《一元一次方程》提优单元测试卷
苏科版七年级数学上册第四章一元一次方程提优测试卷

苏科版七年级数学上册第四章一元一次方程提优测试卷第四章一元一次方程提优测试卷一、选择题(每题2分,共20分)1. 下列方程中,是一元一次方程的是()A.42=-y xB. 4=xyC. 413=-yD.441-x 2.若关于x 的一元一次方程422=+-m xa 的解为1=x ,则m a +的值为()A.9B.8C.5D.4 3.下列判断正确的是()A.方程132=-x 与方程x x x =-)32(同解B.方程132=-x 与方程x x x =-)32(没有相同的解C.方程x x x =-)32(的解也是方程132=-x 的解D.方程132=-x 的解也是方程x x x =-)32(的解4.小明在文具用品商店买了3件甲种文具和2件乙种文具,一共花了23元,已知每件甲种文具比每件乙种文具的售价少1元。
设每件乙种文具的售价为x 元,则下面所列方程正确的是()A.232)1(3=+-x xB.23)1(23=-+x xC.232)1(3=++x xD.23)1(23=++x x 5.某种商品每件的标价是270元,按标价的八折销售时,仍可获利%20,则这种商品每件的进价为()A. 180元B. 200元C. 225元D. 259.2元6. 某轮船在静水中的速度为h Km /20,水流速度为h Km /4,该船从甲码头顺流航行到乙码头,再返回甲码头,共用了h 5(不计停留时间),求甲、乙两码头间的距离。
设甲、乙两码头间的距离为xKm ,则列出的方程正确的是()A.5420=+x xB.5)420()420(=-++x xC.5420=+x x D.5420420=-++xx 7.对任意四个有理数d c b a ,,,,定义新运算:cabc ad d b-=,如22 4231213-=?-?=,若xx 21814=-,则x 的值为()A.-1B. 2C. 3D. 48.关于x 的一元一次方程01)43(=++x b a 无解,则ab 的值为()A. 正数B. 非正数C. 负数D. 非负数 9.满足81272=-++a a 的整数a 的值的个数是()A. 5B. 4C. 3D. 210. 如图,一个瓶子的容积为L 1,瓶内装着一些溶液。
一元一次方程单元综合提优专练

专题04一元一次方程单元综合提优专练(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题 1.(2020·浙江七年级其他模拟)下列方程中,是一元一次方程的是( ) A .243x x -=B .0x =C .21x y +=D .11x x-=2.(2021·山东七年级期末)设P =2y -2,Q =2y +3,且3P -Q =1,则y 的值是( ) A .0.4B .2.5C .-0.4D .-2.53.(2021·山东七年级期末)某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元B .赔了10元C .赚了50元D .不赔不赚4.(2021·浙江七年级期中)若关于x 的方程(1)a x b +=(a ,b 为常数)的解是1bx a =+,则( )A .方程ax b =的解是bx a=B .方程bx a =的解是a x b=C .方程(1)1a x +=的解是11x a =+ D .方程(1)1b x +=的解是11x b =+ 5.(2021·浙江九年级一模)已知23a b =,则( ) A .2233a b +=+2 B .23a b =C .32a b = D .2223a b =6.(2021·浙江杭州市·七年级期中)若21832m m ++=,则4244m m +的值是( ) A .116B .16C .20D .247.(2021·浙江七年级专题练习)形如a cb d的式子叫做二阶行列式,它的运算法则用公式表示为a c ad bc b d=-,那么当(1)(3)25(2)(1)m m m m --=++时,则m 为( )A .17B .18C .19D .20二、填空题8.(2021·浙江九年级专题练习)当a __时,方程(a +1)x +34a -=0是关于x 的一元一次方程.9.(2021·浙江七年级期末)小方同学设计了一个“魔法棒转不停”程序,如图所示,点O ,0A 在直线MN 上,第一步,0OA 绕点O 顺时针旋转α度()030α︒<<︒至1OA ;第二步,1OA 绕点O 顺时针旋转2α度至2OA ;第三步,2OA 绕点O 顺时针旋转3α度至3OA ,以此类推,在旋转过程中若碰到直线MN 则立即绕点O 反方向旋转.当2421A OA ∠=︒时,则α等于______度.三、解答题 10.(2021·河南七年级期末)解方程(1)4x ﹣3(20﹣x )=﹣4 (2)2151136x x +--=.11.(2021·河南七年级期末)m 为何值时,代数式5m 12m 3--的值与代数式7m2-的值的和等于5?12.(2021·浙江七年级期末)如图,已知在数轴上A 点表示数3-,B 点表示数1,C 点表示数9.(1)若将数轴折叠,使得A 点与C 点重合,则点B 与表示数__________表示的点重合;(2)若点A ,点B 和点C 分别以每秒2个单位长度,1个单位长度和4个单位长度的速度在数轴上同时向左运动,点A ,点B 和点C 运动后的对应点分别是点1A ,点1B 和点1C . ①假设t 秒钟过后,111,,A B C 三点中恰有一点为另外两点的中点,求t 的值; ①当点1C 在1B 点右侧时,11113m B C A B ⋅+的值是个定值,求此时m 的值.13.(2021·浙江七年级期末)某城市平均每天产生垃圾700吨,由甲,乙两个垃圾处理厂处理.已知甲厂每小时可以处理垃圾55吨,每吨需费用10元;乙厂每小时可以处理垃圾45吨,每吨费用9元.(1)甲,乙两厂同时处理该城市的垃圾,每天需要多少时间完成?(2)如果该城市每天用于处理垃圾的费用为6700元,那么甲厂每天处理垃圾多少吨?14.(2021·浙江七年级期末)小嘉和小海相约去某景区游玩,其地理位置及部分路线如图1.A ,B ,C 为三个高速路口,已知高速路段AB 的路程为10km ,在高速上小海每小时可比小嘉多行驶20km ,在其余道路上两人的开车速度均为60/km h .他俩的微信对话部分信息如图2.(注:在高速上匀速行驶)(1)小海从小嘉家开车到高速路口A需要多少时间?(2)求小海在高速上的行驶速度.(3)在返回过程中为节省高速路费,小海从B下高速,先送小嘉回家后再返回自己家,发现整个返回过程与整个前往景区过程的时间相同,求小嘉家与小海家之间的距离.15.(2021·浙江宁波市·七年级期末)为节约用水,宁波市居民生活用水实行按级收费,居民用水价格(含污水处理费)按用水量分为三级,下表是宁波市目前实行的水费收费标准:则该用户需交水费 元;若用水量为立方米,则该用户需交水费 元.(2)若用水量为()30x x >立方米, 则请用含x 的代数式表示需交的水费.(3)十二月份,小江、小北两家用水情况如下:①小江家用水量比小北家少;①两家用水量达到的级别不同;①两家用水量总共60立方米;①水费共270.72元.请根据以上信息,算一算: 小江、小北两家用水量分别是多少立方米?16.(2021·浙江七年级期末)某市居民生活用电峰谷电价如下表:(1)小明家3月用电量中,高峰用电量为60千瓦时,低谷用电量为40千瓦时,这个月他家需付电费多少元?(2)如果小明家4月用电总量为a 千瓦时(100300a ≤≤),高峰用电量为100千瓦时,请分析他家4月份需付的电费(用含字母a 的整式表示并化简);(3)小明家7月用电总量为400千瓦时,需付电费156元,问:这个月小明家高峰用电量和低谷用电量分别用了多少千瓦时?17.(2021·浙江)小商品批发市场内,某商品的价格按如下优惠:购买不超过300件时,每件3元;超过300件但不超过500件时,每件2.5元;超过500件时,每件2元.某客户欲采购这种小商品700件.(1)现有两种购买方案:①分两次购买,第一次购买240件,第二次购买460件;①一次性购买700件.问哪种购买方案费用较省?省多少元?说明理由.(2)若该客户分两次购买该商品共700件(第二次多于第一次),共付费1860元,则第一次、第二次分别购买该商品多少件?18.(2021·浙江七年级期中)如图1,小盛买了一支铅笔和一个铅笔套.未开始使用时,铅笔长度是铅笔套长度的3倍多1cm,且铅笔长度比铅笔套长度多12cm.如图2,当铅笔套用于保护铅笔时,铅笔分界处到笔尖的距离比到套口的距离多1cm.(1)铅笔套的长度为________cm;(2)如图2,铅笔使用一段时间后,当套口到铅笔顶部的距离等于套口到笔尖的距离时,测得套上铅笔套的整支笔长度为9cm,求套口到分界处的距离;(3)铅笔套既能保护铅笔,也能套在铅笔顶部......作延长器使用,且用于保护时套口到分界处的距离与用于延长器时套口到顶部的距离都为lcm.正常情况下,1cm铅笔平均可以写1000字.当套口刚好是套上铅笔套的整支笔的三等分点时,小盛已经写了约________字.19.(2021·浙江七年级期末)植树节,小明种树的棵数是小聪的1.5倍,小慧种树的棵数比小明少8棵.(1)设小明种了x棵,问他们三人一共种了多少棵树?(用含x的代数式表示)(2)若小聪发现他比小慧多种的棵树等于他比小明少种的棵树,他们三人一共种了多少棵树?20.(2021·浙江七年级期末)如图,点A从原点O出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,5秒后,两点相距15个单位长度,已知点B的速度是点A的速度的2倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度;并在数轴上标出A、B两点从原点O出发运动5秒时的位置.(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,①t秒后,A点所表示的数为________,B点所表示的数为_________.①再过几秒,A、B两点重合?①再过几秒,可以让A、B、O三点中一点是另外两点所成线段的中点?。
一元一次方程章节测试卷(含答案)

第三章一元一次方程单元达标检测卷一、单选题:1.下列方程是一元一次方程的是()A.2x+3y=7B.3x 2=3C.6=2x-1 D.2x-1=202.下列解方程步骤正确的是()A.由0.2x +4=0.3x +1,得0.2x -0.3x =1+4B.由4x +1=0.310.1x ++1.2,得4x +1=3101x ++12C.由0.2x -0.3=2-1.3x ,得2x -3=2-13x D.由13x --26x +=2,得2x -2-x -2=123.解方程3112424x x-+-=-时,去分母后得到的方程正确的是()A.()231124x x --+=- B.()()231121x x --+=-C.()()231124x x --+=- D.()()2311216x x --+=-4.如果式子5x-4的值与-16互为倒数,则x 的值为()A.56B.-56C.-25D.255.下列变形中,不正确的是()A.若a ﹣3=b ﹣3,则a=bB.若a b c c=,则a=b C.若a=b ,则2211a bc c =++ D.若ac=bc ,则a=b6.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是13.(-12x -+x)=1-5x -,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是()A.2 B.3 C.4 D.57.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x ,则可列方程为()A.()10186x x -=- B.()10186x x -=+ C.()10186x x +=- D.()10186x x +=+8.下图是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元 B.23元 C.24元D.26元9.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x-2)=44 C.9(x+2)=44 D.9(x+2)-4×2=4410.已知关于x 的一元一次方程2133axx +=+的解为正整数,则所有满足条件的整数a 有()个A.3B.4C.6D.8二、填空题:11.若关于x 的方程(k ﹣3)x |k ﹣2|+5k+1=0是一元一次方程,则k=.12.若关于y 的方程32y k -=与32y y +=的解相同,则k 的值为.13.若方程3(2x ﹣1)=2+x 的解与关于x 的方程623k-=2(x+3)的解互为相反数,则k 的值是14.在全国足球甲级A 组的比赛中,某队在已赛的11场比赛中保持连续不败,积25分.已知胜一场得3分,平一场得1分,那么该队已胜场.15.春节将近,各服装店清仓大甩卖.一商店某一时间以每件120元的价格卖出两件衣服,其中一件盈利50%,另一件亏损20%,卖这两件衣服的利润为元.16.整理一批资料,由一个人做要20h 完成,现计划由一部分人先做3h ,然后调走其中5人,剩下的人再做2h 正好完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?若设应先安排x 人工作3h ,则根据题意可列方程为.17.为了抓住国庆长假的商机,某商家推出了“每满300元减30元”的活动,该商家将某品牌微波炉按进价提高50%后标价,再按标价的八折销售,一顾客在国庆长假期间购买了一个该商家这个品牌的微波炉,最终付款780元.(1)将表格补充完整:(2)该商家卖一个这个品牌的微波炉的利润为元.18.按照下面的程序计算,如果输入的值是正整数,输出结果是94,则满足条件的y 值有个.19.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是%(注:利润率=-销售价进价进价×100%).20.线段15AB =,点P 从点A 开始向点B 以每秒1个单位长度的速度运动,点Q 从点B 开始向点A 以每秒2个单位长度的速度运动,当其中一个点到达终点时另一个点也随之停止运动,当2AP PQ =时,t 的值为.三、计算题:21.解下列方程(1)()4315235x x --=(2)10.10.051220.2x x+--=+四、解答题:22.小李在解关于x 的方程2133x x a-+=-1去分母时,方程右边的-1漏乘了3,因而求得方程的解为x=-2,请你帮小李同学求出a 的值,并且求出原方程的解.23.学习了一元一次方程的解法后,老师布置了这样一道计算题317124x x +--=,甲、乙两位同学的解答过程分别如下:甲同学:解方程317124x x +--=.解:317441424x x +-⨯-⨯=⨯…第①步()23174x x +--=……第②步6274x x +--=……第③步6427x x -=-+……第④步59x =…………第⑤步95x =.………第⑥步乙同学:解方程317124x x +--=.解:31744124x x +-⨯-⨯=…第①步()23171x x +-+=……第②步6271x x +-+=……第③步6127x x -=--……第④步58x =-…………第⑤步85x =-.………第⑥步老师发现这两位同学的解答过程都有不符合题意.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.(1)我选择同学的解答过程进行分析(填“甲”或“乙”);(2)该同学的解答过程从第步开始出现不符合题意(填序号);错误的原因是;(3)请写出正确的解答过程.24.某地区发生强烈地震,维和部队在两个地方进行救援工作,甲处有91名维和部队队员,乙处有49名维和部队队员,现又调来100名维和部队队员支援,要使甲处的人数比乙处人数的3倍少12人,应往甲、乙两处各调来多少名维和部队队员?25.用方程解答问题:某车间有22名工人,用铝片生产听装饮料瓶,每人每天可以生产1200个瓶身或2000个瓶底,一个瓶身和两个瓶底可配成一套,为使每天生产的瓶身和瓶底刚好配套,应安排生产瓶身和瓶底的工人各多少名?26.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨不超过18吨的部分超过18吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.27.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?28.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?答案一、单选题:1-10DDDCD DBCAB 二、填空题:11.112.713.-314.715.1016.320x +()2520x -=117.(1)60(2)8018.319.1720.307或6三、计算题:21.(1)解:去括号,得:445635x x -+=移项,合并同类项,得:1080x =系数化为1,得:8x =(2)解:原方程化为:110512220x x+--=+去分母,得:()1012040105x x+-=+-去括号得:101020505x x +-=-移项,合并同类项,得:1560x =系数化为1,得:4x =四、解答题:22.解:按小李的解法解方程,去分母得:2x -1=x +a -1,整理,解得x =a ,又∵小李解得x =-2,∴a =-2,把a =-2代入原方程,得2x 1x 2133--=-,去分母得:2x-1=x-2-3,整理,解得x =-4,将x=-4代入方程中,左式=右式,即x =-4为原方程正确的解.23.(1)甲(2)②;去分母时7x -这一项没有加括号(3)解:317124x x +--=.317441424x x +-⨯-⨯=⨯()231(7)4x x +--=62+74x x +-=6427x x -=--55x =-1x =-.24.解:设应往甲处调x 名维和部队队员,则往乙处调100-x 名,可列方程:91+x=3[49+(100-x )]-12解得x=86,则100-x=14答:应往甲处调86名维和部队队员,往乙处调14名维和部队队员。
2023-2024年第一学期人教版数学七年级第3章 一元一次方程 单元测试卷(含答案) (1)

2023-2024年第一学期人教版数学七年级第3章《一元一次方程》单元测试卷3一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是( )A .2x−1=3x 2B .3x+6=xC .3x +2y =5D .6+y =12.下列方程中,以x=1为解的方程是( )A .13x =−3B .7(x ﹣1)=0C .4x ﹣7=5x+7D .3x +12=x 2−23.根据下面所给条件,能列出方程的是( )A .一个数的13是6B .x 与1的差的14C .甲数的2倍与乙数的13D .a 与b 的和的60%4.已知关于x 的方程(m+1)x |m|+1=0是一元一次方程,则m 的值是( )A .1B .0C .﹣1D .﹣1或15.已知 x =1 是方程 1+2(m−x)=2 的解,则 m 的值是( )A .12B .32C .−12D .−326.下面四个等式的变形中正确的是( )A .由4x+8=0得x+2=0B .由x+7=5-3x 得4x=2C .由 35 x=4得x=125D .由-4(x -1)=-2得4x=-67.某商品连续两次降价,每次都降20%后的价格为m 元,则原价是( )A .m1.22元B .1.2m 元C .m0.82元D .0.82m 元8.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .1009.七年级男生入住的一楼有x 间,如果每间住6人,恰好空出一间;如果每间住5人就有4人没有房间住,则一楼共有( )间. A ..7B ..8C ..9D .1010.将方程x 0.3=1+1.2−0.3x 0.2中分母化为整数,正确的是( )A .10x 3=10+12−3x2B .x 3=10+1.2−0.3x0.2C .10x 3=1+12−3x 2D .x 3=1+1.2−0.3x 2二、填空题(每小题3分,共24分)11.如果(a ﹣2)x a ﹣2+6=0是关于x 的一元一次方程,那么a= .12.已知关于x 的方程3m ﹣4x=2的解是x=1,则m 的值是 .13.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了 道题.14.关于x 的方程 3x−8=x 的解为 x = .15.当a = 时,关于x 的方程x +23−3x +a6=1 的解是x =-1.16.若 25a =−3 ,则 4a = .17.已知关于x 的方程x−m 2=x +m 3与方程x−12=3x ﹣2的解互为倒数,则m 的值为 .18.整理一批图书,如果由一个人单独做要用30h ,现在先安排一部分人用1h 整理,随后又增加6人和他们一起又做了2h ,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有 人.三、解答题(共66分)19.(24分)解方程:(1)2(4−x)=2x . (2)1+x 0.1−0.4x−0.50.2=12.(3)10x +6=7x +3 (4)2x +15+1=3x−410(5)5x−2(8−x)=−2 (6)3x−56−x−23=120.(7分)某工厂车间有21名工人,每人每天可以生产12个螺钉或18个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,车间应该分配生产螺钉和螺母的工人各多少名.21.(8分)有一群鸽子和一些鸽笼,如果每个鸽笼6只鸽子,则剩余3只鸽子无鸽笼可住;如果在飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.原来有多少只鸽子和鸽笼?22.(8分)甲乙两个粮仓仓库的粮食重量比是11:3,如果从甲仓库运15吨到乙仓库,那么甲、乙两仓库粮食重量比就是4:3,原来两个仓库各有粮食多少吨?23.(9分)对a、b定义一种新运算T:规定T(a,b)=a b2−3ab+b,这里等式右边是通常的四则运算.如T(1,2)=1×22−3×1×2+2=0.(1)求T(2,−1)的值;(2)计算T(k+1,2);(3)若T(x+2,−2)=8,求x的值.24.(10分)阅读材料,解答下面问题.无限循环小数化分数:利用一元一次方程可以将任何一个无限循环小数化成分数形式.下面以0. 6为例说明:设x=0.6①,由0.6=0.666⋅⋅⋅.可得10x=6.666⋅⋅⋅②,由②-①,得10x−x=6解得:x=23,所以,0.6=23模仿:(1)将无限循环小数0.7化成分数形式.(2)0.12= .(直接写出答案)答案1.D 2.B 3.A 4.A 5.B 6.A 7.C 8.B 9.D 10.C 11.3 12.2 13.22 14.4 15.-1 16.-30 17.-1 18.6.19.(1)解:2(4−x)=2x去括号得:8−2x=2x移项得:−2x−2x=8,合并同类项得:−4x=8,系数化为1得:x=2(2)解:1+x0.1−0.4x−0.50.2=12,方程整理得:10(1+x)−4x−52=12去分母得:20(1+x)−(4x−5)=1,去括号得:20+20x−4x+5=1,移项得:20x−4x=1−20−5,合并同类项得:16x=−24,系数化为1得:x=−3 2 .(3)解:移项,得10x-7x=3-6,合并同类项,得3x=-3,系数化为1,得x=−1;(4)解:方程两边同时乘以10,得2(2x+1)+10=3x-4,去括号,得4x+2+10=3x-4,移项、得4x-3x=-4-10-2,合并同类项,得x=-16.(5)解:去括号得:5x−16+2x=−2,移项得:5x+2x=−2+16,合并同类项得:7x=14,系数化1得:x=2(3)解:去分母得:3x−5−2(x−2)=6,去括号得:3x−5−2x+4=6,移项、合并同类项得:x=7.20.解:设分配x名工人生产螺母,则(21-x)人生产螺钉,由题意得=12×(21−x),18x×12解得:x=12,则21-x=9,答:车间应该分配生产螺钉和螺母的工人9名,12名.21.解:设鸽笼有x个,鸽子有(6x+3)只,根据题意得6x+3=8x-5,解得x=4,6x+3=6×4+3=27,答:鸽笼有4个,鸽子有27只.22.解:设甲仓库原有粮食11x吨,则乙仓库原有粮食3x吨,(11x−15):(3x+15)=4:3,解得:x=5,11x=55(吨),3x=15(吨),答:甲仓库原有粮食55吨,乙仓库原有粮食15吨.23.(1)解:T(2,−1)=2×(−1)2−3×2×(−1)+(−1)=2+6−1=7;(2)解:T(k+1,2)=(k+1)×22−3×(k+1)×2+2=4k+4−6k−6+2=−2k;(3)解:T(x+2,−2)=(x+2)×(−2)2−3×(x+2)×(−2)+(−2)=8,整理得:4(x+2)+6(x+2)−2=8,去括号得:4x+8+6x+12−2=8,移项合并得:10x=−10,系数化为1得:x=−1.24.(1)解:设x=07①由07=0.777…可得10x=7.777⋅⋅⋅②由②-①,得10x−x=7解得x=7 9∴0.7=7 9(2)4 33。
一元一次方程单元测试题(附参考答案)

一元一次方程单元测试(附参考答案)一、填空题1、1y =是方程()232m y y --=的解,则m = 。
2、若()23340x y -++=,则xy = 。
3、如果21m x-+8=0是一元一次方程,则m= 。
4、若3x -的倒数等于12,则x -1= 。
5、今年母女二人年龄之和53,10年前母女二人年龄之和是 ,已知10年前母亲的年龄是女儿年龄的10倍,如果设10年前女儿的年龄为x ,则可列方程 。
6、如果方程340x +=与方程3418x k +=是同解方程,则k= 。
7、单项式1414x a b +与9a 2x -1b 4是同类项,则x= 。
8、若52x +与29x -+是相反数,则x -2的值为 。
二、选择题9、下列各式中是一元一次方程的是( )。
A 、1232x y -=- B 、2341x x x -=- C 、1123y y -=+ D 、1226x x-=+ 10、根据“x 的3倍与5的和比x 的13多2”可列方程( )。
A 、3525x x +=- B 、3523x x +=+ C 、3(523x x +=-) D 、3(523xx +=+) 11、解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得( )。
A 、200025101032x x -+= B 、20025100.132x x-+= C 、20.250.10.132x x -+= D 、20.250.11032x x -+= 12、三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是( )。
A 、56 B 、48 C 、36 D 、1213、方程2152x kx x -+=-的解为-1时,k 的值为( )。
A 、10 B 、-4 C 、-6 D 、-814、已知:()2135m --有最大值,则方程5432m x -=+的解是( )7979B C D 9797A --、、、、 15、若关于x 的方程230m mxm --+=是一元一次方程,则这个方程的解是( )A 、0x =B 、3x =C 、3x =-D 、2x =16、某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )。
《一元一次方程》单元测试卷(附答案)

七年级数学(上)《一元一次方程》单元测试卷(时间:120分钟 ) 一、选择题(18分) 1、在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个2、解方程3112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x 3、方程x x -=-22的解是( )A .1=xB .1-=xC .2=xD .0=x 4、对432=+-x ,下列说法正确的是( )A .不是方程B .是方程,其解为1C .是方程,其解为3D .是方程,其解为1、3 5、方程17.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.171203110=--+x xC.1071203110=--+x xD.107102031010=--+x x6、x 增加2倍的值比x 扩大5倍少3,列方程得( )A .352+=x xB .352-=x xC .353+=x xD .353-=x x7、A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨.若经过x 个月后,两厂库存钢材相等,则x =( )A .3B .5C .2D .48、某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( ). A .80元 B .85元 C .90元 D .95元9、某原料供应商对购买其原料的顾客实行如下优惠:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元给九折优惠;(3)一次购买超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库容原因,第一次在供应商购买原料付款7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为( )元. A.1460 B.1540 C.1560 D.2000二、填空题(18分)10、代数式12+a 与a 21+互为相反数,则=a . 11、如果06312=+--a x是一元一次方程,那么=a ,方程的解为=x .12、若4-=x 是方程0862=--x ax 的一个解,则=a .13、如果)12(3125+m b a 与)3(21221+-m b a 是同类项,则=m .14、已知023=+x ,则=-34x .15、一个数x 的51与它的和等于–10的20%,则可列出的方程为 .16、已知梯形的下底为cm 6,高为cm 5,面积为225cm ,则上底的长等于 .17、要锻造直径为16厘米、高为5厘米的圆柱形毛坯,设需截取边长为6厘米的的方钢x 厘米,可得方程为 .18、国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:⑴稿费不高于800元的不纳税;⑵稿费高于800元,又不高于4000元,应缴纳超过800元的那一部分稿费14%的税;⑶稿费高于4000元,应缴纳全部稿费的11%的税.某老师获得了2000元稿费,他应纳税 元. 三、解答题(共55分) 19、解下列方程(10分) (1)22)141(34=---a a (2)151423=+--x x (3)25.032.04=--+x x20、(8分)在公式h b a S )(21+=中,已知8,18,120===h b S ,求a 的值21、(8分)不论x 取何值,等式34=--x b ax 永远成立,求ab 21的值.22、(8分)当m 为何值时,关于x 的方程x x m +=+21125的解比关于x 的方程)1()1(x m m x +=+的解大2.23、(8分)设1511+=x y ,4122+=x y ,当x 为何值时,1y 、2y 互为相反数?24、(8分)已知3=x 是方程()241133=⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛+x m x 的解,n 满足关系式12=+m n ,求n m +的值.四.列方程解应用题(共41分)25、(10分)在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?26、(10分)一项工作,甲单独做需15天完成,乙单独做需12天完成,这项工作由甲、乙两人合做,并且施工期间乙休息7天,问几天完成?27、(10分)张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内按全票价的6折优惠.”若全票价为240元,当学生人数为多少人时,两家旅行社的收费一样多?28. (11分)小明中考时的准考证号码是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为1;(2)把千位上的数字1向右移动,使其成为个位数字,那么所得的新数比原数的5倍少49.请你根据以上特征推出小明的准考证号码.一、选择题1.下列各种变形中,不正确的是( )A .从3+2x =2可得到2x =-3B .从6x =2x -1可得到6x -2x =-1C .从21%+50%(60-x )=60×42%可得到21+50(60-x )=62×42D .从3212-=-x x 可得到3x -1=2(x -2)2.方程673422--=--x x 去分母是( ) A .12-2(2x -4)=-(x -7) B .12-2(2x -4)=-x -7 C .12-2(2x -7)=-(x -7) D .12-4x -4=-x +73.已知x =1是方程21233-=-x k x 的解,则32+k 的值是( )A .-2B .2C .0D .-14.如果3个连续的奇数的和为15,那么它们的积是( ) A .15 B .21 C .105 D .2155.1元和5角的硬币共100枚,值68元,则1元和5角的硬币个数分别为( ) A .36个,64个 B .64个,36个 C .28个,72个 D .50个,50个 6.某项工程由甲队单独做需18天完成,由乙队做只需甲队的一半时间完成,设两队合作需x 天完成,则可得方程( )A .x =+91181 B .1)91181(=+x C .x =+361181 D .1)361181(=+x 7.一个长方形的周长是16cm ,长与宽的差是2 cm ,那么这个长方形的长与宽分别是( )A .9cm ,7cmB .5cm ,3cmC .7cm ,5cmD .10cm ,6cm8.若关于x 的方程x +2=ax 的解是-1,则a 的值是( ) A .1=a B .1-=a C .0=a D .3=a9.采石场工人爆破时,为了确保安全,点燃炸药导火线后要在爆破前转移到400米以外的安全区域,燃烧速度是1厘米/秒,人离开的速度是5米/秒,至少需要导火线的长度是( ) A .70厘米 B .75厘米 C .79厘米 D .80厘米10.一家三口(父亲、母亲、儿子)准备利用寒假外出旅游,甲旅行社告知:父母买全票,儿子可按半价优惠;乙旅行社告知:每人均按定价的8折优惠,若这两家旅行社每人的原票价相同,那么优惠条件是( )A .甲比乙优惠B .乙比甲优惠C .甲与乙相同D .与原票价有关二、填空题11.1、x 52比41大17,则x =_________。
一元一次方程单元测试卷(初中数学)附答案

一元一次方程单元检测题满分:100分 时间:90分钟 姓名: 得分:一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是( )A.342=-x xB.x =0C.x +2y=3D.x x 11=- 2.若方程2512-=+-x kx x 的解为-1,则k 的值为( )A.10B.-1C.-6D.-83.某市举行的青年歌手大奖赛今年共有a 人参加,比赛的人数比去年增加 20%还多3人,设去年参赛的有x 人,则x 为( ) A.%2013++a B.3)201(++a % C.%2013+-a D.3)201(-+a % 4.若方程532=+x ,则6x +10等于( )A.15B.16C.17D.345.数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分,必须答对的题数是( )A.6B.7C.9D.86.甲、乙两人练习赛跑,甲每秒跑7m ,乙每秒跑6.5m ,甲让乙先跑5m ,设x s 后甲可追上乙,则下列四个方程中不正确的是( )A.55.67+=x xB.x x 5.657=+C.()55.67=-xD.575.6-=x x7.三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是( )A.56B.48C.36D.128.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A.赚16元B.赔16元C.不赚不赔D.无法确定9. 已知()2531--m 有最大值,则方程2345+=-x m 的解是x =( ) A.97 B.79 C.97- D.79-10.一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租x 辆客车,可列方程为( )A.44x -328=64B.44x+64=328C.328+44x =64D.328+64=44x二、填空题(每小题3分,共24分)11. 如果13=+a ,那么a = .12. 如果关于的方程043=+x 与方程1843=+k x 是同解方程,则k = .13.已知方程23252+-=-x x 的解也是方程b x =-23的解,则b =_________. 14.已知方程x m x +=-332的解满足01=-x ,则m ________. 15.若(5x +2)与(-2x +9)互为相反数,则x -2的值为 .16.某商品按进价增加20%出售,因积压需降价处理,如果仍想获得8%的利润,则出售价需打 折.17.甲水池有水31吨,乙水池有水11吨,甲水池的水每小时流入乙水池2吨, x 小时后, 乙水池有水________吨,甲水池有水_______吨,________小时后,甲水池的水与乙水池的水一样多.18.日历中同一行中相邻三个数的和为63,则这三个数分别为 . (用逗号隔开)三、解答题(共46分)19.(12分)解下列方程:(1)10(x -1)=5;(2)4232215317+-=+--x x x ; (3)2(y +2)-3(4y -1)=9(1-y ); (4)3.0152.033.12.198.0+=---x x x .20.(6分)m为何值时,关于x的方程4x-2m=3x-1的解是x=2x-3m的解的2倍?21.(6分)将一批工业最新动态信息输入管理储存网络,甲单独做需要6小时,乙单独做需要4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作?22. (6分)有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少.23.(5分)江南生态食品加工厂收购了一批质量为10000 kg的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000 kg,求粗加工的该种山货质量.24.(5分)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,求两校各植树多少棵.25.(6分)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几名工人加工甲种零件.一元一次方程单元检测题参考答案1.B2.C3.C4.B5.D6.B7.B8.B9.A 10.B11.-2或-4 12.211 13.713 14.-6或-12 15.317- 16.9 17.11+2x ,31-2x ,5 18.20,21,2219.(1)23=x ; (2) 4=x ; (3)2-=y ; (4)1-=x . 20.41-=m21.解:设甲、乙一起做还需要x 小时才能完成工作. 根据题意,得141612161=⎪⎭⎫⎝⎛++⨯x , 解得:511=x .511小时=2小时12分.答:甲、乙一起做还需要2小时12分才能完成工作.22.解:设第一座铁桥的长为x 米,那么第二座铁桥的长为(2x -50)米,•过完第一座铁桥所需要的时间为600x 分,过完第二座铁桥所需要的时间为600502-x 分.依题意,可列出方程605600+x =600502-x解得x=100所以2x -50=2×100-50=150答:第一座铁桥长100米,第二座铁桥长150米.23.解:设粗加工的该种山货质量为x kg ,根据题意,得x +(3x +2000)=10000,解得x=2000.答:粗加工的该种山货质量为2000 kg .24.解:设励东中学植树x 棵.依题意,得x+(2x -3)=834解得x=279.2x -3=2×279-3=555答:励东中学植树279棵,海石中学植树555棵.25.解:设这一天有x名工人加工甲种零件,则这一天加工甲种零件5x个,乙种零件4(16-x)个.根据题意,得16×5x+24×4(16-x)=1440,解得x=6.答:这一天有6名工人加工甲种零件.。
一元一次方程单元提优有答案

一元一次方程单元提优一、选择题(共10题;共30分)1.已知下列方程:①x﹣2= ;②0.2x=1;③ =x﹣3;④x2﹣4﹣3x;⑤x=0;⑥x﹣y=6.其中一元一次方程有()A. 2个B. 3个C. 4个D. 5个2.在解方程3x-5=-x+1中,下面移项正确的是()A. 3x+x=5+1B. 3x-x=-5-1C. 1-5=-3x+xD. 3x+x=5-13.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元.若设这件羽绒服的成本是x元,根据题意,可得到的方程是()A. x(1+50%)×80%=x﹣250B. x(1+50%)×80%=x+250C. (1+50%x)×80%=x﹣250D. (1+50%x)×80%=250﹣x4.有苹果若干,分给小朋友吃,若每个小朋友分3个则剩1个,若每个小朋友分4个则少2个,设共有苹果x个,则可列方程为()A. 3x+4=4x﹣2B. =C. =D. =5.下列式子中,是一元一次方程的是()A. x﹣7B. =7C. 4x﹣7y=6D. 2x﹣6=06.已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c ﹣b|﹣|a﹣b|的结果是()A. 2aB. 2bC. 2cD. 07.(2010秋•天长市期末)给出下面四个方程及变形:(1)4x+10=0,变形为2x+5=0,(2)x+7=5﹣3x,变形为4x=12,(3),变形为2x=15,(4)16x=﹣8,变形为x=﹣2;其中变形正确的编号组为()A. (1)(2)B. (1)(2)(3)(4)C. (1)(3)D. (1)(2)(3)8.几个人打算合买一件物品,每人出7元,还少5元;每人出8元,就多3元,则该物品的价格为()A. 59元B. 60元C. 61元D. 62元9.方程1+2x= 的解是()A. x=4B. x=﹣4C. x=D. x=﹣10.方程||=|x|的解是()A. x=1或x=-B. x=-1或x=-C. x=-1或x=D. x=1或x=二、填空题(共8题;共24分)11.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜________场比赛.12.在等式(a+1)x=2+3x中,若x是负整数,则整数a的取值是________.13.在①x+1;②3x﹣2=﹣x;③|π﹣3|=π﹣3;④2m﹣n=0,等式有 ________,方程有 ________.(填入式子的序号)14.解方程2x﹣4=1时,先在方程的两边都________ ,得到________ ,然后在方程的两边都________ ,得到x=________15.某市自来水的收费标准是:月用水量不超过10立方米,以每立方米1.5元收费;月用水量超过10立方米后,其中的10立方米仍按每立方米1.5元收费,而超过部分按每立方米2元收费.某户居民六月交水费20元,设该户居民该月用水量为x立方米,则可列方程为________ .16.某商店在进价的基础上提高50元作零售价销售,商店又以8折(即售价的80%)的价格开展促销活动,这时一件商品所获利润为20元,则该商品进价为________元.17.x=3和x=﹣6中,________ 是方程x﹣3(x+2)=6的解.18.已知a,b互为相反数,且ab≠0,则方程ax+b=0的解为________ .三、解答题(共6题;共30分)19.从x=1,能不能得到xy=y,为什么?20.在梯形面积公式S=(a+b)h中,若S=120,a=12,h=8,求b.21.列方程解应用题:A、B两地相距150千米.一辆汽车以每小时50千米的速度从A地出发,另一辆汽车以每小时40千米的速度从B地出发,两车同时出发,相向而行,问经过几小时,两车相距30千米?22.用白铁皮做罐头盒,每张铁皮可制盒身15个,或盒底40个,一个盒身与两个盒底配成一套罐头盒.现有280张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?23.列方程解应用题:甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 2: 已知(m2-1)x2-(m+1)x+8=0 是关于 x 的一元一次方程,求代数式 199(m+x)(x-2m)+m 的值
例 3: 已知关于 x 的方程 a(2x-1)=3x-2 无解,试求 a 的值. 三、拓展练习 (一)填空题 1.若关于 x 的方程 x+2=a 和 2x-4=3a 有相同的解,则 a= . 2.一个三位数,三个数位上的数字和是 17,百位上的数比十位上的数大 7,个位上的数是十位上数的 3 倍,这个三位数 是 . 3.关于x的方程 19x-a=0 的解为 19-a,则 a=__________.4.若关于 x 的方程 5x+1=a(2x+3)无解,则 a=__________ 5.若关于 x 的方程 ︳2x-1 ︳+m=0 无解,则 m=____________. (二)选择题 6.若 2a 与 1-a 互为相反数,则 a 等于( )A. 0 B. -1 C. 1 D. -2 7.当 3<a<8 时,关于 x 的方程 3x-8=a(x-1)的解是( )A. 无解 B.正数 C. 零 D.负数 8.要使方程 ax=a 的解为 1,则( )A.a 可取任何有理数 B.a>0 C. a<0 D.a≠0 9.关于 x 的方程 ax+3=4x+1 的解为正整数,则 a 的值为( )A. 2 B. 3 C.1 或 2 D.2 或 3 10.关于 x 的方程 3x-4=a-bx 有无穷多个解,则 a. b 的值应是( ) A. a=4, b=-3 B.a=-4, b=-3 C. a=4 , b=3 D.a .b 可取任意数 (三)解答题 11.解关于 x 的方程 (1) k(x-2)=3x-1 (2)ax-b=cx+d
练习:10.计算
1 1 1 1 1 1 的值。 2 4 8 16 32 256
1
专题三、方程的解的讨论: 当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以华为 ax=b 的 形式,继续求解时,一般要对字母系数 a、b 进行讨论。 (1)当 a 0 时,方程有唯一解 x
一元一次方程辅导讲义
教学内容
重点知识巩固:
专题一:一元一次方程概念的理解: 例 1:若 m 9 x
2 2
1 x 2 0 是关于 x 的一元一次方程,则方程的解是 m3
。
2 2 练习: 1. m 1 x m 1 x 8 0 是关于 x 的一元一次方程,则代数式 199 2m 31 m 10m 1 的值
4
)
15.若关于 x 的方程 a 4 x b bx a 2 有无穷多个解, 则 ab 等于 ( 16.(1)a 为何值时,方程
) A.0
B.1
C.81
D.256
x x 1 a x 12 有无数多个解?(2)a 为何值时,该方程无解? 3 2 6
13.解方程
x 1 1 x a b a b ab
14.对于任何 a 值,关于 x,y 的方程 ax a 1 y a 1有一个与 a 无关的解,这个解是( A. x 2, y 1 B. x 2, y 1 C. x 2, y 1 D. x 2, y 1
。
例 5:解方程: (1) x 2 x 1 5 (2) x 2 x 1 3 (3) x 2 x 1 2
2
练习:19.解方程: (1) 2x 3 1 3x
(2) 2x 3 1 3x
20.若关于 x 的方程 2x 3 m 0 无解, 3x 4 n 0 只有一个解, 4 x 5 k 0 有两个解,则 m、n、k 的大小 关系是( )A. m>n>k B. n> k> m 一、典型例题分析: 例 1 解关于 x 的方程(mx-n)(m+n)=0. C. k> m> n D. m> k> n
b ; (2)当 a 0, b 0 时,方程无解; (3)当 a 0, b 0 时,方程有无数个解。 a
例 3:已知关于 x 的方程 a 2x 1 3x 2 无解,试求 a 的值。
练习:12.如果 a,b 为定值,关于 x 的方程
2kx a x bk 2 ,无论 k 为何值,它的根总是 1,求 a,b 的值。 3 6
。
8.当 m 取什么数时,关于 x 的方程
9.若 k 为整数,则使得方程 k 1999 x 2001 2000x 的解也是整数的 k 值有( A.4 个 B.8 个 C.12 个 D.16 个
)
难点知识突破:
专题二:利用一元一次方程的巧解: 例 2:计算
1 1 2 1 2 3 2 2011 1 的 2 3 3 4 4 4 2012 2012 2012
为
。
2.已知关于 y 的方程 4 y 2n 3 y 2 和方程 3 y 2n 6 y 1的解相同,求 n 的值。
xm m x 1 x 与 3 x 2 的解互为倒数,则 m 的值是 2 3 2 13m x 2 x 3m x 1 1 4 的解是 1 的解的 5 倍, 4.关于 x 的方程 则 m= 2 3 4 6 6k x k 的解互为相反数,则 k= 5.若方程 3 x k 2 x 1 与 。 2
17.问:当 a、b 满足什么条件时,方程 2 x 5 a 1 bx ;(1)有唯一解; (2)有无数解; (3)无解 18.若关于 x 的方程 x 3 x 1 k x 1 无解,则 k= 专题四:绝对值方程: 例 4:解方程: (1) x 3 5 (2) x 3 0 (3) 2 x 3 5
3.已知关于 x 的方
1 1 1 3 1 x ,则 4024 2012 x = 4 2 2012 4 2012
。
7.已知方程
1 1 1 1 5 x ,则代数式 3 10 2 x 的值是 4 2010 2 1005 1 5 1 4 mx x 的解是正整数? 2 3 2 3