1)(1)1x y ++-=的圆心为(1,1) ,半径为1r = ,又弦长||2AB =,所以圆心到直线的距离为22||12()1222AB d r =-=-=, 所以2||221k k =+,解得1k =±, 故答案为:1±.15.如图,111ABC A B C ﹣是直三棱柱,90BCA ∠=︒,点E F 、分别是1111A B AC 、的中点,若1BC CA AA ==,则BE 与AF 所成角的余弦值为__.【答案】3010【分析】取BC 的中点M ,连接MF ,则MF //BE ,所以MFA ∠就是异面直线BE 与AF 所成的角,再解三角形即可.【详解】取BC 的中点M ,连接MF ,则MF //BE ,所以MFA ∠就是异面直线BE 与AF 所成的角,设222655,(),,2222BC a MF a a a AM a AF a ==+===, 222655()()()30222cos 1065222a a a MFA a a+-∠==⨯⨯3016.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是______. 【答案】5【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,2||52AB PA PB ⨯≤=. 法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.三、解答题17.一汽车销售公司对开业4年来某种型号的汽车“五-”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料.(1)求出y 关于x 的线性回归方程ˆˆˆyb x a =+; (2)若第5年优惠金额8.5千元,估计第5年的销售量y(辆)的值.参考公式:()()()11211ˆˆˆ,()n ei i i i i i pz nzlii i x x y y x y nxybay bx xx xn x ====---===---∑∑∑∑ 【答案】(1)ˆ38.5y x =-;(2)第5年优惠金额为8.5千元时,销售量估计为17辆【分析】(1)先由题中数据求出x y ,,再根据()()()()1122211,ˆˆˆˆn niii ii i nn ii i i x x y y x y nxyb ay bx x x x n x ====---===---∑∑∑∑求出ˆb和ˆa ,即可得出回归方程; (2)将8.5x =代入回归方程,即可求出预测值.【详解】(1)由题中数据可得11.5,26x y ==,442111211,534i i i i i x y x ====∑∑∴()414222141211411.526153534411.554ˆi i i i i x y xybx x ==--⨯⨯====-⨯-∑∑,故26311ˆ.58.5ˆay bx =-=-⨯=-,∴38.5ˆy x =-(2)由(1)得,当8.5x =时,ˆ17y=,∴第5年优惠金额为8.5千元时,销售量估计为17辆. 【点睛】本题主要考查线性回归分析,熟记最小二乘法求ˆb和ˆa 即可,属于常考题型. 18.已知圆C 经过()6,1A 、()3,2B -两点,且圆心C 在直线230x y +-=上.(1)求经过点A ,并且在两坐标轴上的截距相等的直线的方程;(2)求圆C 的标准方程;(3)斜率为43-的直线l 过点B 且与圆C 相交于E F 、两点,求EF . 【答案】(1)60x y -=或70x y +-=(2)22(5)(1)5x y -++= (3)45【分析】(1)根据给定条件,利用直线方程的截距式,分类求解作答;(2)设圆心(32,)C b b -,由||||r AC BC ==解得1b,即得圆C 的标准方程;(3)求出直线l 的方程,利用弦长公式计算即可.【详解】(1)当直线过原点时,直线的方程为60x y -=, 当直线不过原点时,设直线的方程为1x y a a+=,将点(6,1)A 代入解得7a =,即直线的方程为70x y +-=, 故所求直线的方程为60x y -=或70x y +-=.(2)因圆心C 在直线230x y +-=上,则设圆心(32,)C b b -,又圆C 经过(6,1),(3,2)A B -两点,于是得圆C 的半径r AC BC ==,=1b,则圆心(5,1)C -,圆C 的半径r =所以圆C 的标准方程为22(5)(1)5x y -++=. (3)依题意,直线l 的方程为42(3)3y x +=--,即4360x y +-=, 圆心(5,1)C -到直线的距离为115d ==,所以45EF ===. 19.直四棱柱1111ABCD A B C D -,底面ABCD 是平行四边形,60ACB ∠=︒,13,1,27,,AB BC AC E F ===分别是棱1,A C AB 的中点.(1)求证:EF 平面1A AD :(2)求三棱锥1F ACA -的体积.【答案】(1)见解析(2)22【分析】(1)取1A D 的中点M ,连结,ME MA ,证明四边形AFEM 为平行四边形,则AM EF ∥,再根据线面平行的判定定理即可得证;(2)利用余弦定理求出AC ,再利用勾股定理求出1AA ,再根据11F ACA A AFC V V --=结合棱锥的体积公式即可得出答案.【详解】(1)证明:取1A D 的中点M ,连结,ME MA ,在1A DC 中,,M E 分别为11,A D AC 的中点, 所以ME DC ∥且12ME DC =, 底面ABCD 是平行四边形,F 是棱AB 的中点,所以AF DC 且12AF DC =, 所以ME AF ∥且ME AF =,所以四边形AFEM 为平行四边形, 所以,EF AM EF ⊄∥平面1,A AD AM⊂平面1A AD ,所以EF 平面1A AD ;(2)在ABC 中,60,3,1ACB AB BC ∠===, 由余弦定理有2222cos AB AC BC AC BC ACB ∠=+-⨯⨯,解得2AC =,则1312sin6022ABC S =⨯⨯⨯=, 因为F 为AB 的中点,所以1324ACF ABC S S ==, 由已知直四棱柱1111ABCD A B C D -,可得1190,2,27A AC AC AC ∠===, 可得128426A A =-=,1111132263342F ACA A AFC AFC V V S AA --==⋅=⨯⨯=. 20.某校从参加高一年级期中考试的学生中抽出40名学生,将其数学成绩(均为整数)分成六段[)40,50,[)50,60,,[]90,100后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)根据频率分布直方图估计这次数学考试成绩的平均分;(3)若将分数从高分到低分排列,取前15%的同学评定为“优秀”档次,用样本估计总体的方法,估计本次期中数学考试“优秀”档次的分数线.【答案】(1)答案见解析(2)71(3)86【分析】(1)根据所有频率和为1求第四小组的频率,计算第四小组的对应的矩形的高,补全频率分布直方图;(2)根据在频率分布直方图中,由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,求出平均分;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,由此即可估计“优秀”档次的分数线.【详解】(1)由频率分布直方图可知,第1,2,3,5,6小组的频率分别为:0.1,0.15,0.15,0.25,0.05,所以第四小组的频率为:10.10.150.150.250.050.3-----=,∴在频率分布直方图中第四小组对应的矩形的高为0.03,补全频率分布直方图对应图形如图所示:(2)由频率分布直方图可得平均分为:0.1450.15550.15650.3750.25850.059571⨯+⨯+⨯+⨯+⨯+⨯=;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,则估计本次期中数学考试“优秀”档次的分数线为:0.158010860.25+⨯=. 21.如图,正方形ABCD 和直角梯形ACEF 所在的平面互相垂直,FA AC ⊥,2AB =1EF FA ==.(1)求证:BE ⊥平面DEF ;(2)求直线BD 与平面BEF 所成角的大小.【答案】(1)证明见解析 (2)π4【分析】(1)设正方形ABCD 的对角线AC 与BD 交于O ,连接FO 、EO ,利用勾股定理逆定理推导出BE DE ⊥,BE EF ⊥,再利用线面垂直的判定定理可证得结论成立;(2)分析可知直线BD 与平面BEF 所成角为BDE ∠,求出BDE ∠的正弦值,即可求得BDE ∠的大小.【详解】(1)证明:设正方形ABCD 的对角线AC 与BD 交于O ,连接FO 、EO ,因为平面ABCD ⊥平面ACEF ,平面ABCD ⋂平面ACEF AC =,AF AC ⊥,AF ⊂平面ACEF , AF ∴⊥平面ABCD ,因为四边形ABCD 222AC AB =, 在直角梯形ACEF 中,//EF AC ,O 为AC 的中点,则AO EF =且//AO EF ,又因为AF EF =,AF AC ⊥,故四边形AFEO 是边长为1的正方形,所以,//AF EO ,所以,EO ⊥平面ABCD ,且1EO AF ==,BD ⊂平面ABCD ,EO BD ∴⊥,则222BE DE EO OB =+=所以,222DE B D E B +=,BE DE ∴⊥,AF ⊥平面ABCD ,AB ⊂平面ABCD ,AF AB ∴⊥,223BF AB AF =+=,222EF BE BF ∴+=,BE EF ∴⊥,DE EF E ⋂=,DE 、EF ⊂平面DEF ,BE ∴⊥平面DEF .(2)解:由(1)可知,BE ⊥平面DEF ,所以,直线BD 与平面BEF 所成角为BDE ∠,BE DE ⊥,2sin 2BE BDE BD ∠==, 又因为π02BDE <∠≤,故π4BDE ∠=,因此,直线BD 与平面BEF 所成角为π4. 22.已知圆22:(3)9M x y -+=,设()2,0D ,过点D 作斜率非0的直线1l ,交圆M 于,P Q 两点.(1)过点D 作与直线1l 垂直的直线2l ,交圆M 于,E F 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(2)设()6,0B ,过原点O 的直线OP 与BQ 相交于点N .证明:点N 在定直线6x =-上.【答案】(1)S 的最大值为17.(2)证明见详解【分析】(1)由题意设出直线1l ,2l 方程,利用点到直线的距离公式,弦长公式以及基本不等式即可解决问题;(2)利用圆与直线的方程,写出韦达定理,求出直线OP 与直线BQ 的方程,且交于点N ,联立方程求解点N 即可证明结论.【详解】(1)由圆22:(3)9M x y -+=知,圆心为()3,0M ,半径3r =,因为直线1l 过点()2,0D 且斜率非0,所以设直线1l 方程为:()02y k x -=-,即20kx y k --=,则点M 到直线1l 的距离为:1223211k kk d k k -=++所以222222122289223292111k k k PQ r d k k k ⎛⎫+=--=- ⎪+++⎝⎭由12l l ⊥,且直线2l 过点D ,所以设直线2l 方程为:()102y x k -=--,即20x ky +-=, 则点M 到直线2l的距离为:2d =所以EF ====故1122S EF PQ =⋅⋅=⋅2=()2217122171k k +=⨯=+,当且仅当2289981k k k +=+⇒=±时取等号, 所以四边形EPFQ 的面积S 的最大值为17. (2)证明:设()()1122,,,P x y Q x y ,直线PQ 过点D , 则设直线PQ 方程为:2x my =+,联立()22239x my x y =+⎧⎪⎨-+=⎪⎩,消去x 整理得: ()221280m y my +--=,12122228,11m y y y y m m -+==++, 所以()1212121244y y m my y y y y y +=-⇒=-+, 由111100OP y y k x x -==-, 所以直线OP 的方程为:11y y x x =, 2222066BQ y y k x x -==--, 所以直线BQ 的方程为:()2266y y x x =--, 因为直线OP 与直线BQ 交于点N ,所以联立()112266y y x x y y x x ⎧=⎪⎪⎨⎪=-⎪-⎩, 所以()12121266N x y x x y y x =-- ()()()12121262226my y my y y my +=+-+-⎡⎤⎣⎦ 12212212161224my y y my y y my y y +=+-+ 12221362my y y y y +=+ ()()122213462y y y y y ⨯-⨯++=+ 12212212112126126622y y y y y y y y y --+--===-++, 所以6N x =-,所以点N 在定直线6x =-上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档