医用电子直线加速器发展历程
2024年医用直线加速器市场分析现状

2024年医用直线加速器市场分析现状引言医用直线加速器是现代医疗领域中重要的一种设备,被广泛应用于肿瘤治疗和放射治疗等领域。
本文将对医用直线加速器市场的现状进行分析。
市场规模医用直线加速器市场自上世纪90年代开始迅速发展,并在近年来呈现稳定增长的趋势。
据市场研究数据显示,全球医用直线加速器市场规模预计将在未来几年内保持每年7%的增长率,预计到2025年将达到100亿美元。
市场驱动因素1.癌症病例的增加:随着人口老龄化和生活方式的改变,癌症病例数量不断增加,这促使了医用直线加速器市场的增长。
2.技术的不断进步:医用直线加速器的技术不断改进,使其在肿瘤治疗中的应用更加精确和有效,这推动了市场的增长。
3.政府政策的支持:政府对肿瘤治疗的重视和投资,为医用直线加速器市场创造了良好的发展环境。
市场前景医用直线加速器市场前景广阔。
随着医疗技术的不断发展和人们对肿瘤治疗的需求增加,市场需求将继续增长。
此外,新兴市场的开拓和创新技术的应用也将推动市场的发展。
市场竞争格局医用直线加速器市场竞争激烈,主要厂商包括Varian Medical Systems、Elekta AB、Accuray Incorporated等。
这些厂商在技术研发、产品质量和服务方面具有一定的竞争优势。
此外,市场还存在一些中小型企业和地区性企业,它们通过专注于特定市场细分和定制化需求来获取一定的市场份额。
市场挑战医用直线加速器市场面临一些挑战。
首先,市场整体竞争激烈,新进入者需要克服技术壁垒和品牌优势。
其次,市场价格竞争激烈,厂商需要保持产品价格的竞争力。
此外,一些地区的医疗资源缺乏和技术落后也制约了市场的发展。
总结医用直线加速器市场目前呈现稳定增长趋势,市场规模不断扩大。
技术的不断进步、癌症病例数量的增加和政府政策的支持是市场发展的主要驱动因素。
然而,市场竞争激烈和一些挑战需要厂商克服。
随着医疗技术的不断发展和市场需求的增加,医用直线加速器市场具有广阔的前景。
2024年医用电子直线加速器市场前景分析

2024年医用电子直线加速器市场前景分析概述医用电子直线加速器是现代医疗中常用的一种放射治疗设备。
随着人口老龄化程度的加剧以及癌症发病率的增加,医用电子直线加速器市场正迅速扩大。
本文将对医用电子直线加速器市场前景进行深入分析,以了解其未来发展趋势。
市场规模医用电子直线加速器市场的规模不断扩大。
据市场调研数据显示,全球医用电子直线加速器市场在过去几年内保持了稳定增长的态势。
预计未来几年内,市场规模将继续扩大。
主要驱动市场规模扩大的因素包括:人口老龄化、癌症患病率和诊断率的上升、医疗技术的不断发展以及对更先进放射治疗设备的需求增加等。
技术发展趋势医用电子直线加速器市场的技术发展也是重要的因素。
近年来,相关技术不断升级和创新,为医用电子直线加速器的性能提供了更多可能。
以下是医用电子直线加速器市场技术发展的几个趋势:1.低剂量辐射治疗:随着放射治疗技术的进步,医用电子直线加速器可实现更精确的剂量控制,减少对健康组织的伤害。
2.智能化和自适应辐射治疗:医用电子直线加速器能够智能地调节辐射剂量和治疗计划,根据患者的实时情况进行自适应。
3.联网和远程监测:通过网络连接,医用电子直线加速器可以远程监测患者的治疗过程,实现医生对患者的实时监控和指导。
4.多功能设备的发展:现代医用电子直线加速器不仅可以进行辐射治疗,还可以实现影像引导和肿瘤标记等多种功能,提高治疗效果。
市场竞争格局医用电子直线加速器市场竞争激烈,主要厂商都致力于技术创新和市场拓展。
目前,全球医用电子直线加速器市场的主要竞争者包括Varian Medical Systems、Elekta、Accuray等。
这些公司在产品性能、技术创新、品牌声誉、市场份额等方面存在差异。
而多国医疗器械企业的迅速崛起也给市场竞争格局带来了一定的变化。
市场前景展望医用电子直线加速器市场前景广阔。
随着医疗技术的不断进步,医用电子直线加速器在癌症治疗领域发挥着重要作用。
预计未来几年内,医用电子直线加速器市场将继续保持稳定增长,并出现更多使用领域的拓展。
医用电子直线加速器发展历程

医用电子直线加速器发展历程
1、1927年:马萨诸塞大学的William D. Coolidge首次发明了真空
管加速器,并成功实现了第一次辐射治疗。
2、1927年至1953年:医用X射线加速器完成了改进,技术日臻成熟,发展迅速。
除腔体管电子枪外,还有其他新型加速器,如水平腔体管、环形腔体管等,可用于治疗及诊断。
同时,出现了各种辅助设备和调试技术,使放射技术的发展得到了极大的促进。
3、1953年:美国人Rutsky发明了第一台锂盐复合加速器,使电子
加速器的技术水平迈上了新的台阶,这也为多种放射技术的发展提供了可能。
4、1969年:美国AEG公司的Debus等人发明了第一台高压流体加速器,这也是医学上放射治疗的一个重大突破,它使放射技术的发展又一次
进入了快速发展的通道。
5、1974年:巴特兰公司的Keller等人发明了第一台闪辉加速器,
它的发展为各种放射技术的治疗作出了重要贡献。
6、1980年:英国的Davies等人首次发明了同步腔体管电子枪,它
的发展大大提高了放射技术的性能。
7、1995年:英国东贝公司首次发明了数字化线性加速器,使放射技
术发展到了一个新的高度。
8、1996年:Kerr公司发明了第一台具有三维再现功能的线性加速器,提高了放射技术的治疗和定位精度。
医用电子直线加速器基本原理与结构

医用电子直线加速器基本原理与结构一、基本原理:医用电子直线加速器的基本原理是利用电子加速器对电子束进行高速加速,然后通过磁铁系统和束流控制系统对电子束进行准确定位和调整,最终通过束流传输系统将高能电子束或光子束投射到患者体内,达到肿瘤治疗的效果。
具体过程如下:1.加速:医用电子直线加速器通过高频电场(电子加速频率通常在3-30MHz)加速装置对电子进行加速,使其能量提高到治疗所需的高能级。
电子直线加速器中一般使用微波电子加速器,如马格努斯型加速器、超高频波导型加速器等。
2.聚焦:在加速过程中,电子束需要经过一系列的磁铁聚焦系统来控制束流的焦点位置和束径。
聚焦系统通常包括透镜磁铁和偏转磁铁,通过调整磁铁的磁场强度和配置来实现对电子束的聚焦和定位。
3.控制:束流控制系统是对电子束进行精确控制和调整的关键部分,它包括束流监测和矫正系统。
束流监测系统可以对电子束进行实时监测,并通过反馈机制对其进行调整和校正,以确保束流的稳定性和精度。
4.辐射治疗:通过束流传输系统,高能电子束或光子束被投射到患者体内的特定部位进行辐射治疗。
电子束和光子束的选择取决于患者的具体情况和治疗需求。
二、结构:1.微波电子加速器:用于加速电子束的装置,通常采用同轴加速器或波导加速器。
加速器中包括微波发生器、加速腔和注入系统等。
2.聚焦系统:通过控制磁场来聚焦束流。
包括透镜磁铁和偏转磁铁等,用于控制束流的焦点位置和束径。
3.控制系统:包括束流监测和矫正系统,用于对束流进行实时监测、调整和校正。
4.辐射治疗系统:包括束流传输系统和治疗装置。
束流传输系统是将电子束或光子束从加速器传输到患者体内的装置,通常包括束流导向器和准直器等。
治疗装置用于定位和照射特定部位。
5.控制台:用于操作和控制整个医用电子直线加速器的设备,包括监测仪器、调整装置和控制器等。
总结:医用电子直线加速器利用电子加速器对电子束进行高速加速,然后通过磁铁系统和束流控制系统对电子束进行准确定位和调整,最终将高能电子束或光子束投射到患者体内进行肿瘤治疗。
医用直线加速器比较表

医用直线加速器比较表厂商Elekta VARIAN SIEMENS 说明机型Precise Clinac EX Primus基本结构Elekta加速器的高度集成化控制系统、性能绝佳的敞开式设计保证可加速器的高开机率。
其他厂家的产品都是封闭式设计,常因机器设计不佳而停机,更换加速管时间长。
加速管行波驻波驻波最低的加速器使用消耗费用:驻波加速管对真空度的要求、能量的转换、能谱的宽度等几个方面都优于驻波加速管。
Elekta保持和发展了行波管加速原理,通过独特的设计使一台加速器可提供3档电子线。
一机多用。
其他厂家加速器最多产生两个光子线。
Elekta加速器具有低功耗、高效率、长寿命,自1953年生产世界上第一台直线加速器以来,从未更换过加速管。
机架类型滚筒式中心轴承式中心轴承式Elekta滚筒机架磨损小,等中心变化小,十年精度1mm,终身保证机架等中心精度在2mm(V和S都采用中心轴承式,十年等中心偏差超过2mm),且为敞开式设计,散热性能好,连续工作时间长,便于维修。
微波功率源仅用磁控管(5.5MW)即可需速调管(5.5MW)加微波驱动需速调管(7MW)加微波驱动Elekta使用EEV公司的长寿命磁控管,停机时间短,运行费用低,且无条件保修2年。
低运行费用的微波功率源:Elekta公司采用的微波功率源是磁控管,集振荡器和放大器为一体,结构简单,不需额外的微波振荡器(或微波驱动器)等组件,从而简化功率源的结构。
磁控管的体积小,能安装在机架上,直接把微波馈送到加速管,不需特殊接头,且易更换,停机时间短(而速调管必须配上配上微波振荡器才能实现磁控管的功能,磁控管的寿命比速调管短一半,但由于振荡器的寿命与磁控管差不多,导致使用速调管的费用为使用磁控管的4~5倍。
电子枪可拆卸,且只需更换枪灯丝可拆卸,但需更换整个电子枪不可拆卸,如果枪灯丝断则需更换整跟加速管。
三极管电子枪与加速管、偏转系统一体,更换困难,且费用大。
关注医用电子直线加速器的使用风险

关注医用电子直线加速器的使用风险医用电子直线加速器是利用微波电场对电子进行加速,产生高能射线的医疗设备,可以产生高能X射线和/或电子束,广泛应用于各种肿瘤的远距离外照射放射治疗。
主要由主机系统(主电源、脉冲调制器、固定机架、旋转机架、治疗头)、治疗床和控制台组成。
高能X射线具有高穿透性、较低皮肤剂量等特点,适用于治疗深部肿瘤。
电子束具有一定的射程特性,穿透能力较低,用于治疗浅表肿瘤。
自2010年1月1日至2013年6月20日,国家药品不良反应监测中心共收到涉及医用电子直线加速器的可疑不良事件报告223份,其中严重伤害报告99份,主要为放射治疗引发的并发症,表现为白细胞减少、血小板减少、脱发、放射性皮炎(皮肤溃疡、红肿、色素沉着等)、非照射部位炎症(口腔黏膜炎、食管黏膜炎等)、恶心、呕吐、厌食、腹胀、腹泻等。
其中报告白细胞减少的53例,占全部严重伤害病例的53.5%;报告皮肤溃疡20例,占20.2%,皮肤红肿8例,占8.1%,报告恶心、呕吐11例,占11.1%。
医用电子直线加速器结构复杂,故障率较高。
常见故障有机械故障(如多叶准直器故障、限位开关损坏)、电气故障(如自动稳频故障、剂量异常、电离室损坏、磁控管损坏、测距灯/光野灯损坏)和软件故障(如电脑死机、网络传输故障)。
这些故障的发生将导致设备无法正常运行,某些情况下可能导致患者或操作者受到伤害。
医用电子直线加速器可能对人体造成的伤害还包括旋转机架伤人、射线剂量设置不准确等。
旋转机架在旋转时,如果在旋转运动范围内有治疗床或人,则可能会损坏设备,或造成人员伤亡。
在治疗患者前,治疗人员必须对剂量系统进行校准,以确定吸收剂量。
剂量参数校准值与射束的能量和类型相关,并与治疗条件相关。
不准确的校准可能导致患者接受过量射线照射或治疗不充分。
为促进医用电子直线加速器的安全使用,减少不良事件重复发生造成伤害的风险,提醒医务人员应严格掌握放射治疗的适应症,按照相关规章制度及说明书要求维护、操作、使用电子直线加速器,制定科学合理的治疗方案。
医用电子直线加速器硬件系统的研究进展和临床应用

医用电子直线加速器硬件系统的研究进展和临床应用作者:肖振华王振宇文碧秀来源:《中国现代医生》2013年第27期[摘要] 医用电子直线加速器(LINAC)是肿瘤放射治疗中应用最广泛的设备。
近年来关于提高肿瘤治疗精度的多叶准直器、图像引导、六维床技术以及加快治疗速度的容积旋转调强放疗和无均整技术的研究取得一系列的突破和发展。
本文主要介绍上述技术发展的特点和临床应用情况,并展望LINAC未来发展趋势。
[关键词] 医用电子直线加速器;多叶准直器;图像引导技术;六维床技术;容积旋转调强放疗;无均整技术[中图分类号] R197.39 [文献标识码] A [文章编号] 1673-9701(2013)27-0019-03随着人类寿命的延长、生活水平的改善,肿瘤的发病率呈现上升趋势,WHO预计到2020年癌症的发病率和死亡率将会是现在的两倍[1]。
作为肿瘤治疗的三大主要手段之一,放射治疗在现代肿瘤临床治疗的地位举足轻重,约70%的肿瘤患者需要接受放疗来治愈或改善病情,并且这一比例将随着放射治疗技术的提高而增加。
近年来,放射治疗主要设备医用电子直线加速器(Linear Accelerator,LINAC)在多叶准直器(Multi-leaf Collimator,MLC)精度、治疗床位置精度特别是6维床技术、图像引导放疗(Image Guided Radiotherapy,IGRT)等技术方面有了进一步发展,容积旋转调强放疗和无均整器(Flattening Filter Free,FFF)技术令治疗速度明显加快。
本文对其研究进展和临床应用做一综述。
1医用电子直线加速器的发展历程在居里夫人发现天然放射物质镭后,人们就开始探讨放射线在医学特别是肿瘤治疗中的应用。
深部X线治疗机最早应用于临床,因其能量不足,一直处于放射治疗的次要地位。
60Co 治疗机因放射性同位素60Co在衰变过程中释放平均能量为1.25MeV的γ射线[2],基本达到了肿瘤治疗要求。
9医用直线加速器的检测

浙江省肿瘤医院放射物理室 狄小云
加速器的发展历史
1895年伦琴发现X线 1899年在瑞典首次使用电离辐射治疗癌症 1940年美国Keirt 发明电子感应加速器 1944年苏联Vekslert提出电子回旋加速器原理 1949年美国用电子感应加速器进行放射治疗 1972年中国开展医用电子感应加速器的研究 1977年北京、南京、上海先后研制成医用电子直线加速 器 1987年北京研制成驻波医用电子直线加速器 1975年中国引进医用电子直线加速器 1977年浙江省肿瘤医院引进医用电子直线加速器进行放
剂量比法(D20/D10)
测量方法:源至水模表面距离SSD=100cm, 模体表面的辐射野10cm×10cm,射线束 轴与模体垂直。若用圆柱形电离室,电 离室轴线与束轴垂直;若用平行板电离 室,束轴垂直于平行板电离室的入射面。 电离室的有效测量点沿束轴移动,分别测 出水深为10cm与20cm处的吸收剂量D10 与 D20,并确定D20/D10的比值。
式中的M是经温度、气压修正后的仪表读数;Sw,air为水对空气的阻止本 领比(其值见表11);Pu为扰动因子(图16), 校正电离室物质非水物质的等效性;Pcel为电离室中心电极的修正,仅 仅考虑室壁与平衡帽的非空气等效引起的修正是不够的,中心电极的非 空气等效性也可引起测量的误差。 当电离室壁材料是石墨,中心电极材料为铝时,Pcel=1.000。
组织模体比、剂量比与能量的相应关系
TPR2010 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.75 0.76 0.77 0.78 0.79 (0.57 D20/D10 0.520 0.535 0.550 0.570 0.585 0.600 0.615 0.630 0.640 0.645 0.655 0.660 0.675 0.500 MV 3.5 3.9 4.4 5.0 5.8 7.0 8.0 9.5 10.5 12.0 14.0 20.0 25.0 60Coγ 射线 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加速器发展历程
放疗技术的发展历程
、从国际上
1) 1895 年:伦琴发现了X 线。
2) 1896 年:用X 线治疗了第1 例晚期乳腺癌;
3) 1896 年:居里夫妇发现了镭;
4) 1913 年:研制成功了X 线管,可控制射线的质和量;
5) 1922 年:生产了深部X 线机;
6) 1923 年:首次在治疗计划中应用等剂量线分布图;
7) 1934 年:应用常规分割照射, 沿用至今;
8) 1951 年:制造了钴60 远距离治疗机和加速器,开创了高能X 线治疗深部恶性肿
瘤的新时代;
9) 1953 年:第一台行波电子直线加速器在英国使用;
10) 1957 年:在美国安装了世界上第一台直线加速器,标志着放射治疗形成了完全独立
的学科;
11) 1959 年:Takahashi 教授提出了三维适形概念;
12) 20 世纪50 年代:开始应用高能射线大面积照射霍奇金淋巴瘤, 使其成为可治愈
的疾病;
13) 20 世纪70 年代:随着计算机的应用和CT、MRI 的出现, 制造出三维治疗计划系
统和多叶光栅,实现了三维适形放疗,放射治疗学进入了从二维到三维治疗的崭新时代;
14) 20 世纪80 年代:出现了多叶光栅 (即多叶准直器),可调节X 射线的
强度,开创了调强放射治疗( IMRT) ;
15) 最近十年,广泛开展了立体定向放射外科(SRS)、三维适形放疗
(3-dimentional conformal radio- therapy, 3D-CRT) 、调强适形放疗( intensity modulated radiotherapy, IMRT) 和图象引导放疗
( image-guided radiotherapy, IGRT) 等新技术。
、在我国:
1) 20 世纪30 年代初:当时只有北京协和医院和上海中比镭锭医院可进行
放射治疗,北京协和医院只有120kV和200kV的X射线治疗机各一台;
2) 20 世纪40 年代:北京大学医学院组建了放疗科;
3) 1958 年:成立中国医学科学院肿瘤医院;
4) 1968 年:引进第一台医用电子感应加速器;
5) 1974 年:在当时的北京市委领导下,由四十多个单位组成的科技攻关
会战组开始了国产医用电子直线加速器(行波型)的研制工作;
6) 1975 年:引进第一台医用电子直线加速器;
7) 1977 年:首台国产医用电子直线加速器投入临床试用;
8) 1986 年:中国成立了中华医学会放射肿瘤学会;
9) 1989 年:国产医用电子直线加速器已累计安装投入使用达到15 台左右;
10) 2010 年:国产首台高能医用电子直线加速器开始研发。
加速器发展历程
——放疗技术的发展历程与医学其他学科相比,放射治疗历史比较短,但在短短100 余年里,放射治疗伴随着计算机技术和物理生物技术的进步取得了突飞猛进的发展。
1895 年伦琴发现了X 射线,1896 年贝克勒尔发现放射性核素铀,1898 年居里夫人发现了放射性核素镭,19 世纪末20 世纪初物理学上这些伟大的发现为后来放射治疗的发展奠定了最基本的元素,很快放射治疗便投入了临床应用,1896 年即用X 线治疗了第一例晚期乳腺癌。
1913 年研制成功了X 线管,可控制射线的质和量,X 线管诞生以后,1922 年生产了首台深部X 射线治疗机,治愈了一例喉癌患者。
随着放射治疗设备的研发,放射物理和生物技术也在不断进步,1923 年首次在放射治疗计划中运用等剂量分布图,1934 年应用常规分割照射并沿用至今。
1936 年提出了氧在放射治疗敏感性中的重要性。
20 世纪30 年代建立了物理剂量单位——伦琴。
放射物理和生物技术的进步发展为放射线有效的运用于临床放射治疗提供了技术保证。
1951年,第一台钻60远距离治疗机问世,钻60所产生的丫射线具有较强的穿透力,深部剂量高,皮肤剂量低,适用于治疗较深部位肿瘤。
钴60 远距离治疗机分为固定式、旋转式和丫刀三种类型,它的问世开创了高能放射线治疗深部恶性肿瘤的新时代。
1953 年世界上第一台医用电子直线加速器(LA, linear accelerator )在英国投入临床使用,医用电子直线加速器是利用微波电磁场把电子沿直线轨道加速到较高能量的装置,能产生电子线和X 射线,具有足够大的输出量,能够同时满足不同部位不同深度肿瘤的治疗需要,在兼具深部X 线治疗机和钴60 治疗机优势的同时有更广泛的利用空间。
直线加速器的应用标志着放射治疗形成了一门完全独立的学科。
1959 年提出了三维适形概念,70 年代随着计算机的应用和CT、MRI 的出现制造了三维治疗计划系统 (TPS,treatment planning system )和多叶光栅(M LC,multi-leaf
collimator) 。
治疗计划系统是一套专用的计算机应用系统,它根据病灶的情况进行放射治疗计划的设计,最终使肿瘤得到最大的致死剂量,周围正常组织和重要器官放射损伤最小,三维治疗计划系统同时合并了更多的功能。
多叶光栅是安装在医用电子直线加速器上的一项精密装置,它可以调节射线的出束形状和X 射线强度,它们的问世使放射治疗学进入了从二维到三维治疗的崭新时代, 实现了三维适形放疗( 3D-CRT, Three dimensional conformal radiot herapy )。
在配备有三维治疗计划系统和多叶光栅的电子直线加速器上,80 年代出现了更为精确的调强放射治疗 ( IMRT, Intensity-modulated radiation the rapy ),从此放射治疗全面进入了精确放疗时代。
中国1975 年引进第一台医用电子直线加速器,时隔两年之后,第一台国产医用电子直线加速器投入临床试用,从此中国开始进入放疗技术高速发展的快时代。
放射治疗发展至今,伴随着影像技术的进步发展,21 世纪的放射治疗已经全面的进入了影像引导放射治疗 (IGRT, image guide radiation therapy )时代。
影像引导放射治疗是在直线加速器上配备有X线、CT等成像系统,引入了主动呼吸门控系统( ABC ,active breathing control system ),是一种四维的放射治疗技术,它在三维放疗技术的基础上加入了时间因子概念,在患者进行治疗前、
治疗中和治疗后利用各种先进的影像设备对肿瘤及正常器官进行实时监控,通过影像引导可以减小摆位误差和器官生理运动对肿瘤靶区的影响,
让放射线紧跟肿
瘤靶区实现真正意义的精确放疗。