导体棒切割磁感线动态分析专题

合集下载

导体棒切割磁感线动态分析专题

导体棒切割磁感线动态分析专题

姓名:导体棒切割磁感线动态分析专题1.如图所示,宽度为L=2 m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1Ω的电阻。

导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=。

一根质量为m=的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。

现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=10 m/s,在运动过程中保持导体棒与导轨垂直。

求:(1)在闭合回路中产生的感应电流的大小和方向;(2)导体棒MN两端的电压;(3)作用在导体棒上的拉力的大小和方向;(4)当导体棒移动30cm时撤去拉力,求整个过程中电阻R上产生的热量。

2.如图,固定在同一水平面内的两根长直金属导轨的间距为L=1m,其右端接有阻值为R=Ω的电阻,整个装置处在竖直向上、磁感应强度大小为B=1T的匀强磁场中,一质量为m= (质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ=。

现杆在水平向左、垂直于杆的恒力F=2N作用下从静止开始沿导轨运动,当杆运动的距离为d=时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。

设杆接入电路的电阻为r=Ω,导轨电阻不计,重力加速度为g。

求此过程中:(1)杆的速度的最大值;(2)通过电阻R上的电量;(3)电阻R上的发热量3. 水平面上两根足够长的金属导轨平行固定放置,问距为L,一端通过导线与阻值为R的电阻连接;导轨上放一质量为m的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下。

用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动。

当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v与F的关系如右下图。

(g=10m/s2)(1)金属杆在匀速运动之前做什么运动(2)若m=,L=,R=Ω;磁感应强度B为多大(3)由v—F图线的截距可求得什么物理量其值为多少BFabrRvBRMN30º ab cd N Q M PB F 4.如图1所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为 =370的绝缘斜面上,两导轨间距为L=1m 。

导体棒切割磁感线的综合问题

导体棒切割磁感线的综合问题

O
t
电容放电式:
5.最大速度vm
电容器充电量: Q0 CE
放电结束时电量: Q CU
对杆应用动量定理:
CBlvm 电容器放电电量:Q Q0 Q CE CBlvm
mvm BIl t BlQ BlCE vm 2 2 mB l C
v vm
O
t
电容放电式:
运动分析: 某时刻两棒速度分别为v1、 v2 加速度分别为a1、a2
F 1
2
FB1 l1 FB 2 l2 v1 a1t v1 经极短时间t后其速度分别为: v v a t 2 2 2 F FB1 a1 m1 FB 2 a2 m2
此时回路中电流为: I
Bl1( v1 a1t ) Bl2 ( v2 a2t ) R1 R2
电容无外力充电式
1.电路特点 导体棒相当于电源;电容器被充电. 2.电流的特点 导体棒相当于电源; F安为阻力, 棒减速, E减小 有 I感 电容器被充电。 UC渐大,阻碍电流 当Blv=UC时,I=0, F安=0,棒匀速运动。 v 3.运动特点 v0 a渐小的减速速运动,最终做 匀速运动。 4.最终特征 匀速运动 v O 但此时电容器带电量不为零
qn Bl s Rr Rr
( E Blv ) =B l g m( R r )
还成立吗?

9.几种变化 (1)导轨不光滑 (2)倾斜导轨
B
直流电动机 反电动势?
(3) 有初速度
v0

(4)磁场方向变化
B
电容放电式:
1.电路特点 电容器放电,相当于电源;导 体棒受安培力而运动。 2.电流的特点 电容器放电时,导体棒在安培力作用下开始运 动,同时产生阻碍放电的反电动势,导致电流 减小,直至电流为零,此时UC=Blv v 3.运动特点 a渐小的加速运动,最终做匀 速运动。 4.最终特征 匀速运动 但此时电容器带电量不为零 vm

专题 导体棒转动切割磁感线产生的动生电动势

专题 导体棒转动切割磁感线产生的动生电动势

专题 导体棒转动切割磁感线产生的动生电动势【高考真题】1.(2020浙江卷)如图所示,固定在水平面上的半径为r 的金属圆环内存在方向竖直向上、磁感应强度大小为B 的匀强磁场。

长为l 的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO ’上,随轴以角速度ω匀速转动。

在圆环的A 点和电刷间接有阻值为R 的电阻和电容为C 、板间距为d 的平行板电容器,有一带电微粒在电容器极板间处于静止状态。

已知重力加速度为g ,不计其它电阻和摩擦,下列说法正确的是( ) A .棒产生的电动势为12Bl 2ωB .微粒的电荷量与质量之比为2gdBr 2ωC .电阻消耗的电功率为πB 2r 4ω2RD .电容器所带的电荷量为CBr 2ω2.(2021广东卷)(多选)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( ) A .杆OP 产生的感应电动势恒定 B .杆OP 受到的安培力不变 C .杆MN 做匀加速直线运动 D .杆MN 中的电流逐渐减小3.(2016全国卷)(多选)法拉第圆盘发电机的示意图如图所示。

铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别于圆盘的边缘和铜轴接触,圆盘处于方向竖直向上的匀强磁场B 中,圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是( ) A .若圆盘转动的角速度恒定,则电流大小恒定B .若从上往下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C .若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D .若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍【巩固提升】1.某国产直升机在我国某地上空悬停,长度为L的导体螺旋桨叶片在水平面内顺时针匀速转(俯视),转动角速度为ω。

导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。

解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。

一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图2所示。

在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。

图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。

(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。

切割磁感线专题

切割磁感线专题

导体切割磁感线专题电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下三个方面:(1)电路分析:用法拉第电磁感应定律和楞次定律确定感应电动的大小和方向;画出等效电路。

分析等效电源电动势的正、负极及感应电动势和电路电压的关系。

(2)受力情况、运动情况的动态分析。

思考方向是:导体受力运动切割磁感线产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。

要画好受力图,抓住 a =0时,速度v 达最大值的特点。

(3)功能分析:由磁生电并不是创造了电能,而只是机械能转化为电能而已。

在力学中就已经知道:功是能量转化的量度。

那么在机械能转化为电能的电磁感应现象中,是什么力在做功呢?是安培力在做功。

安培力做正功,是将电能转化为机械能(电动机),安培力做负功,是将机械能转化为电能(发电机),必须明确发生电磁感应现象中,是安培力做功导致能量的转化。

1.电路分析问题:典型模型例1:2013北京高考第17题:如图,在磁感应强度为B 、方向垂直纸面向里的匀强磁场中,金属杆MN 在平行金属导轨上以速度v 向右匀速滑动,MN 中产生的感应电动势为E 1;若磁感应强度增为2B ,其他条件不变,MN 中产生的感应电动势变为E 2。

则通过电阻R 的电流方向及E 1与E 2之比E 1:E 2分别为A .;2:1c a →B .;2:1a c →C .;1:2a c →D .;1:2c a →例4.2014北京高考第24题:导体切割磁感线的运动可以从宏观和微观两个角度来认识。

如图所示,固定于水平面的U 形导线框处于竖直向下的匀强磁场中,金属直导线MN 在与其垂直的水平恒力F 作用下,在导线框上以速度v 做匀速运动,速度v 与恒力F 方向相同;导线MN 始终与导线框形成闭合电路。

导体棒切割磁感线问题分析

导体棒切割磁感线问题分析

导体棒切割磁感线问题分析上海师范大学附属中学 李树祥上海市高中物理学科教学基本要求中的学习水平要求分为ABCD 四个等级,其中最高要求D 级(综合,能以某一知识内容为重点,综合其他相关内容,分析、解决新情境下的简单物理问题)只有一个,就是导体棒切割磁感线时产生的感应电动势。

因此实行等级考后这三年中,每年最后的两道综合题中都有一道是导体棒切割磁感线的题目。

那么,导体棒切割磁感线主要考查哪些问题呢?一、电路问题:由于导体棒切割磁感线产生感应电动势形成电源,所以就出现了电路问题。

此类问题的解题步骤是:(1)确定电源:切割磁感线产生感应电动势的那部分导体就是电源;利用E =BLV (B 、L 、V 两两垂直时)求感应电动势的大小,利用右手定则或楞次定律判断电流方向;(2)分析电路结构:内电路是切割磁感线的导体,此导体棒的电阻就是内阻,两端的电压就是电源的路端电压(电源外压);外电路是除电源之外的由电阻等电学元件组成的电路。

在外电路中,电流从高电势处流向低电势处;在内电路中,电流则从低电势处流向高电势处。

(3)画出等效电路图;(4)应用闭合电路欧姆定律和部分电路欧姆定律及串、并联电路的基本性质等列方程求解。

例1、如图1所示,两根足够长的光滑金属导轨水平平行放置,间距为l =1 m ,cd 间、de 间、cf 间分别接着阻值R =10Ω的电阻.一阻值R =10Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B =0.5T 、方向竖直向下的匀强磁场.下列说法中正确的是( )A .导体棒ab 中电流的流向为由b 到aB .cd 两端的电压为1VC .de 两端的电压为1VD .fe 两端的电压为1V解析:导体棒ab 为电源,由右手定则可知ab 中电流方向为a →b ,A 错误;ab 切割磁感线产生的感应电动势E =Blv ,cd 间电阻R 为外电路负载,de 和cf 间电阻中无电流,de和cf 间无电压,因此cd 和fe 两端电压相等,即U =E 2R ×R =Blv2=1V ,B 、D 正确,C 错误。

导线切割磁感线运动动态分析解读

导线切割磁感线运动动态分析解读




[例3] 如图所示,两根足够长的固定的平行金属导轨位 于同一水平面内,两导轨间的距离为l,导轨上面横放着 两根导体棒ab和cd,构成矩形回路。两根导体棒的质量皆 为m,电阻皆为R,回路中其余部分的电阻可不计,在整 个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B, 设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd静止, 棒ab有指向棒cd的初速度v0。若两导体棒在运动中始终不 接触,求: (1)在运动中产生的焦耳热 最多是多少? (2)当ab棒的速度变为初速 度的3/4时,cd棒的加 速度是多少?
练习:如图所示,匀强磁场 B=0.1T,金属棒AB长0.4m,与 框架宽度相同,电阻为1/3Ω, 框架电阻不计,电阻R1=2Ω, R2=1Ω,当金属棒以5m/s的速度 匀速向左运动时,求: (1)流过金属棒的感应电流多 大? (2)若图中电容器C为0.3μF, 则充电量多少?


练习:如图所示,平行金 属导轨的电阻不计,ab、cd 的电阻均为R,长为l,另外 的电阻阻值为R,整个装置 放在磁感强度为B的匀强磁 场中,当ab、cd以速率v向 右运动时,通过R的电流强 度为多少?
导线切割磁感线运动 动态分析
在匀强磁场中,金属棒沿“U”型框架或平
行导轨运动的问题,要涉及磁场对电流的 作用,法拉第电磁感应定律,含源电流的 计算等电学知识;要依据物体的受力性质 对速度和加速度的动态变化运行分析;还 要对能量转化和能量守恒有深刻的理解, 有些问题还涉及动量是否守恒的判断。

导体运动
阻 碍 电磁感应感应电Leabharlann 势电 路 闭 合安培力
导体在磁场中
感应电流
[例2]足够长且竖直放置的光滑轨道上水平架一个质量m、 长为L的金属棒ab,除电阻R外其余各处电阻均可忽略, 如图,ab由静止下滑并始终保持与轨道良好接触, (1)分析ab棒下滑过程中,加速度如何变化? (2)下滑过程的最大速度? R (3)电路的最大消耗功率? B (4)若ab从下滑到具有最大速度 a 的过程下落高度为h,那么 b 通过ab的电量? (5)若ab长为0.5m,B=1T,m=0.1kg, R=1Ω,ab从下滑到具有最大速度 的过程中,通过ab的电量为 2C,求此过程中电路消 耗的电能?(g=10m/s2)

导体棒切割磁感线问题分类解析(新、选)

导体棒切割磁感线问题分类解析(新、选)

导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。

解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。

一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图2所示。

在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。

图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。

(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名:
导体棒切割磁感线动态分析专题
1.如图所示,宽度为L=2 m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1Ω的电阻。

导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=。

一根质量为m=的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。

现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=10 m/s,在运动过程中保持导体棒与导轨垂直。

求:
(1)在闭合回路中产生的感应电流的大小和方向;
(2)导体棒MN两端的电压;
(3)作用在导体棒上的拉力的大小和方向;
(4)当导体棒移动30cm时撤去拉力,求整个过程中电阻R上产生的热量。

2.如图,固定在同一水平面内的两根长直金属导轨的间距为L=1m,其右端接有阻值为R=Ω的电阻,整个装置处在竖直向上、磁感应强度大小为B=1T的匀强磁场中,一质量为m= (质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ=。

现杆在水平向左、垂直于杆的恒力F=2N作用下从静止开始沿导轨运动,当杆运动的距离为d=时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。

设杆接入电路的电阻为r=Ω,导轨电阻不计,重力加速度为g。

求此过程中:(1)杆的速度的最大值;(2)通过电阻R上的电量;(3)电阻R上的发热量
3. 水平面上两根足够长的金属导轨平行固定放置,问距为L,一端通过导线与阻值为R的电阻连接;导轨上放一质量为m的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下。

用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动。

当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v与F的关系如右下图。

(g=10m/s2)
(1)金属杆在匀速运动之前做什么运动
(2)若m=,L=,R=Ω;磁感应强度B为多大
(3)由v—F图线的截距可求得什么物理量其值为多少
B
F
a
b
r
R
v
B
R
M
N
30º a
b c
d N Q M P
B F 4.如图1所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为 =370
的绝缘斜面上,两导轨间距为L=1m 。

M 、P 两点间接有阻值为R=2Ω的电阻。

一根质量为m=1kg 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。

整套装置处于磁感应强度为B=2T 的匀强磁场中,磁场方向垂直斜面向下。

导轨和金属杆的电阻可忽略。

让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。

(1)由b 向a 方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当ab 杆的速度大小为v=s 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值。

5.如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =,其电阻不计,两导轨及其构成的平面均与水平面成30º角。

完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =,电阻均为R=Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =,
棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止。

取g =10m/s 2
,问 ⑴通过棒cd 的电流I 是多少,方向如何
⑵棒ab 受到的力F 多大
⑶棒cd 每产生Q =的热量,力F 做的功W 是多少
6.光滑的平行金属导轨长L=2 m ,两导轨间距离d=,导轨平面与水平面的夹角为θ=30o
,导轨上端接一阻值为R=Ω的电阻,其余电阻不计,轨道所在空间有垂直轨道平面的匀强磁场,磁感应强度B=1T ,如图所示。

有一不计电阻、质量为m=的金属棒ab ,电阻r=Ω,放在导轨最上端且与导轨垂直。

当金属棒ab 由静
止开始自由下滑到底端脱离轨道的过程中,电阻R 上产生的热量为Q=, g=10m/s 2
,则:(1)当棒的速度为v=2 m /s 时,电阻R 两端的电压; (2)棒下滑到轨道最底端时速度的大小; (3)棒下滑到轨道最底端时加速度a 的大小。

7.如图所示,两足够长的光滑金属导轨竖直放置,相距为L=1m, 一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。

一质量为m=1kg、有效电阻为R=20Ω的导体棒在距磁场上边界h=处静止释放。

导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I=1A。

整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。

求:
⑴磁感应强度的大小B;
⑵电流稳定后,导体棒运动速度的大小v;
I
⑶流经电流表电流的最大值
m
8. 如图所示,在匀强磁场中竖直放置两条足够长的平行导轨,磁场方向与导轨所在平面垂直,磁感强度大小为B0。

导轨上端连接一阻值为R的电阻和电键K,导轨电阻不计。

两金属棒a和b的电阻都为R,质量分别为m a=和m b=,它们与导轨接触良好,并可沿导轨无摩擦地运动,g取10m/s2。

(1)若将b棒固定,电键K断开,用一竖直向上的恒力F拉a棒,稳定后a棒以v1=10m/s的速度向上匀速运动。

此时再释放b棒,b棒恰能保持静止。

求拉力F的大小。

(2)若将a棒固定,电键K闭合,让b棒自由下滑,求b棒滑行的最大速度v2。

(3)若将a棒和b棒都固定,电键K断开,使磁感应强度从B0随时间均匀增加,经后磁感应强度增大到2B 0时,a棒所受到的安培力大小正好等于a棒的重力,求两棒间的距离h。

9.如图甲所示,在水平面上固定有长为L=2m、宽为d=1m的金属“U”型轨导,在“U”型导轨右侧l=范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示。

在t=0时刻,质量为m=的导体棒以v0=1m/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=,导轨与导体棒单位长度的电阻均为λ=Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g=10m/s2)。

(1)通过计算分析4s内导体棒的运动情况;
(2)计算4s内回路中电流的大小,并判断电流方向;
(3)计算4s内回路产生的焦耳热。

10. 如图所示,半径为r、圆心为O1的虚线所围的圆形区域内存在垂直纸面向外的匀强磁场,在磁场右侧有一坚直放置的平行金属板C和D,两板间距离为L,在MN板中央各有一个小孔O2、O3。

O1、O2、O3在同一水平直线上,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距也为L。

M、P两点间接有阻值为R的电阻。

一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直,闭合回路(导轨与导体棒的电阻不计)。

整套装置处于匀强磁场中,磁场的磁感应强度为B,磁场方向垂直于斜面向上。

整个装置处在真空室中,有一电荷量为+q、质量为m的粒子(重力不计),以速率v0从圆形磁场边界上的最低点E沿半径方向射入圆形磁场区域,最后从小孔O3射出。

现释放导体棒ab,其沿着斜面下滑h后开始匀速运动,此时仍然从E点沿半径方向射入圆形磁场区域的相同粒子恰好不能从O3射出,而从圆形磁场的最高点F射出。

求:
(1)圆形磁场的磁感应强度B/。

(2)导体棒的质量M。

(3)棒下落h的整个过程中,导体
棒ab克服安培力做的功为多少
6.【解析】
(1)棒cd 受到的安培力 cd F IlB =
① 棒cd 在共点力作用下平衡,则 sin30cd F mg =o

由①②式代入数据解得 I =1A ,方向由右手定则可知由d 到c 。

(2)棒ab 与棒cd 受到的安培力大小相等 F ab =F cd 对棒ab 由共点力平衡有 sin30F mg IlB =+o ③ 代入数据解得 F = ④
(3)设在时间t 内棒cd 产生Q =热量,由焦耳定律可知 2Q I Rt = ⑤ 设ab 棒匀速运动的速度大小为v ,则产生的感应电动势 E=Blv ⑥ 由闭合电路欧姆定律知 2E I R
=
⑦ 由运动学公式知,在时间t 内,棒ab 沿导轨的位移 x =vt ⑧ 力F 做的功 W =Fx ⑨
综合上述各式,代入数据解得 W = 7.。

相关文档
最新文档