数学归纳法64

合集下载

数学归纳法的应用知识点总结

数学归纳法的应用知识点总结

数学归纳法的应用知识点总结数学归纳法是一种重要的证明方法,常被应用于数学、逻辑以及计算机科学的领域。

它的核心思想是通过建立一个基础情形的真实性,以及在基础情形成立的前提下推导出一个一般情形的真实性,从而得出结论。

本文将对数学归纳法的基本概念和应用进行总结。

一、数学归纳法的基本原理数学归纳法包括三个步骤:基础步骤、归纳假设和归纳证明。

首先,我们需要证明当n取某个特定值时,结论成立,这称为基础步骤。

接下来,我们假设当n=k时,结论成立,这称为归纳假设。

最后,通过归纳证明,我们将证明当n=k+1时,结论也成立。

二、数学归纳法的应用举例1. 求和公式数学归纳法可以用来证明一些求和公式的正确性。

例如,我们要证明正整数n的前n项和公式为:1+2+3+...+n = n(n+1)/2。

首先,我们可以验证当n=1时,等式左边为1,右边也等于1(1×2/2),因此基础步骤成立。

然后,我们假设当n=k时,等式成立,即1+2+3+...+k = k(k+1)/2。

接下来,我们需要证明当n=k+1时,等式也成立。

我们将等式左边的前k+1项展开,得到1+2+3+...+k+(k+1)。

根据归纳假设,前k项的和为k(k+1)/2,再加上第k+1项(k+1),则等式左边的和为(k+1)(k+2)/2。

与等式右边相比,我们可以得出结论,即当n=k+1时,等式也成立。

2. 整数性质证明数学归纳法也可以用来证明一些关于整数的性质。

例如,我们要证明任意正整数n的平方是奇数。

首先,我们验证当n=1时,等式成立,因为1的平方是1,是奇数。

然后,假设当n=k时,等式成立,即k的平方是奇数。

接下来,我们通过归纳证明,证明当n=k+1时,等式也成立。

我们将等式左边展开,得到(k+1)的平方。

根据归纳假设,k的平方是奇数,那么k的平方加上2k再加1,仍然是奇数。

因此,当n=k+1时,等式也成立。

三、数学归纳法的注意事项1. 基础步骤的正确性是数学归纳法的基础,必须确保基础步骤成立。

数学归纳法初中数学知识点总结

数学归纳法初中数学知识点总结

数学归纳法初中数学知识点总结
数学归纳法初中数学知识点总结
数学归纳法
(—)第一数学归纳法:
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

(二)第二数学归纳法:
第二数学归纳法原理是设有一个与自然数n有关的命题,如果:(1)当n=1回时,命题成立;
(2)假设当n≤k时命题成立,则当n=k+1时,命题也成立。

那么,命题对于一切自然数n来说都成立。

(三)螺旋归纳法:
螺旋归纳法是归纳法的.一种变式,其结构如下:
Pi和Qi是两组命题,如果:
P1成立
Pi成立=>Qi成立
那么Pi,Qi对所有自然数i成立
利用第一数学归纳法容易证明螺旋归纳法是正确的。

数学归纳法在解题中的常见技巧与思路

数学归纳法在解题中的常见技巧与思路

数学归纳法在解题中的常见技巧与思路数学归纳法是一种重要的证明方法,常常被应用于数学领域中。

它的基本思想是通过证明某个命题在n=1时成立,并假设当n=k时命题成立,然后利用这个假设证明当n=k+1时命题也成立。

在解题中,数学归纳法有许多常见的技巧和思路,本文将介绍其中的一些。

一、确定归纳假设在使用数学归纳法时,首先需要确定一个归纳假设。

归纳假设是指假设当n=k时,命题成立。

通常我们可以通过观察前几项的情况,找到一个与k有关的表达式或性质,作为归纳假设。

这个归纳假设可以是一个等式、不等式、性质等。

例如,我们想要证明对于任意正整数n,1+2+3+...+n=n(n+1)/2成立。

我们观察前几项的和的情况,可以发现1+2+3+...+n=n(n+1)/2成立时,对于n+1也成立。

因此,我们可以假设当n=k时,1+2+3+...+k=k(k+1)/2。

二、验证基础情形接下来,我们需要验证基础情形,即n=1时命题是否成立。

如果命题在n=1时成立,那么作为归纳假设的基础,我们就可以使用归纳法进一步证明命题成立。

对于上述例子,当n=1时,1=1(1+1)/2成立。

因此,我们可以使用数学归纳法来证明该命题。

三、进行归纳步骤在归纳步骤中,我们假设当n=k时命题成立,然后利用这个假设来证明当n=k+1时命题也成立。

对于上述例子,假设当n=k时,1+2+3+...+k=k(k+1)/2成立。

我们需要证明当n=k+1时,1+2+3+...+(k+1)=(k+1)((k+1)+1)/2也成立。

根据归纳假设,1+2+3+...+k=k(k+1)/2。

所以,1+2+3+...+k+(k+1)=k(k+1)/2+(k+1)。

通过化简,可得1+2+3+...+k+(k+1)=(k+1)(k+2)/2。

因此,当n=k+1时,1+2+3+...+(k+1)=(k+1)((k+1)+1)/2成立。

四、总结归纳法的应用技巧和思路在使用数学归纳法解题时,有几个常见的技巧和思路可供参考。

数学归纳法在数列证明中的应用

数学归纳法在数列证明中的应用

数学归纳法在数列证明中的应用引言数学归纳法是一种常用的证明方法,它在解决数学问题中起着重要的作用。

数学归纳法能够用于证明数列的各种性质和结论,为我们理解数学中的规律提供了便利。

本文将介绍数学归纳法的基本思想和步骤,以及在数列证明中的具体应用。

数学归纳法的基本思想数学归纳法是一种证明方法,它是通过证明当命题对某个特定的整数成立时,它对其后续整数也成立。

数学归纳法通常包括两个步骤:基础步骤和归纳步骤。

•基础步骤:首先证明当 n 为某个特定整数时,命题成立。

这个特定的整数称为基础情况。

在数列证明中,通常我们需要证明初始项是否满足给定的性质。

•归纳步骤:接下来,我们假设对于某个整数 k,命题成立。

然后通过这个假设来证明命题对于整数 k+1 也成立。

数学归纳法的基本思想是通过建立递归链条,将命题的真实性逐步推广到所有符合条件的整数上。

数学归纳法在数列证明中的应用数学归纳法在数列证明中有着广泛的应用。

数列是一组按照特定规律排列的数值。

在数学中,我们常常需要证明数列的某些性质或结论。

下面我们将介绍数学归纳法在数列证明中的三个具体应用。

1. 证明数列的通项公式在数学中,我们常常需要求解数列的通项公式。

通项公式可以用来表示数列中任意一项与项序号之间的关系。

数学归纳法可以帮助我们证明数列的通项公式的正确性。

以斐波那契数列为例,斐波那契数列的前两项分别为 0 和 1,后续每一项等于前两项的和。

我们可以使用数学归纳法来证明斐波那契数列的通项公式 F(n) = F(n-1) + F(n-2) 对于所有的非负整数 n 成立。

•基础步骤:当 n = 0 或 n = 1 时,斐波那契数列的通项公式成立。

•归纳步骤:假设对于某一个整数 k,斐波那契数列的通项公式成立,即 F(k) = F(k-1) + F(k-2)。

我们需要证明对于整数 k+1,也成立 F(k+1) = F(k) + F(k-1)。

根据斐波那契数列的定义,我们可以得到:F(k+1) = F(k) + F(k-1) = (F(k-1) + F(k-2)) + F(k-1) = F(k-1) + 2 * F(k-2)。

数学归纳法的基本原理

数学归纳法的基本原理

数学归纳法的基本原理
归纳法基本原理概述
归纳法基本原理概述
▪ 归纳法的基本原理概述
1.归纳法是通过观察具体事例,总结出普遍规律的一种思维方法。 2.归纳法的基本原理包括:观察、归纳、推理和验证。 3.归纳法的目的是发现事物之间的内在联系和规律,为实践提供指导。
▪ 观察
1.观察是归纳法的基础,通过对具体事例的观察,获取丰富的感性材料。 2.观察要具备系统性和客观性,避免主观臆断和片面性。 3.现代科技手段可以帮助我们进行更加深入、细致的观察,提高归纳的准确性。
▪ 算法的正确性证明
1.算法的正确性证明是通过数学归纳法等方法证明算法能够正 确地解决特定问题的过程。 2.在进行算法的正确性证明时,需要明确算法的基本思想和步 骤,并分析算法的时间复杂度和空间复杂度等因素。 3.算法的正确性证明是计算机科学中的重要问题,可以保证算 法的正确性和可靠性,为计算机应用提供坚实的基础。
▪ 归纳法的基本原理
1.数学归纳法的基本原理包括归纳基础和归纳步骤两个部分,其中归纳基础是指某 个命题在n=1时成立,归纳步骤是指在n=k时命题成立的情况下,可以推导出 n=k+1时命题也成立。 2.归纳法的正确性是建立在“自然数集合是有序的”这个基础上的,因此在使用归 纳法进行证明时需要注意确保归纳基础和归纳步骤的正确性。 3.归纳法的应用范围广泛,可以用于证明各种数学命题,包括代数、几何、数论、
▪ 归纳法面临的挑战
1.数据获取和处理的难度:随着数据规模的不断扩大,如何有效获取和处理数据成为归纳法面 临的挑战之一。 2.计算能力和算法的限制:随着问题复杂度的提高,对计算能力和算法的要求也越来越高,如 何提升计算能力和改进算法是归纳法面临的另一个挑战。 3.理论和实践的差距:归纳法的理论研究和实际应用之间存在一定的差距,如何将理论知识更 好地应用于实践中,提高归纳法的实用性是亟待解决的问题。 以上内容仅供参考,具体内容可以根据您的需求进行调整优化。

数学数学归纳法

数学数学归纳法
第50页/共63页
(2)递推乃关键 数学归纳法的实质在于递推,所以 从“k”到“k+1”的过程,必须把归 纳假设“n=k”作为条件来导出 “n=k+1”时的命题,在推导过程 中,要把归纳假设用上一次或几 次.
第51页/共63页
基础梳理
1.归纳法 归纳法有不完全归纳法和完全归纳法, 如果我们考察了某类对象中的一部分, 由这一部分具有某种特征而得出该类 对象中的全体都具有这种特征的结论, 为不完全归纳法.
第2页/共63页
由不完全归纳法得出的结论不一定 都是正确的,其正确性还需进一步证 明;如果我们考察了某类对象中的 每一个对象,而得出该类对象的某 种特征的结论为完全归纳法,由完 全归纳法得出的结论一定是正确的, 数学归纳法是一种完全归纳法.
1 3



1 2k

1 2k+1

1 2k+2
+…+2k+1 2k<12+k+2k·21k=12+(k+1),
即 n=k+1 时,命题也成立.
由(1)(2)可知,命题对所有 n∈N*都成立.
第27页/共63页
【规律方法】 用数学归纳法证 明不等式,推导n=k+1也成立时, 证明不等式的常用方法,如比较法, 分析法,综合法均要灵活运用,在 证明过程中,常利用不等式的传递 性对式子放缩.
第3页/共63页
2.数学归纳法 一般地,证明一个与正整数n有关的 命题,可按下列步骤进行: (1)归纳奠基:验证当n取第一个值 n0时结论成立;
第4页/共63页
(2)归纳递推:假设当n=k(k∈N*, 且k≥n0)时结论成立.推出n=k+1 时结论也成立. 只要完成这两个步骤,就可以断定命 题对从n0开始的所有自然数n(n≥n0) 都成立,这种证明方法叫做数学归纳 法.

数学归纳法

数学归纳法

骨牌一个接一个倒下,就如同一个值到下一个值的过程。

1.证明当n = 1 时命题成立。

2.证明如果在n = m时命题成立,那么可以推导出在n = m+1 时命题也成立。

(m代表任意自然数)这种方法的原理在于:首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有效。

当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。

把这个方法想成多米诺效应也许更容易理解一些。

例如:你有一列很长的直立着的多米诺骨牌,如果你可以:1.证明第一张骨牌会倒。

2.证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。

那么便可以下结论:所有的骨牌都会倒。

[编辑]例子假设我们要证明下面这个公式(命题):其中n为任意自然数。

这是用于计算前n个自然数的和的简单公式。

证明这个公式成立的步骤如下。

[编辑]证明[编辑]第一步第一步是验证这个公式在n = 1时成立。

我们有左边 = 1,而右边 = 1(1 + 1) / 2 = 1,所以这个公式在n = 1时成立。

第一步完成。

[编辑]第二步第二步我们需要证明如果假设n = m时公式成立,那么可以推导出n = m+1 时公式也成立。

证明步骤如下。

我们先假设n = m时公式成立。

即(等式 1)然后在等式等号两边分别加上m + 1 得到(等式 2)这就是n = m+1 时的等式。

我们现在需要根据等式 1 证明等式 2 成立。

通过因式分解合并,等式 2 的右手边也就是说这样便证明了从 P(m) 成立可以推导出 P(m+1) 也成立。

证明至此结束,结论:对于任意自然数n,P(n) 均成立。

[编辑]解释在这个证明中,归纳推理的过程如下:1.首先证明 P(1) 成立,即公式在n = 1 时成立。

2.然后证明从 P(m) 成立可以推导出 P(m+1) 也成立。

(这里实际应用的是演绎推理法)3.根据上两条从 P(1) 成立可以推导出 P(1+1),也就是 P(2) 成立。

4.继续推导,可以知道 P(3)成立。

数学归纳法

数学归纳法

第一节数学归纳法一、基本知识概要:1.数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(k∈N*,k≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法2. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立.3.用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n取第一个值n0结论正确;(2)假设当n=k(k∈N*,且k≥n0)时结论正确,证明当n=k+1时结论也正确.由(1),(2)可知,命题对于从n0开始的所有正整数n都正确递推基础不可少,归纳假设要用到,结论写明莫忘掉.1.用数学归纳法证题要注意下面几点:①证题的两个步骤缺一不可,要认真完成第一步的验证过程;②成败的关键取决于第二步对1n的证明:1)突破对“归纳=k+假设”的运用;2)用好命题的条件;3)正确选择与命题有关的知识及变换技巧.2.中学教材内,用数学归纳法证明的问题的主要题型有“等式问题”、“整除问题”、“不等式问题”等,要积累这几种题型的证题经验.3.必须注意,数学归纳法不是对所有“与正整数n 有关的命题”都有效.基础题:1.已知n 为正偶数,用数学归纳法证明 )214121(2114131211nn n n +++++=-++-+- 时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证 (B )A .1+=k n 时等式成立B .2+=k n 时等式成立C .22+=k n 时等式成立D .)2(2+=k n 时等式成立2.设1111()()(1)()1232f n n N f n f n n n n n*=++++∈+-=+++有,则=-+)()1(n f n f ( D )A .121+nB .221+n C .221121+++n n D .221121+-+n n 3.用数学归纳法证明3)12(12)1()1(2122222222+=+++-++-+++n n n n n 时,由k n =的假设到证明1+=k n 时,等式左边应添加的式子是( B )A .222)1(k k ++ B.22)1(k k ++ C .2)1(+kD .]1)1(2)[1(312+++k k4.用数学归纳法证明“(1)(2)()213(21)n n n n n n +++=⋅⋅⋅⋅-”(+∈N n )时,从“1+==k n k n 到”时,左边应增添的式子是 ( B )A .12+kB .)12(2+kC .112++k k D .122++k k 5.某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时命题也成立. 现已知当5=n 时该命题不成立,那么可推得( C ) A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=4时该命题不成立D .当n=4时该命题成立【典型例题选讲】【例1】用数学归纳法证明下述等式问题:(Ⅰ))1)(1(41)()2(2)1(12222222+-=-++-⋅+-⋅n n n n n n n n . [证明]︒1. 当1=n 时,左边0)11(122=-⋅=,右边0201412=⋅⋅⋅=,∴左边=右边,1=n 时等式成立;︒2. 假设k n =时等式成立,即 )1)(1(41)()2(2)1(12222222+-=-⋅++-⋅+-⋅k k k k k k k k , ∴当1+=k n 时,左边])1()1)[(1(])1[(]2)1[(2]1)1[(122222222+-+++-+⋅++-+⋅+-+⋅=k k k k k k k k)]12()12(2)12(1[)]()2(2)1(1[222222++++⋅++⋅+-⋅++-+-⋅=k k k k k k k k k )]12(2)1)[(1(41)12(2)1()1)(1(412++-+=+⋅+++-=k k k k k k k k k k )2()1(41)23)(1(4122++=+++=k k k k k k k =右边,即1+=k n 时等式成立,根据︒︒21与,等式对*∈N n 都正确.【例2】用数学归纳法证明下述整除问题: (Ⅰ)求证:)(53*∈+N n n n 能被6 整除. [证明]︒1. 当1=n 时,13+5×1=6能被6整除,命题正确; ︒2. 假设k n =时命题正确,即k k 53+能被6整除,∴当1+=k n 时,)5()55()133()1(5)1(3233k k k k k k k k +=+++++=+++6)1(3+++k k ,∵两个连续的整数的乘积)1(+k k 是偶数,)1(3+∴k k 能被6整除,6)1(3)5(3++++∴k k k k 能被6整除,即当1+=k n 时命题也正确,由︒︒2,1知命题时*∈N n 都正确.例3、(优化设计P202例1)比较2n 与n 2的大小()n N ∈剖析:比较两数(或式)大小的常用方法本题不适用,故考虑用归纳法推测大小关系,再用数学归纳法证明.解:当n =1时,21>12,当n =2时,22=22,当n =3时,23<32, 当n =4时,24=42,当n =5时,25>52, 猜想:当n ≥5时,2n >n 2. 下面用数学归纳法证明: (1)当n =5时,25>52成立.(2)假设n =k (k ∈N *,k ≥5)时2k >k 2,那么2k +1=2·2k =2k +2k >k 2+(1+1)k >k 2+C 0k +C 1k +C 1-k k =k 2+2k +1=(k +1) 2.∴当n =k +1时,2n >n 2.由(1)(2)可知,对n ≥5的一切自然数2n >n 2都成立. 综上,得当n =1或n ≥5时,2n >n 2;当n =2,4时,2n =n 2;当n =3时,2n <n 2.评述:用数学归纳法证不等式时,要恰当地凑出目标和凑出归纳假设,凑目标时可适当放缩. 例4、是否存在常数使 a 、b 、 c 等式2222222421(1)2(2)....(1)n n n n an bn c•-+-+-=++ 对一切正整数n 成立?证明你的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学归纳法
一、知识梳理
1.数学归纳法:一般地,证明一个与正整数n有关的命题的步骤如下:
(1)(归纳奠基)_验证时命题成立____;
(2)(归纳递推)_假设时命题成立,证明时命题也成立.其证明的方法叫做数学归纳法.2.数学归纳法学习要点:
(1)理解第一步是推理的基础,第二步是推理的依据,两者缺一不可;
(2)在证明第二步时命题成立,一定要用上归纳假设时命题成立;另外在证明
第二步时首先要有明确的目标式,即确定证题方向;
(3)数学归纳法常和合情推理综合应用,特别常以归纳推理为前提.
二、题型探究
题型1:与自然数有关的等式证明
已知数列的前和为,其中且
(1)求
(2)猜想数列的通项公式,并用数学归纳法加以证明.
解答:(1),又,则,类似地求得
(2)由,,…猜得:
以数学归纳法证明如下:
①当时,由(1)可知等式成立;
②假设当时猜想成立,即
那么,当时,由题设得

所以==

因此,
所以
这就证明了当时命题成立.
由①、②可知命题对任何都成立.
例2 是否存在常数使等式
对一切正整数成立?证明你的结论.
解:分别用=1,2,3代入解方程组
下面用数学归纳法证明.
(1)当=1时,由上可知等式成立;
(2)假设当时,等式成立,即
则当时,
左边=
=
=
=
∴当时,等式成立.
由(1)(2)得等式对一切的均成立.
与自然数有关的不等关系证明
例3 由下列不等式:,,,,,
你能得到一个怎样的一般不等式?并加以证明.
解:根据给出的几个不等式可以猜想第个不等式,即一般不等式为:

用数学归纳法证明如下:
(1)当时,,猜想成立;
(2)假设当时,猜想成立,即,
则当时,
,即当时,猜想也正确,所以对任意的,不等式成立.
三、方法提升
1.用数学归纳法证明问题应注意:
(1)第一步验证时,并不一定是1.
(2)第二步证明的关键是要运用归纳假设,特别要弄清由到时命题的变化.
(3)由假设时命题成立,证时命题也成立,要充分利用归纳假设,要恰当地“凑”出目标.
四、巩固训练
(一)选择题:
1.利用数学归纳法证明“= ,( )”时,在验证
成立时,左边应该是( C )
(A)1 (B) (C) (D)
2.某个命题与正整数n有关,如果当时命题成立,那么可推得当时命题也成立. 现已知当时该命题不成立,那么可推得( A )
(A)当时该命题不成立(B)当时该命题成立
(C)当时该命题不成立(D)当时该命题成立
3.如果命题对成立,则它对也成立,现已知对不成立,则
下列结论正确的是(D)
(A)对成立(B)对且成立
(C)对且成立(D)对且不成立
4.已知n为正偶数,用数学归纳法证明
时,若已假设为偶数)时命题为真,则还需要用归纳假设再证( B )(A)时等式成立(B)时等式成立
(C)时等式成立(D)时等式成立
5.设,则( D )
(A)(B)(C)(D)
6.数列中,,表示前项和,且,,2 成等差数列,通过计算,,,猜想当时,的表达式是( B )
(A)(B)(C)(D)1-
(二)填空题:
7.观察下列式子:…则可归纳出_______.
(n∈N*)
8.设= + + +…+ (n∈N *),=

9.用数学归纳法证明“1+ + +…+ <n(n∈N*,n>1)”时,由(k>1)不等式成立,推证时,左边应增加的项数是2k
10.已知,则,,由此猜想_ __.
(三)解答题:
11.用数学归纳法证明:;
提示:当时,左边= .
12.已知,数列的通项,记为的前项和,试比较
与的大小,并证明你的结论.
解:由bn=2n-1知
而,
要比较与的大小,可先比较与的大小.
取=1,2,3可以发现:前者大于后者,由此推测
>. ①
下面用数学归纳法证明上面猜想:
(1)当n=1时,不等式①成立.
(2)假设时,不等式①成立,即>.
那么时,
>(1+)=.
又[]2-()2=>0,
∴>=
∴当时①成立.
综合(1)(2),n∈N*时①成立.由函数单调性可判定.
五、高考链接。

相关文档
最新文档