高考数学线性规划专项练习题

合集下载

高考数学线性规划选择题

高考数学线性规划选择题

高考数学线性规划选择题1. 已知实数集R上的函数f(x)=3x+2,对于线性规划问题max f(x)s.t. x1+x2≤10,求最优解。

2. 设A(1,2),B(4,1),C(2,3),D(6,4),E(3,5),F(5,6),G(4,7),H(6,8),直线l过点A,B,C,D,E,F,G,H中的三个点,问直线l 的斜率是几?3. 某工厂生产甲、乙两种产品,甲产品每件利润为20元,乙产品每件利润为30元。

生产甲产品需要甲材料2千克,乙材料1千克;生产乙产品需要甲材料1千克,乙材料3千克。

现有甲材料30千克,乙材料20千克,要求甲、乙两种产品的利润总和最大,求解这个线性规划问题。

4. 给定线性规划问题:max 3x1+2x2,s.t. x1+x2≤10,x1≥0,x2≥0。

求解该问题,并给出最优解。

5. 已知点A(1,2),B(3,4),C(5,6),D(7,8),E(9,10),F(11,12),直线l过点A,B,C,D,E,F中的三个点,问直线l的斜率是几?6. 某工厂生产甲、乙两种产品,甲产品每件利润为10元,乙产品每件利润为20元。

生产甲产品需要甲材料1千克,乙材料0.5千克;生产乙产品需要甲材料0.5千克,乙材料1千克。

现有甲材料10千克,乙材料8千克,要求甲、乙两种产品的利润总和最大,求解这个线性规划问题。

7. 给定线性规划问题:max x1+x2,s.t. x1+x2≤10,x1≥0,x2≥0。

求解该问题,并给出最优解。

8. 已知点A(1,2),B(3,4),C(5,6),D(7,8),E(9,10),F(11,12),G(13,14),H(15,16),直线l过点A,B,C,D,E,F,G,H中的三个点,问直线l的斜率是几?9. 某工厂生产甲、乙两种产品,甲产品每件利润为5元,乙产品每件利润为15元。

生产甲产品需要甲材料0.5千克,乙材料0.25千克;生产乙产品需要甲材料0.25千克,乙材料0.75千克。

高考线性规划专项训练题

高考线性规划专项训练题

高考线性规划专项训练题1.已知点(-3,-1)和(4,-6)在直线3x -2y -a =0的两侧,则实数a 的取值范围为( )A .(-7,24)B .(-∞,-7)∪(24,+∞)C .(-24,7)D .(-∞,-24)∪(7,+∞)答案 A解析 由题意可知(-9+2-a )(12+12-a )<0,所以(a +7)(a -24)<0,所以-7<a <24.2.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y -2≥0,x -y +2≥0,x ≤2表示的平面区域的面积是( )A .4 2B .4C .2 2D .2[解析] 画出可行域如图阴影部分所示,由题知可行域为△ABC ,S △ABC =|4-0|×22=4. [答案] B3.若实数x ,y 满足约束条件 ⎩⎪⎨⎪⎧x -3y +4≥0,3x -y -4≤0,x +y ≥0,则z =3x +2y 的最大值是( )A .-1B .1C .10D .12答案 C解析 如图,不等式组表示的平面区域是以A (-1,1),B (1,-1),C (2,2)为顶点的△ABC 区域(包含边界).作出直线y =-32x 并平移,知当直线y =-32x +z 2经过C (2,2)时,z 取得最大值,且z max =3×2+2×2=10.故选C.4.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)[解析] 不等式组形成的可行域如图阴影部分所示.平移直线y =-12x ,当直线过点A (2,1)时,z 有最小值4.显然z 没有最大值.故选D .[答案] D5.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y 的最大值为( )A .6B .19C .21D .45[解析] 不等式组表示的平面区域如图中阴影部分所示,作出直线y =-35x ,平移该直线,当经过点C 时,z 取得最大值,由⎩⎪⎨⎪⎧ -x +y =1,x +y =5,得⎩⎪⎨⎪⎧x =2,y =3,即C (2,3),所以z max =3×2+5×3=21,故选C .[答案] C6.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎢⎡⎦⎥⎤53,5B .[0,5]C .⎣⎢⎡⎭⎪⎫53,5 D .⎣⎢⎡⎭⎪⎫-53,5[解析] 不等式组对应的平面区域如图:(阴影部分).由z =2x -2y -1得y =x -1+z2, 平移直线y =x -1+z2,由平移可知当直线y =x -1+z2经过点C 时, 直线y =x -1+z2的纵截距最小,此时z 取得最大值,由⎩⎪⎨⎪⎧ x =2,x +y -1=0,解得⎩⎪⎨⎪⎧x =2,y =-1即C (2,-1), 此时z =2x -2y -1=4+2-1=5, 可知当直线y =x -1+z2经过点A 时,直线y =y =x -1+z2的纵截距最大,此时z 取得最小值,由⎩⎪⎨⎪⎧x -2y +1=0,x +y -1=0得⎩⎪⎨⎪⎧x =13,y =23即A ⎝ ⎛⎭⎪⎫13,23,代入z =2x -2y -1得z =2×13-2×23-1=-53,故z ∈⎣⎢⎡⎭⎪⎫-53,5.故选D .[答案] D7.已知x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,则z =8-x·⎝ ⎛⎭⎪⎫12y的最小值为( )A .1B .324C .116D .132[解析]不等式组表示的平面区域如图中阴影部分所示,而z =8-x·⎝ ⎛⎭⎪⎫12y=2-3x -y ,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y 最小,最小值为132.[答案] D8.若函数y =log 2x 的图象上存在点(x ,y ),满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,2x -y +2≥0,y ≥m ,则实数m 的最大值为( )A .12 B .1 C .32 D .1[解析] 如图,作出不等式组表示的可行域,当函数y =log 2x 的图象过点(2,1)时,实数m 有最大值1.[答案] B9.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x 的最小值是( )A .-2B .2C .-1D .1[解析]作出不等式组对应的平面区域如图阴影部分所示,ω=y +1x 的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.故选D .[答案] D10.已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为( )A .1B .-1C .0D .-2[解析] 先作出不等式⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,对应的平面区域,当k =0时,直角三角形ADE 的面积为12×3×3=92≠1,不满足条件.当k >0,则必有BC ⊥AB , ∵x +y -4=0的斜率为-1,∴直线kx -y =0的斜率为k =1,此时直角三角形ABC 的面积为1,故选A .[答案] A11.设x ,y 满足条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,则z =(x +1)2+y 2的最大值为( )A .80B .4 5C .25D .172[解析]作出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,如图阴影部分表示,(x +1)2+y 2可看作点(x ,y )到点P (-1,0)的距离的平方,由图可知可行域内的点A 到点P (-1,0)的距离最大.解方程组⎩⎪⎨⎪⎧x =3,x -y +5=0,得点A 的坐标为(3,8),代入z =(x +1)2+y 2,得z max =(3+1)2+82=80.故选A .[答案] A12.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -4≤0,x -2y -4≤0,2x -y +4≥0,若z =ax -y 取得最大值的最优解不唯一,则实数a 的值为( )A .-1B .2 C.12 D .2或-1答案 C解析 作出不等式组表示的平面区域,如图中阴影部分所示.由z =ax -y 得y =ax -z ,即直线y =ax -z 在y 轴上的截距最小时z 最大.①若a =0,则y =-z ,此时,目标函数只在B 处取得最大值,不满足条件.②若a >0,则目标函数y =ax -z 的斜率k =a >0,要使z =ax -y 取得最大值的最优解不唯一,则直线y =ax -z 与直线x -2y -4=0平行,此时a =12.③若a <0,显然不满足题意.故选C.13.若实数x ,y满足约束条件⎩⎪⎨⎪⎧x +y ≤1,3x -y ≥0,y ≥0,则|3x -4y -10|的最大值为( )A.494 B .10 C .7 D .12答案 A解析 作出实数x ,y 在约束条件下的平面区域(如图中阴影部分所示),令z =3x -4y -10,则作出直线3x -4y =0,并平行移动,当直线z =3x -4y -10经过点A (1,0)时,z max =3-10=-7;当直线经过点B ⎝ ⎛⎭⎪⎫14,34时,z min =34-3-10=-494,即-494≤z =3x -4y -10≤-7,从而7≤|3x -4y -10|≤494,所求的|3x -4y -10|的最大值为494.14.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,其中m >0,且x +y的最大值为9,则实数m =( )A .4B .3C .1D .2[解析]根据约束条件⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0画出可行域如图中阴影部分所示.设z =x +y ,由⎩⎪⎨⎪⎧x -my +1=0,2x -y -3=0,得A ⎝⎛⎭⎪⎫3m +12m -1,52m -1. 易知当z =x +y 经过点A 时,z 取得最大值,故3m +12m -1+52m -1=9,得m =1.[答案] C15.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k的值为( )A .2B .-2 C.12 D .-12答案 D解析作出线性约束条件⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k >0时,如图1所示,此时可行域为x 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图2所示,此时可行域为点A (2,0),B ⎝ ⎛⎭⎪⎫-2k ,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝ ⎛⎭⎪⎫-2k ,0时,z有最小值,即-⎝ ⎛⎭⎪⎫-2k =-4⇒k =-12.故选D.16.若关于x ,y的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),且满足x 0-2y 0=2,则m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,-23 B.⎝ ⎛⎭⎪⎫-∞,-13 C .(-∞,-1) D.⎝ ⎛⎭⎪⎫-∞,-53 答案 A解析画出不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的区域(图中阴影部分,不包括边界)及直线x -2y =2,如图.结合图形可知若要可行域内存在点P (x 0,y 0)满足x 0-2y 0=2,只需点M (-m ,m )能使得-m -2m >2,即m <-23.故选A.17.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.[解析] 作出可行域为如图所示的△ABC 所表示的阴影区域,作出直线3x +2y =0,并平移该直线,当直线过点A (2,0)时,目标函数z =3x +2y 取得最大值,且z max =3×2+2×0=6.[答案] 618.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤x -1,x ≤3,x +5y ≥4,则xy 的最小值是________.[解析]作出不等式组表示的平面区域,如图阴影部分所示,又xy 表示平面区域内的点与原点连线所在直线的斜率的倒数.由图知,直线OA的斜率最大,此时x y 取得最小值,所以⎝ ⎛⎭⎪⎫x y min =1k OA=32.[答案] 3219.若已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值是________.答案 21解析 作出不等式组表示的平面区域,如图中阴影部分所示.解法一:z =|x +2y -4|=|x +2y -4|5×5,其几何意义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点B的坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max =21.解法二:由图可知,阴影区域(可行域)内的点都在直线x +2y -4=0的上方,显然此时有x +2y -4>0,于是目标函数等价于z =x +2y -4,即转化为一般的线性规划问题.显然当直线经过点B 时,目标函数z 取得最大值,由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点B 的坐标为(7,9),此时z max =21.20.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则y +6x -2的取值范围是________.[解析] 画出不等式组表示的可行域,如图,y +6x -2的几何意义为可行域内的点M (x ,y )与点P (2,-6)连线的斜率,B (6,-3),A (-6,-3),∴k PB =-3+66-2=34,k P A =-3+6-6-2=-38.由图可以看出,y +6x -2≥34或y +6x -2≤-38,故填⎣⎢⎡⎭⎪⎫34,+∞∪⎝⎛⎦⎥⎤-∞,-38.[答案] ⎣⎢⎡⎭⎪⎫34,+∞∪⎝ ⎛⎦⎥⎤-∞,-3821.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是________.[解析] 不等式组表示的平面区域如图阴影部分所示.由于直线y =kx+43过定点⎝⎛⎭⎪⎫0,43. 因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73. [答案] 7322.已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,3x -y -3≤0表示的平面区域为D ,若直线y=kx +1将区域D 分成面积相等的两部分,则实数k 的值是________.答案 13解析 区域D 如图中的阴影部分所示,直线y =kx +1经过定点C (0,1),如果其把区域D 划分为面积相等的两个部分,则直线y =kx +1只要经过AB 的中点即可.由方程组⎩⎪⎨⎪⎧ x +y -1=0,3x -y -3=0,解得A (1,0).由方程组⎩⎪⎨⎪⎧x -y +1=0,3x -y -3=0,解得B (2,3).所以AB 的中点坐标为⎝ ⎛⎭⎪⎫32,32,代入直线方程y =kx +1得,32=32k +1,解得k =13.23.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a的取值范围是________.答案 (0,1]∪⎣⎢⎡⎭⎪⎫43,+∞解析不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).由⎩⎪⎨⎪⎧y =x ,2x +y =2,得A ⎝ ⎛⎭⎪⎫23,23;由⎩⎪⎨⎪⎧y =0,2x +y =2,得 B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中的a 的取值范围是0<a ≤1或a ≥43.。

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析1.已知实数、满足不等式组,则的最大值是____________.【答案】20【解析】作出不等式组表示的可行域,如图四边形内部(含边界),作直线,平移直线,当过点时,取得最大值20.【考点】线性规划.2.设变量x,y满足约束条件,则的最大值是()A.7B.8C.9D.10【答案】C【解析】画出可行域及直线,如图所示.平移直线,当其经过点时,.选.【考点】简单线性规划3.已知满足不等式设,则的最大值与最小值的差为()A.4B.3C.2D.1【答案】A【解析】作出不等式组所表示的区域,,由图可知,在点取得最小值,在点取得最大值,故的最大值与最小值的差为.【考点】线性规划.4.设变量x、y满足则2x+3y的最大值是________.【答案】55【解析】由得A(5,15),且A为最大解,∴z=2×5+3×15=55max5.已知实数x,y满足则r的最小值为________.【答案】【解析】作出约束条件表示的可行域,如图中的三角形,三角形内(包括边)到圆心的最短距离即为r的值,所以r的最小值为圆心到直线y=x的距离,所以r的最小值为.6.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最小值为2,则ab的最大值为 ().A.1B.C.D.【答案】D【解析】由z=ax+by(a>0,b>0)得y=-x+,可知斜率为-<0,作出可行域如图,由图象可知当直线y=-x+经过点D时,直线y=-x+的截距最小,此时z最小为2,由得即D(2,3),代入直线ax+by=2得2a+3b=2,又2=2a+3b≥2,所以ab≤,当且仅当2a=3b=1,即a=,b=时取等号,所以ab的最大值为.7.已知O是坐标原点,点,若点为平面区域上的一个动点,则|AM|的最小值是()A.B.C.D.【答案】A【解析】作出表示的平面区域如图所示,;点A到直线的距离为,选A.【考点】线性规划.8.已知、满足约束条件,则的最小值为()A.B.C.D.【答案】B【解析】作出不等式组所表示的可行域如下图所示,联立,得,作直线,则为直线在轴上的截距的倍,当直线经过可行域上的点时,直线在轴上的截距最小,此时取最小值,即,故选B.【考点】线性规划9.已知实数x,y满足,则r的最小值为()A.B.1C.D.【答案】A【解析】在平面直角坐标系中画出不等式组表示的平面区域D,由于圆经过平面区域D,因此其半径r的最小值为圆心(-1,1)到直线y=x的距离,即.rmin【考点】简单线性规划.10.设变量x,y满足约束条件,则目标函数的最大值为( )A.2B.3C.4D.5【答案】D【解析】画出可行域及直线(如图),平移直线,当其经过时,最大,故选D.【考点】简单线性规划的应用11.设满足条件的点构成的平面区域的面积为,满足条件的点构成的平面区域的面积为(其中,分别表示不大于x,y的最大整数,例如,),给出下列结论:①点在直线左上方的区域内;②点在直线左下方的区域内;③;④.其中所有正确结论的序号是___________.【答案】①③【解析】.如下图所示,当点在A区域时,;当点在B区域时,;当点在C区域时,;当点在D区域时,;当点在E区域时,.所以.,所以点在直线右上方的区域内.所以只有①③正确.【考点】1、新定义;2、平面区域.12.设满足约束条件,则目标函数的最大值是()A.3B.4C.5D.6【答案】D【解析】由约束条件可得区域图像如图所示:则目标函数在点取得最大值6.【考点】线性规划.13.已知非负实数满足,则关于的一元二次方程有实根的概率是()A.B.C.D.【答案】A【解析】关于的一元二次方程有实根,则,又为非负实数,所以,从而.由作出平面区域:由图知,表示非负实数满足的平面区域;表示其中的平面区域. 又,.所以所求概率为.【考点】平面区域、几何概型14.已知约束条件,若目标函数恰好在点处取得最大值,则的取值范围为()A.B.C.D.【答案】A【解析】作不等式组所表示的可行域如图所示,易知点为直线和直线的交点,由于直线仅在点处取得最大值,而为直线在轴上的截距,直线的斜率为,结合图象知,直线的斜率满足,即,解得,故选A.【考点】线性规划15.已知,若向区域上随机投一点P,则点P落入区域A的概率为()A.B.C.D.【答案】A.【解析】因为区域内的点所围的面积是18个单位.而集合A中的点所围成的面积.所以向区域上随机投一点P,则点P落入区域A的概率为.本题是通过集合的形式考察线性规划的知识点,涉及几何概型问题.关键是对集合的理解.【考点】1.集合的知识.2.线性规划问题.3.几何概型问题.16.若、满足约束条件,则目标函数的最大值是 .【答案】.【解析】作不等式组所表示的可行域如下图所示,联立,解得,即点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即.【考点】线性规划17.定义在R上的函数f(x)满足f(4)=1,为函数f(x)的导函数,已知的图像如图所示,若两个正数a,b满足f (2a+b)<1,则的取值范围是()A.B.C.D.【答案】A【解析】由函数的图像可知,时,.时,.所以函数在上单调递减,在上单调递增. 是两个正数,.又f(4)=1,.故.以为横轴,为纵轴,作出由不等式组表示的平面区域.则表示点到点的斜率.由下图可知,点在黄色区域内,则易知,,所以.故选A.【考点】线性规划、斜率公式、导函数与单调性18.在可行域内任取一点,其规则如流程图所示,则能输出数对()的概率是()A.B.C.D.【答案】B【解析】画出可行域,如图所示,正方形内部面积为2,圆内部面积为,由几何概型的面积公式=.【考点】1、二元一次不等式组表示的平面区域;2、圆的方程;3、几何概型.19.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图像上存在区域内的点,则实数的取值范围是()A.B.C.D.【答案】A【解析】的两根为,且,,故有,即,作出区域,如图阴影部分,可得,所以.【考点】1.函数的极值;2.线性规划.20.设满足若目标函数的最大值为14,则=()A.1B.2C.23D.【答案】B【解析】题中约束条件的可行域如下图所示,易知目标函数在图中A点取得最大值,所以,故选B.【考点】1.线性规划求参数的值.21.若函数图像上的任意一点的坐标满足条件,则称函数具有性质,那么下列函数中具有性质的是()A.B.C.D.【答案】C【解析】表示的区域为A选项是的切线,经过原点,经过B区域;B选项经过原点,经过B区域,也是其切线;C选项,在和之间,所以其只经过A区域;D选项,经过B区域.所以最终选C.【考点】1.数形结合思想应用;2.函数的切线方程求解.22.已知实数满足:则的取值范围是___________.【答案】.【解析】实数满足的平面区域如图阴影部分所示,令,即,则直线分别通过点时在轴上的截距最小和最大,即最小值为,最大值为1,则,所以,则.【考点】线性规划.23.抛物线在处的切线与两坐标轴围成三角形区域为(包含三角形内部与边界).若点是区域内的任意一点,则的取值范围是__________.【答案】【解析】由得,所以,,抛物线在处的切线方程为.令,则.画出可行域如图,所以当直线过点时,.过点时,.故答案为.【考点】导数的几何意义,直线方程,简单线性规划的应用.24.设满足约束条件,若目标函数的最大值为,则.【答案】2【解析】不等式组表示的平面区域如图,解方程组得,由,则要目标函数取得最大值10,必有直线过,则,解得.【考点】线性规划,目标函数的最值.25.设的两个极值点分别是若(-1,0),则2a+b的取值范围是()A.(1,7)B.(2,7)C.(1,5)D.(2,5)【答案】B.【解析】由可行域知故选B.【考点】1.函数极值与导数;2.一元二次方程根的分布问题.26.已知变量x,y满足则的值范围是( )A.B.C.D.【答案】A【解析】画出约束条件所表示的平面区域可知,该区域是由点所围成的三角形区域(包括边界),,记点,得,,所以的取值范围是.【考点】线性规划.27.设满足约束条件,若目标函数的最大值为8,则的最小值为_______。

高中数学线性规划各类习题精选100题

高中数学线性规划各类习题精选100题

高中数学线性规划各类习题精选7学校:___________姓名:___________班级:___________考号:___________一、单选题1.设x y ,满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则2x y -的最小值是( )A .-4B .127C .0D .6 2.定义,m a x {,},a a ba b b a b≥⎧=⎨<⎩,设实数x ,y 满足约束条件22x y ⎧≤⎪⎨≤⎪⎩,则m a x {4,3z x y x y=+-的取值范围是( ) A .[7,10]- B .[8,10]- C .[6,8]- D .[7,8]-3.若x y ,满足约束条件221{21x y x y x y +≥≥-≤且向量()3,2a =, ()b x y =,,则•a b 的取值范围是( )A .5,44⎡⎤⎢⎥⎣⎦B .7,52⎡⎤⎢⎥⎣⎦C .7,42⎡⎤⎢⎥⎣⎦D .5,54⎡⎤⎢⎥⎣⎦4.实数x ,y 满足2x a y x x y ≥⎧⎪≥⎨⎪+≤⎩(1a <),且2z x y =+的最大值是最小值的4倍,则a的值是( ) A .211 B .14 C .12 D .1125.已知变量x ,y 满足约束条件,则 的最大值为( )A .B .C .1D .26.设,x y 满足约束条件220840x y x y x y -+≥⎧⎪--≤⎪⎨≥⎪⎪≥⎩,若目标函数11(0,0)z x y a b a b =+>>的最大值为2,则a b +的最小值为( )A .92B .14C .29D .47.设y x ,满足不等式组⎪⎩⎪⎨⎧≥--≤--≤-+02301206y x y x y x ,若y ax z +=的最大值为42+a ,最小值为1+a ,则实数a 的取值范围为( )A .]2,1[-B .]1,2[-C .]2,3[--D .]1,3[-8.已知x ,y 满足,则使目标函数z=y ﹣x 取得最小值﹣4的最优解为( )A .(2,﹣2)B .(﹣4,0)C .(4,0)D .(7,3)9.已知变量y x ,满足以下条件:,,11y xx y R x y y ≤⎧⎪∈+≤⎨⎪≥-⎩,z ax y =+,若z 的最大值为3,则实数a 的值为( )A .2或5B .-4或2C .2D .5 10.不等式表示的平面区域(用阴影表示)是( )A .B .C .D .11.已知 是不等式组的表示的平面区域内的一点, ,为坐标原点,则的最大值( )A .2B .3C .5D .612.已知实数x ,y 满足条件若目标函数的最小值为5,其最大值为( )A .10B .12C .14D .1513.已知(),P x y 为区域22400y x x a -≤⎧≤≤⎨⎩内的任意一点,当该区域的面积为2时,2z x y=+的最大值是( )A .5B .0C .2D .14.若A 为不等式组表示的平面区域,则当从连续变化到时,动直线扫过A 中的那部分区域的面积为( )A .34 B .1 C .74D .2 15.过平面区域内一点 作圆 的两条切线,切点分别为,记 ,则当 最小时 的值为( ) A .B .C .D .16.若变量满足约束条件且的最大值为,最小值为,则的值是( ) (A )(B )(C )(D )17.设变量x ,y 满足约束条件则目标函数z =3x -y 的最大值为( )A .-4B .0C .D .418.已知实数m , n 满足不等式组,则关于x 的方程()23260x m n x mn -++=的两根之和的最大值和最小值分别是( )A .7, 4-B .8, 8-C .4, 7-D .6, 6-19.实数x ,y 满足不等式组则的取值范围是( )A .B .C .D .20.已知变量满足: 的最大值为( )A .B .C .2D .421.若y x ,满足⎪⎩⎪⎨⎧≥≤+≤-010x y x y x 则y x z 2+=的最大值为( )A .0B .1C .23D .2 22.若实数,x y 满足不等式组⎪⎩⎪⎨⎧≥+-≤--≥-+,01,032,033my x y x y x 且x y +的最大值为9,则实数m =( )A .1B .-1C .2D .-2 23.若两个正数b a ,满足24a b +<,则222-+=a b z 的取值范围是( )A .{}|11z z -≤≤B .{}|11z z -≥≥或z C .{}|11z z -<< D .{}|11z z ->>或z24.(题文)已知实数满足,若目标函数的最大值为,最小值为,则实数的取值范围是( )A .B .C .D .25.如果实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤++≥+≥+-010101y x y y x ,则y x -2的最大值为( )A .1B .2C .2-D .3-26.如果实数,满足约束条件,则的最大值为( )A .B .C .D .27.设 , 满足约束条件 ,若目标函数( )的最大值为 ,则的图象向右平移后的表达式为( )A .B .C .D .28.在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,表示的平面区域的面积是( )A..4 C..229.已知正数,x y 满足20350x y x y -≤⎧⎨-+≥⎩,则2z x y =--的最小值为( )A .2B .0C .-2D .-430.已知实数x 、y 满足,如果目标函数的最小值为-1,则实数m =( ). A .6B .5C .4D .331.设,x y 满足约束条件()0,230,,,230.x x y a y m x x y ≥⎧⎪+-≥=+⎨⎪+-≤⎩()1,2b =,且a ∥b ,则m 的最小值为( ) A 、1 B 、2 C 、12 D 、1332.已知实数,x y 满足约束条件00220y x y x y ≥⎧⎪-≥⎨⎪--≥⎩,则11y z x -=+的取值范围是( )A .11,3⎡⎤-⎢⎥⎣⎦B .11,23⎡⎤-⎢⎥⎣⎦C .1,2⎡⎫-+∞⎪⎢⎣⎭D .1,12⎡⎫-⎪⎢⎣⎭33.设变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最大值为( )A .95 B .25- C .0 D .5334.若实数x ,y 满足不等式024010x y x y x y +≥⎧⎪+-≤⎨⎪--≤⎩,且x y +的最大值为( )A .1B .2C .3D .435.已知实数满足:,,则的取值范围是A .B .C .D .36.若实数x ,y 满足不等式024010x y x y x my +≥⎧⎪+-≤⎨⎪--≤⎩,且x y +的最大值为3,则实数m =( )A .-1B .12C .1D .2 37.若点),(y x P 满足线性约束条件⎪⎩⎪⎨⎧≥≥+-≤-002303y y x y x ,点)3,3(A ,O 为坐标原点,则⋅的最大值为( )A .0B .3C .-6D .638.设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数23z x y =+的最小值为( )A .6B .7C .8D .9 39.如果直线12:220,:840l x y l x y -+=--=与x 轴正半轴,y 轴正半轴围成的四边形封闭区域(含边界)中的点,使函数()0,0z abx y a b =+>>的最大值为8, 求a b +的最小值( )A 、4B 、3C 、2D 、040.设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1ax y z x ++=的取值范围是[3,5],则a =( )A .4B .3C .2D .141.已知不等式组210210x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩表示的平面区域为D ,若函数|1|y x m =-+的图象上存在区域D 上的点,则实数m 的取值范围是( ) A .1[0,]2 B .1[2,]2- C .3[1,]2- D .[2,1]- 42.已知点集}0222|),{(22≤---+=y x y x y x M ,}022|),{(22≥+--=y x y x y x N ,则N M 所构成平面区域的面积为( )A .πB .π2C .π3D .π443.若实数x ,y 满足不等式组024010x y x y x my +≥⎧⎪+-≤⎨⎪--≤⎩,且x+y 的最大值为3,则实数m=( )A .-1B .12C .1D .2 44.若实数x ,y 满足不等式组,且x+y 的最大值为( )A .1B .2C .3D .445.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数)0,0(>>+=b a by ax z 的值是最大值为12,则ba 32+的最小值为( ) A .38 B .625 C .311 D .446.设O 是坐标原点,点A (-1,1),若点M (,x y )为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则OA OM ⋅的取值范围为 ( )A .[]0,1-B .[]1,0C .[]2,0D .[]2,1-47.已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,则y x z +=3的最大值为( )A .12B .11C .3D .-1 48.在直角坐标系内,满足不等式的点的集合(用阴影表示)正确的是( )A .B .C .D .49.设x ,y 满足10x y y x y +≤⎧⎪≤⎨⎪≥⎩,则4z x y =+的最大值是( )A .3B .4C .5D .650. 若,x y 满足约束条件5315153x y y x x y +⎧⎪+⎨⎪-⎩≤≤≤,则35x y +的取值范围是( )A .[13,15]-B .[13,17]-C .[11,15]-D .[11,17]-51.设的最大值为( )A .80B .C .25D .52.已知0a >,不等式组00(2)x y y a x ≥⎧⎪≤⎨⎪≥-⎩表示的平面区域的面积为1,则a 的值为( )A .14 B .12C .1D .2 53.不等式2350x y --≥表示的平面区域是( )A .B .C .D .54.设x ,y 满足约束条件 ,若目标函数(0,0)z ax by a b =+>>的最大值为12,则的最小值为 ( ). A .4 B . C . D .55.已知实数,x y 满足1000x y x y x +-≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最大值为(A )12-(B )0 (C )1 (D )1256.若实数y x ,满足不等式组⎪⎩⎪⎨⎧≥-+≤-≤-020102y x y x ,则目标函数y x t 2-=的最大值为( )A . 1-B .0C .1D .257.若实数x ,y 满足4024020+-⎧⎪--⎨⎪-+⎩x y x y x y ………,则目标函数23=+z x y 的最大值为( )A .11B .24C .36D .49⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x 23a b +3831162558.已知 , 满足约束条件则目标函数 的最大值为( )A .1B .3C .D .59.已知实数,x y 满足不等式组2010220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,,,则z x y =+的取值范围为( )A .[]1,2-B .[]13,C .[]1,3-D .[]2,460.设变量x ,y 满足约束条件00220x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则z =3x -2y 的最大值为A .4B .2C .0D .661.已知实数x 、y 满足约束条件1,1,2 2.x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩则目标函数25y z x +-=的最大值为A .3B .4C .3-D .-1262.不在不等式623<+y x 所表示的平面区域内的点是( ) A .)0,0( B .)1,1( C .)2,0( D .)0,2(二、填空题63.设不等式组2000x y x y +-≤⎧⎪≥⎨⎪≥⎩表示的平面区域为D ,在区域D 内随机取一点P ,则点P 落在圆221x y +=内的概率为 .64.已知,x y 满足14210x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最大值为 .65.已知方程220x ax b ++=(,)a R b R ∈∈,其一根在区间(0,1)内,另一根在区间(1,2)内,则31b a --的取值范围为 . 66.设x ,y 满足, ,若 ,则m 的最大值为 .67.设x ,y 满足约束条件则z =x +4y 的最大值为________.68.直线01-22=-+a y ax 与不等式组2040220x y x y x y -+-≤⎧⎪+-≤⎨⎪-+≤⎩表示的区域没有..公共点,则a 的取值范围是 .69.已知变量x ,y 满足⎪⎩⎪⎨⎧≥≤-+≤+-104034x y x y x , xy y x 22+的取值范围为 .70.设变量x ,y 满足则x +2y的最大值为 71.已知变量x 、y 满足约束条件 则的取值范围是 .72.已知实数对(x ,y )满足210x y x y ≤⎧⎪≥⎨⎪-≥⎩,则2x y +的最小值是 .73.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≥+≤-,2,2,1y y x y x 则目标函数22y x z +=的取值范围是 .74.已知实数y x ,则 22222)(y x y y x +++的取值范围为 . 75.若实数满足则的取值范围是 .76.已知0m >,实数,x y 满足⎪⎩⎪⎨⎧≤+≥≥,,0,0m y x y x 若2z x y =+的最大值为2,则实数m =______.77.设2z x y =-+,实数,x y 满足2,{1, 2.x x y x y k ≤-≥-+≥若z 的最大值是0,则实数k =_______, z 的最小值是_______.78.给出平面区域如图所示,其中若使目标函数仅在点处取得最大值,则的取值范围是________.79.设实数x ,y 满足约束条件202x y y x -≥⎧⎪⎨≥-⎪⎩,则2z x y =+的最大值为 . 80.设,x y 满足约束条件1{10 1x y x x y +≤+≥-≤,则目标函数2y z x =-的取值范围为___________. 81.设实数,x y 满足,102,1,x y y x x ≤⎧⎪≤-⎨⎪≥⎩向量2,x y m =-()a ,1,1=-()b .若// a b ,则实数m 的最大值为 .82.已知实数x ,y 满足220,220,130,x y x y x y --≥⎧⎪-+≤⎨⎪+-≤⎩则z xy =的最大值为 .83.已知变量,x y 满足240{2 20x y x x y -+≥≤+-≥,则32x y x +++的取值范围是 . 84.设x ,y 满足约束条件1210,0≤+⎧⎪≥-⎨⎪≥≥⎩y x y x x y ,若目标函数()0,0z abx y a b =+>>的最大值为35, 则a b +的最小值为 .85.若x y ,满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则2z x y =+的最大值为____________.86.若,x y 满足约束条件:1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则3x y +的最大值为___ ____.87.已知x 、y 满足,则 的最大值是___________ .88.已知变量,x y 满足约束条件13,1,x y y x y +≥⎧⎪≤⎨⎪-≤⎩,若z kx y =+的最大值为5,且k 为负整数,则k =____________.89.已知不等式表示的平面区域为 ,若直线 与平面区域 有公共点,则 的范围是_________90.已知实数y x ,满足⎪⎩⎪⎨⎧≤≥+≥+-1002x y x y x 则y x z +=2的最小值为__________.91.若点(2,1)和(4,3)在直线230x y a -+= 的两侧,则a 的取值范围是____________.92.设变量x ,y 满足约束条件3{ 1 1x y x y y +≤-≥-≥,则2z x y =-的最小值为93.设变量y x ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则y x z 23+-=的最大值为 .94.已知实数 满足,则的取值范围是__________.95.已知变量x ,y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数33z x y =-+的最大值是 .96.已知实数x ,y 满足约束条件则 的最大值等于______.97.设1,m >在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 ,目标函数y x z -=2的最小值为________.三、解答题98.画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域99.(本小题12分)已知⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x , 求(Ⅰ)12++=x y z 的取值范围; (Ⅱ)251022+-+=y y x z 的最小值.100.(本小题12分)已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求(1)y x z 2+=的最大值;(2)251022+-+=y y x z 的最小值.参考答案1.A【解析】试题分析:作出x y ,满足约束条件下的平面区域,如图所示,由图当目标函数2z x y =-经过点(0,4)A 时取得最小值,且min 044z =-=-,故选A .考点:简单的线性规划问题.2.A .【解析】试题分析:若4320x y x y x y +≥-⇒+≥:4z x y =+,如下图所示,画出不等式组所表示的可行域,∴当2x y ==时,m a x 10z =,当2x =-,1y =时,m i n 7z =-;若432x y x y x y+<-⇒+<: 3z x y =-,画出不等式所表示的可行域,∴当2x =,2y =-时,max 8z =,当2x =-,1y =时,min 7z =-,综上,z 的取值范围是[7,10]-,故选A .考点:线性规划的运用.3.D【解析】试题分析:∵向量()3,2a =, ()b x y =,,∴·32a b x y =+,设z=3x+2y , 作出不等式组对于的平面区域如图:由z=3x+2y ,则322z y x =-+,平移直线322z y x =-+,由图象可知当直线322z y x =-+, 经过点B 时,直线322z y x =-+的截距最大,此时z 最大,由{ 21x yx y =-=,解得1{ 1x y ==,即B (1,1),此时zmax=3×1+2×1=5, 经过点A 时,直线322z y x =-+的截距最小,此时z 最小, 由{ 221x y x y =+=,解得14{ 14x y ==,即A 11,44⎛⎫ ⎪⎝⎭,此时zmin=3×14+2×14=54,则54≤z≤5 考点:简单线性规划4.B【解析】试题分析:在直角坐标系中作出可行域如下图所示,当目标函数y x z +=2经过可行域中的点)1,1(B 时有最大值3,当目标函数y x z +=2经过可行域中的点),(a a A 时有最小值a 3,由a 343⨯=得41=a ,故选B .考点:线性规划.5.C【解析】试题分析:画出可行域如下图所示,由图可知,目标函数在点 取得最大值为 .考点:线性规划.6.A【解析】试题分析:作出可行域如图, ()2201,4840x y A x y -+=⎧⇒⎨--=⎩,当目标函数11(0,0)z x y a b a b=+>>过点()1,4A 时纵截距最大,此时z 最大.即()142,0,0a b a b+=>>.()1141419552222a b a b a b a b b a ⎛⎫⎛⎫⎛⎫∴+=++=++≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4b a a b =,即322a b ==时取''''=.故选A . 考点:1线性规划;2基本不等式.7.B【解析】试题分析:由z ax y =+得,y ax z =-+,直线y ax z =-+是斜率为,a y -轴上的截距为z 的直线,作出不等式组对应的平面区域如图:则()()1,1,2,4,A B z ax y =+的最大值为24a +,最小值为1a +∴直线z ax y =+过点B 时,取得最大值为24a +,经过点A 时取得最小值为1a +,若0a =,则y z =此时满足条件,若0a >则目标函数斜率0k a =-<,要使目标函数在A 处取得最小值,在B 处取得最大值,则目标函数的斜率满足1BC a k -≥=-,即01a <≤,若0a <,则目标函数斜率0k a =->要使目标函数在A 处取得最小值,在B 处取得最大值,则目标函数的斜率满足2AC a k -≤=,即20a -≤<,综上21a -≤≤;故选B .考点:简单的线性规划8.C【解析】试题分析:由题意作出其平面区域将z=y-x 化为y=x+z ,z 相当于直线y=x+z 的纵截距,则由平面区域可知,使目标函数z=y-x 取得最小值-4的最优解为(4,0);考点:简单线性规划问题9.B【解析】试题解析:当直线y ax z +=平移到点()1,1--B 时有最大值,此时应满足431-=⇒=--a a ;当直线y ax z +=平移到点()1,2-B 时有最大值,此时应满足2312=⇒=-a a .考点:线性规划的应用.10.B【解析】试题分析:可用特殊值法.代入点可知满足不等式,故点所在区域即为所求.考点:二元一次不等式表示平面区域.11.D【解析】试题分析:由题意可知,,令目标函数 ,作出不等式组表示的平面区域,如图所示,由图知,当目标函数 经过点 时取得最大值,最大值为 ,故选D .考点:简单的线性规划问题.12.A【解析】试题分析:依题意知,不等式表示的平面区域如图所示的三角型ABC 及其内部且A (2,2)、C (2,4-c ).目标函数可看作是直线在y 轴上的截距,显然当直线过点C 时,截距最小及z 最小,所以解得,此时B (3,1),且直线过点B 时截距最大,即z 最大,最大值为.故选A .考点:线性规划求最值.【方法点睛】线性规划求最值和值域问题的步骤:(1)先作出不等式组表示的平面区域;(2)将线性目标函数看作是动直线在y 轴上的截距;(3)结合图形看出截距的可能范围即目标函数z 的值域;(4)总结结果.另外,常考非线性目标函数的最值和值域问题,仍然是考查几何意义,利用数形结合求解.例如目标函数为可看作是可行域内的点(x ,y )与点(0,0)两点间的距离的平方;可看作是可行域内的点(x ,y )与原点(0,0)连线的斜率等等. 13.A 【解析】试题分析:由约束条件作出可行域,求出使可行域面积为2的a 值,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.2240{0y x x a-≤≤≤作出可行域如图, 由图可得22A a a B a a -(,),(,),1421122OAB S a a a B ∆=⨯⨯=∴=∴,,(,),目标函数可化为122z y x =-+,∴当122zy x =-+,过A 点时,z 最大,z=1+2×2=5,故选A .考点:简单的线性规划14.C【解析】试题分析:如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=-x+a)在y轴上的截距从-2变化到1.知△ADC是斜边为3的等腰直角三角形,△EOC是直角边为1等腰直角三角形,所以区域的面积13173112224 ADC EOCS S S∆∆=-=⨯⨯-⨯⨯=考点:二元一次不等式(组)与平面区域视频15.C【解析】试题分析:因为,所以在中,,因为,而函数在上是减函数,所以当最小时最大,因为为增函数则此时最大。

高考数学一轮复习《线性规划》复习练习题(含答案)

高考数学一轮复习《线性规划》复习练习题(含答案)

高考数学一轮复习《线性规划》复习练习题(含答案)一、单选题1.若x ,y 满足1010330x y x y x y +-⎧⎪--⎨⎪-+⎩,则4z x y =-的最小值为( )A .-6B .-5C .-4D .12.已知x ,y 满足不等式组240,3260,20,x y x y x y --≤⎧⎪--≤⎨⎪++≥⎩则23z x y =+的取值范围为( )A .32,5⎡⎫-+∞⎪⎢⎣⎭B .325,52⎡⎤--⎢⎥⎣⎦C .[)6,-+∞D .5,2⎡⎫-+∞⎪⎢⎣⎭3.设变量,x y 满足约束条件100240x y x y x y --≤⎧⎪+≥⎨⎪+-≥⎩,则2z x y =-的最大值为( )A .0B .32C .3D .44.已知实数,x y 满足2030330x y x y x y -+≥⎧⎪+-≤⎨⎪--≥⎩,则目标函数2z x y =+的最大值为( )A .112B .5C .52D .35.若实数x ,y 满足约束条件110x y x y x +≥⎧⎪-≤⎨⎪≥⎩,则2z x y =+的最小值是( )A .-1B .0C .1D .26.若,x y 满足约束条件310x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则2z x y =+的最小值为( )A .1B .2C .3D .47.不等式44x y +<表示的区域在直线440x y +-=的( ) A .左上方B .左下方C .右上方D .右下方8.已知实数x ,y 满足210,10,2,x y x y x -+≥⎧⎪+-≥⎨⎪<⎩,则z =2x -y 的最小值是( )A .5B .52C .0D .-19.若实数x ,y 满足约束条件23023020x y x y x ++≥⎧⎪--≤⎨⎪+≥⎩,则3z x y =-的最大值是( )A .6-B .2C .4D .610.已知动点(),P m n 在不等式组400x y x y y +≤⎧⎪-≥⎨⎪≥⎩ 表示的平面区域内部及其边界上运动,则35n z m -=-的最小值( ) A .4 B .13C .53D .311.甲、乙两艘轮船都要在某个泊位停靠6个小时,假定它们在一昼夜的时间中随机到达,若两船有一艘在停泊位时,另一艘船就必须等待,则这两艘轮船停靠泊位时都不需要等待的概率为( ) A .1116B .916C .716D .51612.若实数,x y 满足约束条件10210y x y x y ≤⎧⎪-≤⎨⎪++≥⎩,则z )A .1BCD二、填空题13.已知x ,y 满足约束条件1000x y x y y +-≤⎧⎪-≥⎨⎪≥⎩则2z x y =-的最大值为_________.14.已知x 、y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则21x y z x ++=+的最小值是__________.15.在等差数列{}n a 中,125024a a a ≤≥-≤,,,则4a 的取值范围是______. 16.若实数,x y 满足约束条件102310y x x x y ≥⎧⎪+≥⎨⎪+-≤⎩,则目标函数3z x y =+的取值范围是__________ .三、解答题17.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.(1)设投资人用x 万元、y 万元分别投资甲、乙两个项目,列出满足题意的不等关系式,并画出不等式组确定的平面区域图形;(2)求投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?18.若变量x ,y 满足约束条件240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩(1)画出不等式组表示的平面区域; (2)求目标函数z =y +x 的最大值和最小值.19.已知点(),P x y 在圆()2211x y +-=上运动,(1)求12y x --的取值范围; (2)求2x +y 的取值范围.20.已知圆C :222440x y x y +-+-=,直线l :30mx y m -+-=()m R ∈与圆C 相交于A 、B 两点.(1)已知点(,)x y 在圆C 上,求34x y +的取值范围: (2)若O 为坐标原点,且2AB OC =,求实数m 的值.21.已知命题p :0x ∃∈R ,()()2011(0)m x a a ++≤>,命题q :x ∀,y 满足+1002x y x y -≤⎧⎪≥⎨⎪≤⎩,m .(1)若q 为真命题,求m 的取值范围.(2)判断p ⌝是q 的必要非充分条件,求a 的范围22.2021年6月17日9时22分,我国“神舟十二号”载人飞船发射升空,展开为期三个月的空间站研究工作,某研究所计划利用“神舟十二号”飞船进行新产品搭载试验,计划搭载若干件新产品,A B 、要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查,搭载每件产品有关数据如表:(1)试用搭载,A B 产品的件数,x y 表示收益z (万元);(2)怎样分配,A B 产品的件数才能使本次搭载实验的利润最大,最大利润是多少?23.设函数(),()x f x e g x ax b ==+,其中, a b R ∈.(Ⅰ)若1,1a b ==-,当1x ≥时,求证:()()ln f x g x x ≥;(Ⅱ)若不等式()()f x g x ≥在[1,)+∞上恒成立,求()2223a e b -+的最小值.24.对于函数()f x 和()g x ,设集合(){}0,R A x f x x ==∈,(){}0,R B x g x x ==∈,若存在1x A ∈,2x B ∈,使得12(0)x x k k -≤≥,则称函数()f x 与()g x “具有性质()M k ”.(1)判断函数()sin f x x =与()cos g x x =是否“具有性质1()2M ”,并说明理由;(2)若函数1()22x f x x -=+-与2()(2)24g x x m x m =+--+“具有性质(2)M ”,求实数m 的最大值和最小值;(3)设0a >且1a ≠,1b >,若函数1()log x bf x a x=-+与()log x b g x a x=-+“具有性质(1)M ”,求1212x x -的取值范围。

高考数学复习简单的线性规划问题专题训练(含答案)

高考数学复习简单的线性规划问题专题训练(含答案)

高考数学复习简单的线性规划问题专题训练(含答案)线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支。

以下是查字典数学网整理的简单的线性规划问题专题训练,请考生练习。

一、填空题1.(2019 广东高考改编 )若变量 x,y 满足约束条件,则 z=2x+y 的最大值等于 ________.[ 解析 ] 作出约束条件下的可行域如图 (阴影部分 ),当直线y=-2x+z 经过点 A(4,2) 时, z 取最大值为 10. [答案 ] 102.(2019 扬州调研 ) 已知 x,y 满足约束条件则z=3x+4y 的最小值是 ________.[ 解析 ] 可行区域如图所示.在 P 处取到最小值 -17.5.[ 答案 ] -17.53.已知实数 x,y 满足若 z=y-ax 取得最大值时的最优解 (x ,y)有无数个,则 a=________.[ 解析 ] 依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使 z=y-ax 取得最大值时的最优解(x ,y)有无数个,则直线 z=y-ax 必平行于直线 y-x+1=0 ,于是有 a=1. [答案]14.(2019 山东高考改编 )在平面直角坐标系xOy 中, M 为不等式组所表示的区域上一动点,则直线OM 斜率的最小值为________.[ 解析 ] 线性约束条件表示的平面区域如图所示( 阴影部分 ).由得 A(3 , -1).当 M 点与 A 重合时, OM 的斜率最小, kOM=-.[答案]-5.(2019 陕西高考改编 )若点 (x, y)位于曲线 y=|x| 与 y=2 所围成的封闭区域内,则 2x-y 的最小值是 ________.[ 解析 ] 曲线 y=|x| 与 y=2 所围成的封闭区域如图阴影部分所示.当直线 l:y=2x 向左平移时, (2x-y) 的值在逐渐变小,当l 通过点 A(-2,2) 时, (2x-y)min=-6.[答案 ] -66.已知点 P(x ,y) 满足定点为A(2,0) ,则 ||sinAOP(O 为坐标原点)的最大值为 ________.[ 解析 ] 可行域如图阴影部分所示,A(2,0) 在 x 正半轴上,所以 ||sinAOP 即为 P 点纵坐标 .当 P 位于点 B 时,其纵坐标取得最大值.[答案 ]7.(2019 兴化安丰中学检测)已知不等式组表示的平面区域S的面积为 4,若点 P(x,y)S,则 z=2x+y 的最大值为 ________.[ 解析 ] 由约束条件可作图如下,得 S=a2a=a2,则 a2=4,a=2,故图中点 C(2,2) ,平移直线得当过点 C(2,2) 时 zmax=22+2=6. [答案]68.(2019 江西高考 )x ,yR,若 |x|+|y|+|x-1|+|y-1|2 ,则 x+y 的取值范围为 ________.[ 解析] 由绝对值的几何意义知,|x|+|x-1|是数轴上的点x 到原点和点 1 的距离之和,所以 |x|+|x-1|1 ,当且仅当 x[0,1] 时取 =. 同理 |y|+|y-1|1,当且仅当 y[0,1] 时取 =.|x|+|y|+|x-1|+|y-1|2.而 |x|+|y|+|x-1|+|y-1|2 ,|x|+|y|+|x-1|+|y-1|=2 ,此时, x[0,1] ,y[0,1] , (x+y)[0,2].[ 答案 ] [0,2]二、解答题9.(2019 四川高考改编 )某公司生产甲、乙两种桶装产品.已知生产甲产品 1 桶需耗 A 原料 1 千克,B 原料 2 千克 ;生产乙产品1桶需耗 A原料 2千克,B原料 1千克 .每桶甲产品的利润是 300 元,每桶乙产品的利润是 400元 .公司在生产这两种产品的计划中,要求每天消耗 A 、 B 原料都不超过 12千克 .通过合理安排生产计划,从每天生产的甲、乙两种产品中,试求公司共可获得的最大利润.[ 解 ] 设生产甲产品x 桶,乙产品y 桶,每天利润为z元,则且 z=300x+400y.作出可行域,如图阴影部分所示.作直线 300x+400y=0 ,向右上平移,过点 A 时,z=300x+400y 取最大值,由得 A(4,4) ,zmax=3004+4004=2 800.故公司共可获得的最大利润为 2 800 元.10.(2019 安徽高考改编 )已知实数x, y 满足约束条件(1)求 z=x-y 的最小值和最大值;(2)若 z=,求 z 的取值范围 .[ 解 ] 作约束条件满足的可行域,如图所示为ABC 及其内部 .联立得 A(1,1).解方程组得点B(0,3).(1)由 z=x-y ,得 y=x-z.平移直线 x-y=0 ,则当其过点 B(0,3) 时,截距 -z 最大,即 z 最小 ;当过点 A(1,1) 时,截距 -z 最小,即 z 最大 .zmin=0-3=-3;zmax=1-1=0.(2)过 O(0,0) 作直线 x+2y=3 的垂线 l 交于点 N.观察可行域知,可行域内的点 B 、N 到原点的距离分别达到最大与最小 .宋以后,京所小学和武学堂中的教称皆称之“教”。

高考数学线性规划选择题

高考数学线性规划选择题

高考数学线性规划选择题1. 已知线性规划问题:max 2x + 3y,s.t. x + y ≤ 1,x + y ≥ 0,x, y ≥ 0,求最优解。

2. 已知线性规划问题:min -x + 2y,s.t. 2x + y ≤ 4,x + y ≥ 1,x, y ≥ 0,求最优解。

3. 已知线性规划问题:max x + y,s.t. x - y ≤ 2,x + y ≤ 3,x, y ≥ 0,求最优解。

4. 已知线性规划问题:min -x + 3y,s.t. 2x + y ≤ 4,x + y ≥ 1,x, y ≥ 0,求最优解。

5. 已知线性规划问题:max 2x + y,s.t. x + y ≤ 2,x + y ≥ 0,x, y ≥ 0,求最优解。

6. 已知线性规划问题:min -x + 2y,s.t. x + y ≤ 2,x + y ≥ 0,x, y ≥ 0,求最优解。

7. 已知线性规划问题:max x + y,s.t. x + y ≤ 2,x + y ≥ 0,x, y ≥ 0,求最优解。

8. 已知线性规划问题:min -x + 3y,s.t. x + y ≤ 3,x + y ≥ 0,x, y ≥ 0,求最优解。

9. 已知线性规划问题:max 2x + y,s.t. x + y ≤ 1,x + y ≥ 0,x, y ≥ 0,求最优解。

10. 已知线性规划问题:min -x + 2y,s.t. x + y ≤ 1,x + y ≥ 0,x, y ≥ 0,求最优解。

11. 已知线性规划问题:max x + y,s.t. x + y ≤ 1,x + y ≥ 0,x, y ≥ 0,求最优解。

12. 已知线性规划问题:min -x + 3y,s.t. x + y ≤ 2,x + y ≥ 0,x, y ≥ 0,求最优解。

13. 已知线性规划问题:max 2x + y,s.t. x + y ≤ 3,x + y ≥ 0,x, y ≥ 0,求最优解。

高中数学线性规划练习题(含详细解答)

高中数学线性规划练习题(含详细解答)

x0 7.若 x, y 满足约束条件: x 2 y 3 ;则 x y 的取值范围为 _____ . 2 x y 3
8.约束条件
2 x y 4 ,则目标函数 z=3x-y 的取值范围是 4 x y 1 3 ,6] 2
B.[
A. [
第 5 页 共 11 页
X 2Y 12 2 X Y 12 由已知, 得 Z=300X+400Y, 且 , 画可行域如图所示, X 0 Y 0 3 z 目标函数 Z=300X+400Y 可变形为 Y= x 4 400
这是随 Z 变化的一族平行直线,解方程组
2 2
C
6
D
4 4
( )
12.若实数 x、y 满足 A.(0,1)
x y 1 0 y , 则 的取值范围是 x x0
B. 0,1 C.(1,+ )
D. 1,
c ln b ≥ a c ln c ,则 b, c 满足: 5c 3a ≤ b ≤ 4c a , 13. 已知正数 a ,
A.20 B.35 C.45 D.55
x y 1 0 3.若 x, y 满足约束条件 x y 3 0 ,则 z 3x y 的最小值为 x 3y 3 0
4. 设函数 f ( x )

ln x, x 0 , D 是由 x 轴和曲线 y f ( x ) 及该曲线在点 (1, 0) 处的切线所围成的封 2 x 1, x 0
x y 50, 1.2 x 0.9 y 54, 线性约束条件为 x 0, y 0.
x y 50, 4 x 3 y 180, 即 x 0, y 0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档