导体棒绕固定点转动切割磁感线专题 高考物理
专题23 法拉第电磁感应定律——历年高考物理真题精选之黄金30题(解析版)

历年高考物理真题精选之黄金30题专题23 法拉第电磁感应定律一、单选题1.(2020·浙江·高考真题)如图所示,固定在水平面上的半径为r 的金属圆环内存在方向竖直向上、磁感应强度大小为B 的匀强磁场。
长为l 的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO '上,随轴以角速度ω匀速转动。
在圆环的A 点和电刷间接有阻值为R 的电阻和电容为C 、板间距为d 的平行板电容器,有一带电微粒在电容器极板间处于静止状态。
已知重力加速度为g ,不计其它电阻和摩擦,下列说法正确的是( )A .棒产生的电动势为212Bl ω B .微粒的电荷量与质量之比为22gdBr ωC .电阻消耗的电功率为242B r RπωD .电容器所带的电荷量为2CBr ω【答案】 B 【解析】A .如图所示,金属棒绕OO '轴切割磁感线转动,棒产生的电动势21=22r E Br Br ωω=⋅A 错误;B .电容器两极板间电压等于电源电动势E ,带电微粒在两极板间处于静止状态,则Eq mg d =即22212q dg dg dg m E Br Br ωω===B 正确;C .电阻消耗的功率22424E B r P R R ω==C 错误;D .电容器所带的电荷量22CBr Q CE ω==D 错误。
故选B 。
2.(2015·全国全国·高考真题)如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a ﹣b ﹣c ﹣aC .U bc =﹣12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a ﹣c ﹣b ﹣a【答案】 C 【解析】因为当金属框绕轴转运时,穿过线圈abc 的磁通量始终为0,故线圈中无感应电流产生,选项BD 错误;但对于bc 与ac 边而言,由于bc 边切割磁感线,故bc 边会产生感应电动势,由右手定则可知,c 点的电势要大于b 点的电势,故U bc 是负值,且大小等于Bl×=Bl 2ω,故选项C 正确;对于导体ac 而言,由右手定则可知,c点的电势大于a 点的电势,故选项A 错误,所以选项C 是正确的.3.(2014·江苏·高考真题)如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中,在t ∆时间内,磁感应强度的方向不变,大小由B 均匀的增大到2B .在此过程中,线圈中产生的感应电动势为( )A .22Ba t ∆B .22nBa t ∆ C .2nBa t ∆D .22nBa t ∆【答案】 B 【解析】在此过程中,线圈中的磁通量改变量大小22222B B a Ba t ϕ-∆=⨯=∆,根据法拉第电磁感应定律22ϕ∆∆===∆∆∆B nBa E n n S t t t ,B 正确; B E nn S t t ϕ∆∆==∆∆,知道S 是有效面积,即有磁通量的线圈的面积.4. (2008·全国·高考真题)矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图所示。
2025年高考人教版物理一轮复习专题训练—法拉第电磁感应定律自感和涡流 附答案解析

2025年⾼考⼈教版物理⼀轮复习专题训练—法拉第电磁感应定律、⾃感和涡流(附答案解析)1.(2023·北京卷·5)如图所⽰,L是⾃感系数很⼤、电阻很⼩的线圈,P、Q是两个相同的⼩灯泡,开始时,开关S处于闭合状态,P灯微亮,Q灯正常发光,断开开关( )A.P与Q同时熄灭B.P⽐Q先熄灭C.Q闪亮后再熄灭D.P闪亮后再熄灭2.(2023·江苏卷·8)如图所⽰,圆形区域内有垂直纸⾯向⾥的匀强磁场,OC导体棒的O端位于圆⼼,棒的中点A位于磁场区域的边缘。
现使导体棒绕O点在纸⾯内逆时针转动。
O、A、C点电势分别为φO、φA、φC,则( )A.φO>φC B.φC>φAC.φO=φA D.φO-φA=φA-φC3.(2023·⼭东德州市模拟)如图甲所⽰,正⽅形虚线框为匀强磁场区域的边界,取垂直纸⾯向⾥为正⽅向,磁感应强度B随时间t变化的规律如图⼄所⽰。
匝数为n、半径为r的导线圈恰好处于虚线框的外接圆上,导线圈与电阻箱R1、定值电阻R2组成回路,回路中的其他电阻不计。
以下说法正确的是( )A.R2中的电流⽅向先向左,再向右B.回路中的电动势为C.t=t0时刻,回路中的电流为零D.R1=R2时,R1消耗的电功率最⼤4.(2023·⼴东⼴州市⼀模)如图甲所⽰为探究电磁驱动的实验装置。
某个铝笼置于U形磁体的两个磁极间,铝笼可以绕⽀点⾃由转动,其截⾯图如图⼄所⽰。
开始时,铝笼和磁体均静⽌,转动磁体,会发现铝笼也会跟着发⽣转动,下列说法正确的是( )A.铝笼是因为受到安培⼒⽽转动的B.铝笼转动的速度的⼤⼩和⽅向与磁体相同C.磁体从图⼄位置开始转动时,铝笼截⾯abcd中的感应电流的⽅向为a→d→c→b→a D.当磁体停⽌转动后,如果忽略空⽓阻⼒和摩擦阻⼒,铝笼将保持匀速转动5.(多选)(2023·辽宁沈阳市模拟)电⼦感应加速器基本原理如图所⽰,图甲的上、下两个电磁铁线圈中电流的⼤⼩、⽅向可以变化,产⽣的感⽣电场使真空室中的电⼦加速。
2020年高考物理100考点- 转动切割磁感线问题

2020年高考物理100考点最新模拟题(选修3-2)第四部分 电磁感应专题4.32 转动切割磁感线问题(基础篇)一.选择题1.(6分)(2019石家庄二模)如图,半径为L 的小圆与半径为3L 的圆形金属导轨拥有共同的圆心,在小圆与导轨之间的环形区域存在垂直于纸面向外、磁感应强度大小为B 的匀强磁场。
现将一长度为3L 的导体棒置于磁场中,让其一端O 点与圆心重合,另一端A 与圆形导轨良好接触。
在O 点与导轨间接入一阻值为r 的电阻,导体棒以角速度ω绕O 点做逆时针匀速圆周运动,其它电阻不计。
下列说法正确的是( )A .导体棒O 点的电势比A 点的电势低B .电阻r 两端的电压为C .在导体棒旋转一周的时间内,通过电阻r 的电荷量为D .在导体棒旋转一周的时间内,电阻r 产生的焦耳热为2.(2019全国高考猜题卷6)如图所示,单匝矩形闭合导线框abcd 处于磁感应强度大小为B 、方向垂直纸面向里的水平匀强磁场中,线框面积为S ,电阻为R .线框绕与cd 边重合的竖直固定转轴以角速度ω从中性面开始匀速转动,下列说法中正确的是( )A .线框转过π6时,线框中的电流方向为abcdaB .线框中感应电流的有效值为2BSω2RC .线框转一周过程产生的热量为2πωB 2S 2RD .线框从中性面开始转过π2过程,通过导线横截面的电荷量为BS R3. (2018洛阳联考)1831年,法拉第在一次会议上展示了他发明的圆盘发电机(图甲).它是利用电磁感应的原理制成的,是人类历史上第一台发电机.图乙是这个圆盘发电机的示意图:铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C 、D 分别与转动轴和铜盘的边缘良好接触.使铜盘转动,电阻R 中就有电流通过.若所加磁场为匀强磁场,回路的总电阻恒定,从左往右看,铜盘沿顺时针方向匀速转动,下列说法中正确的是( )A. 铜片D 的电势高于铜片C 的电势B. 电阻R 中有正弦式交变电流流过C. 铜盘转动的角速度增大1倍,流过电阻R 的电流也随之增大1倍D. 保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则铜盘中有电流产生4.(2018·上海闵行区模拟)如图5所示,在外力的作用下,导体杆OC 可绕O 轴沿半径为r 的光滑的半圆形框架在匀强磁场中以角速度ω匀速转动,磁感应强度大小为B ,方向垂直纸面向里,A 、O 间接有电阻R ,杆和框架电阻不计,则所施外力的功率为( )A.B 2ω2r 2R B.B 2ω2r 4R C.B 2ω2r 44R D.B 2ω2r 48R5.(2016·全国卷Ⅱ,20)(多选)法拉第圆盘发电机的示意图如图11所示。
高中物理-专题 单导体棒切割磁感线问题(计算题)(基础篇)(解析版)

2021年高考物理100考点最新模拟题千题精练(选修3-2)第四部分 电磁感应专题4.16 单导体棒切割磁感线问题(计算题)(基础篇)计算题1.(13分) (2020浙江稽阳联考)如图为二根倾角θ=300的平行金属导轨,上端有一个电动势为E =5 V 、内阻为r =1 Ω的电源,以及一个电容为C 的电容器,导轨通过单刀双掷开关可分别与1、2相连。
导轨中间分布有两个相同的有界磁场AA’CC’及DD’FF’,磁场方向垂直导轨向下,磁场内外边界距离等于导轨间距L ,L =1 m ,磁场的上下边界距离如图所示均为d =2 m ,CC’到DD’的距离也为d 。
除电源内阻外,其它电阻忽略不计,导体棒与导轨光滑接触。
初始时刻,开关与1相连,一根质量为m =1 kg 的导体棒恰好能静止在导轨上AA’位置,导体棒处于磁场之中。
当开关迅速拨向2以后,导体棒开始向下运动,它在AA’CC’、 CC’DD’两个区域运动的加速度大小之比为4/5。
(1)求磁感应强度B 的大小;(2)求导体棒运动至DD’时的速度大小v 2;(3)求电容C 的值;(4)当导体棒接近DD’时,把开关迅速拨向1,求出导体棒到达FF’的速度v 3。
【参考答案】(1)B =ELmgr sin (2)v 2=6m/s (3)C=0.25 F (4)v t =4m/s 【名师解析】(1)由平衡条件知,初始时刻mg sin θ=Bil (1分)i=E r(1分) 得B =ELmgr θsin 代入数据得B =1T 。
(1分)(2) 从CC’到DD’,导体棒做的匀加速运动,加速度为a 2=g sin θ=5m/s 2由题意知,导体棒在AA’CC’运动的加速度a 1=4m/s 2(1分)其到达CC’的速度满足 v 12=2a 1d从CC’到DD’, 有v 22-v 12=2a 2d (1分)计算得v 1=4m/sv 2=6m/s (1分)(3)开关拨向2后,导体棒开始在磁场中运动,当速度为v 时,由牛顿运动定律得mg sin θ-BiL =mai =Δq Δt(1分) q =CU (1分)U =BLv (1分)可得a =22sin L CB m mg +θ计算得C=0.25 F (1分)(4)进入第二个磁场后,导体棒受到重力、弹力、安培力,其动力学方程可写作mg sin θ-BiL =ma其中i =rBLv E + 代入后mg sin θ-r BEL -rv L B 22=ma (1分) 注意到B =ELmgr θsin ,上式写为-r v L B 22=ma 可等效为导体棒在仅受安培力作用下的运动,上式变形可得-rx L B 22=mv t -mv 2 (1分) 代入x =2m ,得v t =4m/s ,即到达FF’时的速度为4m/s 。
高考物理《法拉第电磁感应定律》真题练习含答案专题

高考物理《法拉第电磁感应定律》真题练习含答案专题1.如图所示,用粗细相同的铜丝做成边长分别为 L 和2L 的两只闭合线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,若感应电动势分别为E a 、E b ,则E a ∶E b 为( )A .1∶4B .1∶2C .2∶1D .4∶1 答案:B解析:线框切割磁感线时的感应电动势为E =BLv ,解得E a ∶E b =1∶2,B 正确.2.[2024·湖北省名校联盟联考]今年11月底,襄阳三中举行了秋季运动会,其中“旋风跑”团体运动项目很受学生欢迎.如图是比赛过程的简化模型,一名学生站在O 点,手握在金属杆的一端A 点,其他四名学生推着金属杆AB ,顺时针(俯视)绕O 点以角速度ω匀速转动.已知OA =l ,AB =L 运动场地附近空间的地磁场可看作匀强磁场,其水平分量为B x ,竖直分量为B y ,则此时( )A .A 点电势高于B 点电势B .AB 两点电压大小为B y ω(L 2+2lL )2C .AB 两点电压大小为B y ω(L +l )22D .AB 两点电压大小为B x ωL(L +l) 答案:B解析:地磁场在北半球的磁感应强度斜向下,其竖直分量B y 竖直向下,则金属杆切割B y 产生动生电动势,由右手定则可知电源内部的电流从A 点到B 点,即B 点为电源的正极,故A 点电势低于B 点电势,A 错误;动生电动势的大小为E =Bl v -,解得U BA =B y L ω(L +l )+ωl 2 =B y Lω(L +2l )2,B 正确,C 、D 错误.3.(多选)动圈式扬声器的结构如图(a )和图(b )所示,图(b )为磁铁和线圈部分的右视图,线圈与一电容器的两端相连.当人对着纸盆说话,纸盆带着线圈左右运动能将声信号转化为电信号.已知线圈有n 匝,线圈半径为r ,线圈所在位置的磁感应强度大小为B ,则下列说法正确的是( )A.纸盆向左运动时,电容器的上极板电势比下极板电势高B.纸盆向左运动时,电容器的上极板电势比下极板电势低C.纸盆向右运动速度为v时,线圈产生的感应电动势为2nrBvD.纸盆向右运动速度为v时,线圈产生的感应电动势为2nπrBv答案:BD解析:根据右手定则,可知上极板带负电,下极板带正电,因此下极板电势更高,A项错误,B项正确;每匝有效切割长度为2πr,则E=2πnBvr,C项错误,D项正确.4.如图所示,一根弧长为L的半圆形硬导体棒AB在水平拉力F作用下,以速度v0在竖直平面内的U形框架上匀速滑动,匀强磁场的磁感应强度为B,回路中除电阻R外,其余电阻均不计,U形框左端与平行板电容器相连,质量为m的带电油滴静止于电容器两极板中央,半圆形硬导体棒AB始终与U形框接触良好.则以下判断正确的是()A.油滴所带电荷量为mgdBLv0B.电流自上而下流过电阻RC.A、B间的电势差U AB=BLv0D.其他条件不变,使电容器两极板距离减小,电容器所带电荷量将增加,油滴将向下运动答案:B解析:由右手定则可知,导体棒中电流方向从B到A,电流自上而下流过电阻R,故B正确;弧长为L的半圆形硬导体棒切割磁感线的有效长度D=2Lπ,则A、B间的电势差为U AB=2BLv0π,C错误;油滴受力平衡可得qE=mg,E=U ABd,则油滴所带电荷量为q=πmgd2BLv0,A错误;其他条件不变,使电容器两极板距离减小,由C=εS4πkd知电容器的电容变大,又由Q=UC可知,电容器所带电荷量将增加,电场力变大,油滴将向上运动,故D错误.5.(多选)如图所示,矩形金属框架三个竖直边ab 、cd 、ef 的长都是l ,电阻都是R ,其余电阻不计.框架以速度v 匀速平动地穿过磁感应强度为B 的匀强磁场,设ab 、cd 、ef 三条边先后进入磁场时,ab 边两端电压分别为U 1、U 2、U 3,则下列判断结果正确的是( )A .U 1=13 Blv B .U 2=2U 1C .U 3=0D .U 1=U 2=U 3 答案:AB解析:当ab 边进入磁场时I =E R +R 2=2Blv 3R ,则U 1=E -IR =13Blv ;当cd 边也进入磁场时I =E R +R 2 =2Blv 3R ,则U 2=E -I R 2 =23 Blv ,三条边都进入磁场时U 3=Blv ,A 、B 正确.6.[2024·湖北省武汉市月考](多选)如图所示,电阻不计的平行长直金属导轨水平放置,间距L =1 m .导轨左右端分别接有阻值R 1=R 2=4 Ω的电阻.电阻r =2 Ω的导体棒MN 垂直放置在导轨上,且接触良好,导轨所在区域内有方向竖直向的匀强磁场,大小为B =2 T .在外力作用下棒沿导轨向左以速度v =2 m /s 做匀速直线运动,外力的功率为P ,MN 两端的电势差为U MN ,则以下说法正确的是( )A .U MN =4 VB .U MN =2 VC .P =16 WD .P =4 W 答案:BD解析:棒产生的感应电动势大小为E =BLv =4 V ,外电阻是R 1和R 2并联总电阻为R =2 Ω,MN 两端的电势差为U MN =R R +r E =2 V ,A 错误,B 正确;回路电流为I =ER +r =1 A ,电路总功率为P 总=EI =4 W ,由能量守恒可知外力的功率和电路总功率相同,有P =4 W ,C 错误,D 正确.7.[2024·吉林省长春市模拟]在如图甲所示的电路中,电阻R 1=R 2=R ,圆形金属线圈半径为r 1,线圈导线的电阻也为R ,半径为r 2(r 2<r 1)的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系如图乙所示,图线与横、纵轴的交点坐标分别为t 0和B 0,其余导线的电阻不计.闭合开关S ,至t =0的计时时刻,电路中的电流已经稳定,下列说法正确的是( )A .线圈中产生的感应电动势大小为B 0πr 21t 0B .t 0时间内流过R 1的电量为B 0πr 22RC .电容器下极板带负电D .稳定后电容器两端电压的大小为B 0πr 223t 0答案:D解析:由法拉第电磁感应定律知感应电动势为E =ΔΦΔt =ΔB Δt S =πr 22 B 0t 0,A 错误;由闭合电路欧姆定律得感应电流为I =E R +R 1+R 2 =πr 22 B 03Rt 0 ,t 0时间内流过R 1的电量为q =It 0=πr 22 B 03R,B 错误;由楞次定律知圆形金属线圈中的感应电流方向为顺时针方向,金属线圈相当于电源,电源内部的电流从负极流向正极,则电容器的下极板带正电,上极板带负电,C 错误;稳定后电容器两端电压的大小为U =IR 1=B 0πr 223t 0,D 正确.8.(多选)如图所示,长为a ,宽为b ,匝数为n 的矩形金属线圈恰有一半处于匀强磁场中,线圈总电阻为R ,线圈固定不动.当t =0时匀强磁场的磁感应强度的方向如图甲所示,磁感应强度B 随时间t 变化的关系图像如图乙所示,则( )A .线圈中的感应电流的方向先逆时针再顺时针B .回路中感应电动势恒为nB 0ab2t 0C .0~2t 0时刻,通过导线某横截面的电荷量为nB 0abRD .t =0时刻,线圈受到的安培力大小为nB 20 a 2b2t 0R答案:BC解析:由题意可知线圈中磁通量先垂直纸面向外减小,再垂直纸面向里增大,根据楞次定律可知线圈中的感应电流方向始终为逆时针方向,A 错误;根据法拉第电磁感应定律可得线圈中感应电动势的大小为E =n ΔΦΔt =nS ΔB Δt =nabB 02t 0 ,根据闭合电路欧姆定律可得,线圈中电流大小为I =E R =nabB 02Rt 0 ,t =0时刻,线圈受到的安培力大小为F =nB 0I·a =n 2a 2bB 202Rt 0 ,B 正确,D 错误;0~2t 0时刻,通过导线某横截面的电荷量为q =I·2t 0=nabB 0R,C 正确.9.如图所示,足够长通电直导线平放在光滑水平面上并固定,电流I 恒定不变.将一个金属环以初速度v 0沿与导线成一定角度θ(θ<90°)的方向滑出,此后关于金属环在水平面内运动的分析,下列判断中正确的是( )A .金属环做直线运动,速度先减小后增大B .金属环做曲线运动,速度一直减小至0后静止C .金属环最终做匀速直线运动,运动方向与直导线平行D .金属环最终做匀变速直线运动,运动方向与直导线垂直 答案:C解析:金属环周围有环形的磁场,金属环向右运动,磁通量减小,根据“来拒去留”可知,所受的安培力将阻碍金属圆环远离通电直导线,即安培力垂直直导线向左,与运动方向并非相反,故金属环做曲线运动,安培力使金属环在垂直导线方向做减速运动,当垂直导线方向的速度减为零,只剩沿导线方向的速度,然后磁通量不变,无感应电流,水平方向不受外力作用,故最终做匀速直线运动,方向与直导线平行,故金属环先做曲线运动后做直线运动,C 项正确.10.[2024·云南省昆明市模拟]如图甲所示,一匝数N =200的闭合圆形线圈放置在匀强磁场中,磁场垂直于线圈平面.线圈的面积为S =0.5 m 2,电阻r =4 Ω.设垂直纸面向里为磁场的正方向,磁感应强度B 随时间的变化图像如图乙所示.求:(1)2 s 时感应电流的方向和线圈内感应电动势的大小; (2)在3~9 s 内通过线圈的电荷量q 、线圈产生的焦耳热Q. 答案:(1)逆时针,E 1=20 V (2)q =15 C ,Q =150 J解析:(1)由楞次定律知,0~3 s 感应电流磁场垂直纸面向外,感应电流方向为逆时针方向;感应电动势为E 1=N ΔΦ1Δt 1 =N ΔB 1·S Δt 1结合图像并代入数据解得E 1=20 V(2)同理可得3 s ~9 s 内有感应电动势E 2=N ΔΦ2Δt 2 =N ΔB 2·SΔt 2感应电流I 2=E 2r电荷量q =I 2Δt 2 代入数据解得q =15 C 线圈产生的焦耳热Q =I 22 r Δt 2 代入数据得Q =150 J。
高考物理法拉第电磁感应定律-经典压轴题含答案解析

高考物理法拉第电磁感应定律-经典压轴题含答案解析一、法拉第电磁感应定律1.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===V V V V感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL =由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-===V V &解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图所示,ACD 、EFG 为两根相距L =0.5m 的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF 面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF 平面向上的匀强磁场,磁感应强度大小为B`=1T .两根长度也均为L =0.5m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,ab 杆的质量m 1未知,cd 杆的质量m 2=0.1kg ,两杆与导轨之间的动摩擦因数均为μ=36,两金属细杆的电阻均为R =0.5Ω,导轨电阻不计.当ab 以速度v 1沿导轨向下匀速运动时,cd 杆正好也向下匀速运动,重力加速度g 取10m/s 2.(1)金属杆cd 中电流的方向和大小 (2)金属杆ab 匀速运动的速度v 1 和质量m 1【答案】I =5A 电流方向为由d 流向c; v 1=10m/s m 1=1kg 【解析】 【详解】(1)由右手定则可知cd 中电流方向为由d 流向c对cd 杆由平衡条件可得:μ=+0022安sin 60(cos 60)m g m g F=安F BLI联立可得:I =5A (2) 对ab: 由 =12BLv IR得 110m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+解得: m 1=1kg4.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L =1m ,导轨平面与水平面成θ=30︒角,上端连接 1.5R =Ω的电阻.质量为m =0.2kg 、阻值0.5r =Ω的金属棒ab 放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d =4m ,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.(1)若磁感应强度B=0.5T ,将金属棒释放,求金属棒匀速下滑时电阻R 两端的电压; (2)若磁感应强度的大小与时间成正比,在外力作用下ab 棒保持静止,当t =2s 时外力恰好为零.求ab 棒的热功率;(3)若磁感应强度随时间变化的规律是()0.05cos100B t T π=,在平行于导轨平面的外力F 作用下ab 棒保持静止,求此外力F 的最大值。
2020年高考物理100考点- 双导体棒切割磁感线问题

2020年高考物理100考点最新模拟题(选修3-2)第四部分 电磁感应专题4.17 双导体棒切割磁感线问题(提高篇)一.选择题1.(6分)(2019湖北鄂东南省级示范性高中教学联盟模拟)如图所示,水平面内足够长的光滑“凸”形电阻可忽略的金属导轨左侧宽度为L 1,右侧宽度为L 2,且L 1=2L 2,有两个材料相同,质量均为m 导体棒静止在导轨上,垂直于导轨所在平面向上的磁场磁感应强度大小为B ,现给导体棒I 一初速度v 0使其沿水平方向开始运动直至达到稳定状态,整个过程导体棒I 一直在左侧导轨部分,下面说法正确的是( )A .导体棒I 达到稳定状态时速度为B .导体棒I 达到稳定状态时速度为C .整个过程中通过导体棒Ⅱ的电荷量为D .整个过程中导体棒Ⅱ上产生的焦耳热为mv2.(2018·枣庄模拟)如图所示,间距为l 的光滑平行金属导轨平面与水平面之间的夹角θ=30°,导轨电阻不计。
正方形区域abcd 内匀强磁场的磁感应强度为B ,方向垂直于导轨平面向上。
甲、乙两金属杆电阻相同、质量均为m ,垂直于导轨放置。
起初甲金属杆位于磁场上边界ab 处,乙位于甲的上方,与甲间距也为l 。
现将两金属杆同时由静止释放,从此刻起,对甲金属杆施加沿导轨的拉力,使其始终以大小为a =12g 的加速度向下做匀加速运动。
已知乙金属杆刚进入磁场时做匀速运动,重力加速度为g ,则下列说法正确的是( )A .每根金属杆的电阻R =B 2l 2gl mgB .甲金属杆在磁场区域运动过程中,拉力对其做的功在数值上等于电路中产生的焦耳热C .乙金属杆在磁场区域运动过程中,安培力的功率是P =mg glD .从乙金属杆进入磁场直至其离开磁场过程中,回路中通过的电量为Q =m B g l3.(多选)一空间有垂直纸面向里的匀强磁场B ,两条电阻不计的平行光滑导轨竖直放置在磁场内,如图2所示,磁感应强度B =0.5 T ,导体棒ab 、cd 长度均为0.2 m ,电阻均为0.1 Ω,重力均为0.1 N ,现用力向上拉动导体棒ab ,使之匀速上升(导体棒ab 、cd 与导轨接触良好),此时cd 静止不动,则ab 上升时,下列说法正确的是( )A.ab 受到的拉力大小为2 NB.ab 向上运动的速度为2 m/sC.在2 s 内,拉力做功,有0.4 J 的机械能转化为电能D.在2 s 内,拉力做功为0.6 J二.计算题1.(6分)(2019湖北武汉武昌5月调研)如图的水平、光滑金属导轨在同一水平面上,间距分别为L 和,间距为L 的导轨有一小段左右断开,为使导轨上的金属棒能匀速通过断开处,在此处铺放了与导轨相平的光滑绝缘材料(图中的虚线框处)。
2024高考物理考前冲刺高频考点知识点突破练习15导体切割磁感线时产生的感应电动势

15导体切割磁感线时产生的感应电动势一.选择题(共3小题)1.(2024•门头沟区一模)如图所示,在竖直向下的匀强磁场中,水平U形导体框左端连接一阻值为R的电阻,电阻为r的导体棒ab置于导体框上。
已知导体框的宽度为l,磁场的磁感应强度为B,不计导体框的电阻、导体棒与框间的摩擦。
导体棒ab在外力F作用下以水平向右的速度v匀速运动。
在此过程中()A.线框abcd中的磁通量保持不变B.导体棒ab产生的感应电动势保持不变C.导体棒ab中感应电流的方向为a→bD.外力F大小为2.(2024•海淀区一模)如图所示,空间中存在竖直向下、磁感应强度为B的匀强磁场。
边长为L的正方形线框abcd的总电阻为R。
除ab边为硬质金属杆外,其它边均为不行伸长的轻质金属细线,并且cd边保持不动,杆ab的质量为m。
将线框拉至水平后由静止释放,杆ab第一次摆到最低位置时的速率为v。
重力加速度为g,忽视空气阻力。
关于该过程,下列说法正确的是()A.a端电势始终低于b端电势B.杆ab中电流的大小、方向均保持不变C.安培力对杆ab的冲量大小为D.安培力对杆ab做的功为3.(2024•朝阳区一模)如图所示,足够长的平行光滑金属导轨ab、cd水平放置,间距为L,一端连接阻值为R的电阻。
导轨所在空间存在竖直向下的、磁感应强度大小为B的匀强磁场。
质量为m、电阻为r的导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接触良好。
导轨的电阻可忽视不计。
t=0时金属棒以初速度v水平向右运动,经过一段时间停在导轨上。
下列说法不正确的是()A.全过程中,金属棒克服安培力做功为B.全过程中,电阻R上产生的焦耳热为C.t=0时刻,金属棒受到的安培力大小为D.t=0时刻,金属棒两端的电压U MN=BLv二.计算题(共9小题)4.(2024•石景山区一模)导体棒在磁场中切割磁感线可以产生感应电动势。
(1)如图1所示,一长为l的导体棒ab在磁感应强度为B的匀强磁场中绕其一端b以角速度ω在垂直于磁场的平面内匀速转动,求导体棒产生的感应电动势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导体棒绕固定点转动切割磁感线问题研究
一、基本知识。
导体棒在磁场中转动切割磁感线时,由于各点切割的线速度不同,不能直接用E=BLVsin θ来计算,然导体棒绕定轴转动时依V=r ω可知各点的线速度随半径按线性规律变化,因此通常用中点的线速度来替代,即ω2L V =或2B A V V V +=
二、例题讲解。
例1:一根导体棒oa 长度为L ,电阻不计,绕o 点在垂直于匀强磁场B 的平面内以角速度ω做匀速圆周运动,求其产生的电动势。
解法:利用法拉第电磁感应公式的导出公式E=Blv 求解。
由于杆上各点的线速度都不相同,并且各点的线速度大小正比于该点到o 点的距离。
o 点速度为零,a 点速度最大,为ωl ,则整个杆的平均速度为2ωl ,相当于棒中点瞬时速度的大小。
产生的电动势
由右手定则可以判断电动势的方向为o→a ,a 点的电势高于o 点的电势,即a 点相当于电源的正极。
拓展1:存在供电电路
例2:金属棒长为l ,电阻为r ,绕o 点以角速度ω做匀速圆周运动,a 点与金属圆环光滑接触,如图5 所示,图中定值电阻的阻值为R ,圆环电阻不计,求Uoa 。
解析:图中装置对应的等效电路如图6 所示。
由题根可知,oa 切割磁感线产生的电动势为:,注意,由于棒有内阻。
由全电路欧姆定律:
(因为a 点电势高于o 电势)。
点评:①见到这些非常规电路画等效电路是很必要也很有效的方法。
②之所以题目设计为求Uoa,是为了体现求解电势差的注意点。
拓展2:磁场不是普通的匀强磁场
例3:其他条件同例3,空间存在的匀强磁场随时间作周期性变化,B=B0sinAt,其中A 为正的常数,以垂直纸面向里为正方向,求Uoa。
解析:由于B 变化,棒oa 切割磁感线产生的电动势不再是恒定值,而是随时间作周期性变化的交变值,由题根可知:
此电势差也随时间作周期性变化。
拓展3:有机械能参与的能量转化问题
例4:如图8 所示,一金属圆环和一根金属辐条构成的轮子,可绕垂直于圆环平面的水平轴自由转动,金属环与辐条的电阻不计,质量忽略,辐条长度为L0,轮子处在与之垂直的磁感应强度为B 匀强磁场中,磁场方向垂直纸面向里,一阻值为R 的定值电阻通过导线与轮子的中心和边缘相连,轮子外缘同时有绝缘绳绕着,细绳下端挂着质量为m 的重物,求重物下落的稳定速度。
解析:此题中由于重物下落,带动圆轮转动,辐条oa 做切割磁感线运动产生电动势,oa 相当于电源,与电阻R 构成闭合电路,a 端为正极,o 端为负极,如图9 所示。
由于oa 边受到的安培力阻碍圆环转动,并且随着转速逐渐增大,安培力也逐渐增大,最终达到一稳定速度,解此速度可用两种方法解,一种是根据力矩平衡解,另一种根据能量守恒解。
点评:在处理伴有能量转化的物理问题时,解题方法通常不唯一,可以从纯力学角度下手,也可以利用能量守恒,很显然,利用能量关系解题往往较简捷,故下面的关于能量拓展系列都用此法解。
变式(1):如果原题中的辐条有电阻,且电阻r,求最终系统平衡的速度。
解析:如果辐条有电阻,则方法二中的能量关系方程应为:
变式(2):如果把原题中的辐条由一根变成四根,如图10所示,且相邻两根辐条的夹角是90°,辐条电阻不计,求重物最终下落的稳定速度。
解析:由一根辐条变成四根辐条,则当圆环转动时相当于产生了四个电源,且四个电源是并联关系,总电动势还是等于每个辐条产生的电动势,由于电阻不计,故用能量守恒方法解的能量守恒方程依然是:,最终速度还是:
变式(3):如果把变式(2)中的四根辐条变成一金属圆盘,且不计金属圆盘内阻,求重物最终下落的稳定速度,如图11 所示:
解析:金属圆盘可看作是无数根金属辐条并联而成,此时圆盘转动产生的总电动势依然等于每根辐条产生的电动势:。
最终速度也是:形式虽然变了,本质依然没变。
变式(4):如果变式(2)中的四根辐条的电阻都是r,则重物下落的最终稳定速度为多少?
解析:当四根辐条都有电阻时,且是并联关系,并联后总电阻为,电动势还是,则利用能量守恒求最终速度的方程变为:
变式(5):在变式(4)的情况下,去掉定值电阻R,环的电阻不可忽略,大小为R,且改变圆环右半边所在区域磁场的方向,如图12 所示,磁感应强度的大小都是B,MN 左侧磁场垂直纸面向里,MN 右侧磁场垂直纸面向外,求重物最终下落的稳定速度。