数列的分组

合集下载

高中文科数学数列分组教案

高中文科数学数列分组教案

高中文科数学数列分组教案
一、教学目标
1. 理解数列的概念以及数列的特点;
2. 掌握等差数列和等比数列的概念及性质;
3. 能够准确地判断一个数列是等差数列还是等比数列;
4. 能够运用等差数列和等比数列的性质解决问题。

二、教学内容
1. 数列的概念及特点;
2. 等差数列和等比数列的概念及性质;
3. 判断一个数列是等差数列还是等比数列的方法;
4. 运用等差数列和等比数列的性质解决实际问题。

三、教学步骤
1. 引入:通过举例介绍数列的概念及特点,引出等差数列和等比数列的概念;
2. 基础知识讲解:讲解等差数列和等比数列的定义及性质;
3. 实例分析:通过实例分析,让学生能够判断一个数列是等差数列还是等比数列;
4. 练习巩固:设计一些练习题,让学生运用所学知识判断数列的性质;
5. 拓展应用:设计一些实际问题,让学生运用等差数列和等比数列的性质解决问题;
6. 总结复习:对所学知识进行总结复习,强化学生对知识点的理解和记忆。

四、教学重点和难点
1. 教学重点:理解等差数列和等比数列的概念及性质;
2. 教学难点:准确判断一个数列是等差数列还是等比数列。

五、教学资源
1. 课件及教材;
2. 练习题和实际问题。

六、教学评价
1. 学生的课堂表现;
2. 学生对练习题和实际问题的解答情况;
3. 教师对学生的评价和反馈。

希望以上教案范本可以帮助您进行高中文科数学数列分组教学,祝您教学顺利!如果还有其他需要帮助的地方,请随时告诉我。

数列的分组

数列的分组

数列的分组例题1、 在下面的一列数中,只有一个九位数,它是______。

1234,5678,9101112,13141516,……答案:979899100。

解析:按照自然数从小到大的顺序,每四个数构成一数。

九位数只能由三个两位数和一个三位数构成,所以这个九位数是979899100。

例题2、 把自然数按下表的规律排列,其中12在8的正下方,在88正下方的数是______。

12 34 5 67 8 9 1011 12 13 14 1516 × × × × ×× × × × × × ×答案:101。

解析:由12=8+4,4正好是8所在的行数值,则必须求出88所在行数值。

根据每行尾数的排列规律1,3,6,10,15,21,28,36,45,55,66,78,91,…,可知88所在行数应是第13行。

因此,在88的正下方的数是88+13=101。

例题3、数1,2,3,4,…,10000按下列方式排列:1 2 3 (100)101 102 103 (200)… … … … …9901 9902 9903 (10000)任取其中一数,并划去该数所在的行与列。

这样做了100次以后,求所取出的100个数的和。

答案:将第2行的每个数减去100,第3行每个数减去200,…,第100行每个数减去9900,我们就得到一个各行都是1,2,…,100的数表。

在后一个数表按规定方法取出的各数之和是1+2+…+100=5050。

于是在原表中所求各数之和为:5050+(100+200+…+9900)=5050+495000=500050。

例题4、 下面是一列有规律排列的数组:(1,21,31);(31,41,51),(51,61,71);……;第100个数组内三个分数分母的和是______。

答案:600提示:第n 组中间的分数的分母是2n ,则第n 组内三个分数分母之和是(2n -1)+2n +(2n +1)=6n 。

专题32 数列中分组求和法问题(解析版)

专题32 数列中分组求和法问题(解析版)

专题32 数列中分组求和法问题【高考真题】 2022年没考查 【方法总结】 分组转化法求和有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个可求和的数列,先分别求和,然后再合并.(1)若a n =b n ±c n ,且{b n },{c n }为可求和的数列(等差或等比数列),可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是可求和的数列(等比数列或等差数列),可采用分组求和法求和.【题型突破】1.已知数列{a n }为等差数列,其中a 5=3a 2,a 2+a 3=8. (1)求数列{a n }的通项公式;(2)数列{b n }中,b 1=1,b 2=2,从数列{a n }中取出第b n 项记为c n ,若{c n }是等比数列,求{b n }的前n 项和.1.解析 (1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+3d =8,a 1+4d =3a 1+3d ,解得a 1=1,d =2,从而{a n }的通项公式为a n =2n -1,n ∈N *.(2)c 1=ab 1=a 1=1,c 2=ab 2=a 2=3,从而等比数列{c n }的公比为3,因此c n =1×3n -1=3n -1. 另一方面,c n =a bn =2b n -1,所以2b n -1=3n -1,因此b n =3n -1+12.记{b n }的前n 项和为S n ,则S n =(1+31+…+3n -1)+n 2=3n +2n -14.2.已知递增等比数列{a n }的前三项之积为8,且这三项分别加上1,2,2后又成等差数列. (1)求等比数列{a n }的通项公式;(2)记b n =a n +2n ,求数列{b n }的前n 项和T n .2.解析 (1)设等比数列前三项分别为a 1,a 2,a 3,公比为q ,则a 1+1,a 2+2,a 3+2成等差数列.依题意得⎩⎪⎨⎪⎧a 1a 2a 3=8,2(a 2+2)=(a 1+1)+(a 3+2),即⎩⎪⎨⎪⎧a 1·a 1q ·a 1q 2=8,2(a 1q +2)=a 1+1+a 1·q 2+2,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=4,q =12(舍去).∴数列{a n }的通项公式为a n =2n -1.(2)由b n =a n +2n ,得b n =2n -1+2n ,∴T n =b 1+b 2+…+b n =(20+21+22+…+2n -1)+2×(1+2+3+…+n )=20(1-2n )1-2+2×n (1+n )2=2n +n 2+n -1.3.已知数列{a n }是等差数列,S n 是其前n 项和,且a 1=2,S 3=12. (1)求数列{a n }的通项公式;(2)设b n =a n +4n ,求数列{b n }的前n 项和T n .3.解析 (1)∵数列{a n }是等差数列,S n 是其前n 项和,a 1=2,S 3=12, ∴S 3=3×2+3×22d =12,解得d =2,∴a n =2+(n -1)×2=2n .(2)∵b n =a n +4n =2n +4n , ∴T n=2(1+2+3+…+n )+(4+42+43+…+4n )=2×n (n +1)2+4(1-4n )1-4=n 2+n +4n +13-43. 4.已知数列{a n }是各项均为正数的等比数列,且a 1+a 2=2⎝⎛⎭⎫1a 1+1a 2,a 3+a 4=32⎝⎛⎭⎫1a 3+1a 4. (1)求数列{a n }的通项公式;(2)设b n =a 2n +log 2a n ,求数列{b n }的前n 项和T n .4.解析 (1)设等比数列{a n }的公比为q (q >0),则a n =a 1q n -1,且a n >0,由已知得⎩⎨⎧a 1+a 1q =2⎝⎛⎭⎫1a 1+1a 1q ,a 1q 2+a 1q 3=32⎝⎛⎭⎫1a 1q 2+1a 1q 3,化简得⎩⎪⎨⎪⎧ a 21q (q +1)=2(q +1),a 21q 5(q +1)=32(q +1),即⎩⎪⎨⎪⎧a 21q =2,a 21q 5=32,又∵a 1>0,q >0,∴a 1=1,q =2,∴数列{a n }的通项公式为a n =2n -1.(2)由(1)知b n =a 2n +log 2a n=4n -1+n -1, ∴T n=(1+4+42+…+4n -1)+(0+1+2+3+…+n -1)=4n -14-1+n (n -1)2=4n -13+n (n -1)2.5.已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列. (1)求数列{a n }的通项公式;(2)设b n =2n a+(-1)n a n ,求数列{b n }的前2n 项和T 2n .5.解析 (1)∵{a n }为各项都不相等的等差数列,a 6=6,且a 1,a 2,a 4成等比数列. ∴⎩⎪⎨⎪⎧a 6=a 1+5d =6,a 1+d 2=a 1a 1+3d ,d ≠0,解得a 1=1,d =1,∴数列{a n }的通项公式a n =1+(n -1)×1=n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n , 则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 6.由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4. (1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.6.解析 (1)由题意,设数列{a n }的公差为d ,因为a 3=5,a 1a 2=2a 4,可得⎩⎪⎨⎪⎧a 1+2d =5,a 1·a 1+d =2a 1+3d ,整理得(5-2d )(5-d )=2(5+d ),即2d 2-17d +15=0,解得d =152或d =1,因为{a n }为整数数列,所以d =1,又由a 1+2d =5,可得a 1=3, 所以数列{a n }的通项公式为a n =n +2.(2)由(1)知,数列{a n }的通项公式为a n =n +2,又由数列{b n }的通项公式为b n =2n , 根据题意,得新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,则T 4n +3=b 1+a 1+a 2+b 2+b 3+a 3+a 4+b 4+…+b 2n -1+a 2n -1+a 2n +b 2n +b 2n +1+a 2n +1+a 2n +2 =(b 1+b 2+b 3+b 4+…+b 2n +1)+(a 1+a 2+a 3+a 4+…+a 2n +2) =2×(1-22n +1)1-2+(3+2n +4)(2n +2)2=4n +1+2n 2+9n +5.7.若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *). (1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .7.解析 (1)∵S n =2a n -λ,当n =1时,得a 1=λ, 当n ≥2时,S n -1=2a n -1-λ,∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列,∴a n =λ·2n -1.(2)∵λ=4,∴a n =4·2n -1=2n +1,∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数,∴T 2n =22+3+24+5+26+7+…+22n +2n +1=(22+24+…+22n )+(3+5+…+2n +1) =4-4n ·41-4+n (3+2n +1)2=4n +1-43+n (n +2),∴T 2n =4n +13+n 2+2n -43.8.已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12. (1)求数列{a n }的通项公式;(2)令c n =4b n ·b n +1+a n,求数列{c n }的前n 项和S n .8.解析 (1)由b n =log 2a n 和b 1+b 2+b 3=12,得log 2(a 1a 2a 3)=12,∴a 1a 2a 3=212. 设等比数列{a n }的公比为q ,∵a 1=4,∴a 1a 2a 3=4·4q ·4q 2=26·q 3=212,解得q =4, ∴a n =4·4n -1=4n .(2)由(1)得b n =log 24n =2n ,c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n .设数列⎩⎨⎧⎭⎬⎫1n (n +1)的前n 项和为A n ,则A n =1-12+12-13+…+1n -1n +1=nn +1,设数列{4n}的前n 项和为B n ,则B n =4-4n ·41-4=43(4n-1),∴S n =n n +1+43(4n -1).9.已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12. (1)求数列{a n }的通项公式;(2)令c n =4b n ·b n +1+a n,求数列{c n }的前n 项和S n .9.解析 (1)由b n =log 2a n 和b 1+b 2+b 3=12,得log 2(a 1a 2a 3)=12,∴a 1a 2a 3=212. 设等比数列{a n }的公比为q ,∵a 1=4,∴a 1a 2a 3=4·4q ·4q 2=26·q 3=212,解得q =4, ∴a n =4·4n -1=4n .(2)由(1)得b n =log 24n =2n ,c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n .设数列⎩⎨⎧⎭⎬⎫1n (n +1)的前n 项和为A n ,则A n =1-12+12-13+…+1n -1n +1=nn +1,设数列{4n}的前n 项和为B n ,则B n =4-4n ·41-4=43(4n-1),∴S n =n n +1+43(4n -1).10.在各项均为正数的等比数列{a n }中,a 1a 3=4,a 3是a 2-2与a 4的等差中项,若a n +1=2n b(n ∈N *).(1)求数列{b n }的通项公式;(2)若数列{}c n 满足c n =a n +1+1b 2n -1·b 2n +1,求数列{}c n 的前n 项和S n .10.解析 (1)设等比数列{a n }的公比为q ,且q >0,由a n >0,a 1a 3=4,得a 2=2,又a 3是a 2-2与a 4的等差中项,故2a 3=a 2-2+a 4,∴2·2q =2-2+2q 2, ∴q =2或q =0(舍).∴a n =a 2q n -2=2n -1, ∴a n +1=2n =2n b,∴b n =n (n ∈N *).(2)由(1)得,c n =a n +1+1b 2n -1·b 2n +1=2n +1(2n -1)(2n +1)=2n +12⎝⎛⎭⎫12n -1-12n +1,∴数列{}c n 的前n 项和S n =2+22+…+2n +12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=2(1-2n )1-2+12⎝⎛⎭⎫1-12n +1=2n +1-2+n 2n +1(n ∈N *). 11.(2019·天津)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).11.解析 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q (q >0).依题意,得⎩⎪⎨⎪⎧3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n .(2)a 1c 1+a 2c 2+…+a 2n c 2n =(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n )=⎣⎡⎦⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ).记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,②②-①得,2T n =-3-32-33-…-3n +n ×3n +1=-3(-3n )1-3+n ×3n +1=(2n -1)3n +1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).12.已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1.(1)求数列{a n }和{b n }的通项公式;(2)令c n =b n 2n +1+1n (n +1),其中n ∈N *,若数列{c n }的前n 项和为T n ,求T n .12.解析 (1)由a 1=-3S 1+4=-3a 1+4,得a 1=1,由a n =-3S n +4,知a n +1=-3S n +1+4,两式相减并化简得a n +1=14a n ,∴数列{a n }是首项为1,公比为14的等比数列,∴a n =⎝⎛⎭⎫14n -1,b n =-log 2a n +1=-log 2⎝⎛⎭⎫14n=2n . (2)由题意知,c n =n 2n +1n (n +1).令H n =12+222+323+…+n2n ,①则12H n =122+223+…+n -12n +n2n +1,② ①-②得,12H n =12+122+123+…+12n -n2n +1=1-n +22n +1.∴H n =2-n +22n .又M n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,∴T n =H n +M n =2-n +22n +nn +1.13.在数列{a n }中,已知a 1=1,a n ·a n +1=⎝⎛⎭⎫12n,记S n 为{a n }的前n 项和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并写出其通项公式; (2)求数列{a n }的通项公式; (3)求S n .13.解析 (1)因为a n ·a n +1=⎝⎛⎭⎫12n ,所以a n +1·a n +2=⎝⎛⎭⎫12n +1,所以a n +2a n =12,即a n +2=12a n . 因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,所以数列{b n }是公比为12的等比数列.因为a 1=1,a 1·a 2=12,所以a 2=12,b 1=a 1+a 2=32,所以b n =32×⎝⎛⎭⎫12n -1=32n ,n ∈N *.(2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列,所以a 2n -1=⎝⎛⎭⎫12n -1,a 2n =⎝⎛⎭⎫12n , 所以a n =11221,21 2n n n n +-⎧⎛⎫⎪ ⎪⎪⎝⎭⎨⎪⎛⎫⎪ ⎪⎝⎭⎩,为奇数,为偶数. (3)因为S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n ,又S 2n -1=S 2n -a 2n =3-32n -12n =3-42n ,所以S n =21233, 2432n n n n +⎧-⎪⎪⎨⎪-⎪⎩,为偶数,为奇数.14.(2021·新高考Ⅰ)已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前20项和.14.解析 (1)因为b n =a 2n ,且a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数,所以b 1=a 2=a 1+1=2,b 2=a 4=a 3+1=a 2+2+1=5.因为b n =a 2n ,所以b n +1=a 2n +2=a 2n +1+1=a 2n +1+1=a 2n +2+1=a 2n +3,所以b n +1-b n =a 2n +3-a 2n =3,所以数列{b n }是以2为首项,3为公差的等差数列, 所以b n =2+3(n -1)=3n -1,n ∈N *.(2)因为a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n+2,n 为偶数,所以k ∈N *时,a 2k =a 2k -1+1=a 2k -1+1,即a 2k =a 2k -1+1,①,a 2k +1=a 2k +2,② a 2k +2=a 2k +1+1=a 2k +1+1,即a 2k +2=a 2k +1+1,③ 所以①+②得a 2k +1=a 2k -1+3,即a 2k +1-a 2k -1=3,所以数列{a n }的奇数项是以1为首项,3为公差的等差数列; ②+③得a 2k +2=a 2k +3,即a 2k +2-a 2k =3,又a 2=2,所以数列{a n }的偶数项是以2为首项,3为公差的等差数列. 所以数列{a n }的前20项和S 20=(a 1+a 3+a 5+…+a 19)+(a 2+a 4+a 6+…+a 20)=10+10×92×3+20+10×92×3=300.15.已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .15.解析 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5,又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数,T n =T n -1+(-1)n ·n 2=(n -1)n 2-n 2=-n (n +1)2.综上可知,T n =(-1)n n (n +1)2.16.在①b n =na n ,②b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n,n 为偶数,③b n =1(log 2a n +1)(log 2a n +2)这三个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }是等比数列,且a 1=1,其中a 1,a 2+1,a 3+1成等差数列. (1)求数列{a n }的通项公式;(2)记________,求数列{b n }的前2n 项和T 2n .16.解析 (1)设数列{a n }的公比为q ,因为a 1,a 2+1,a 3+1成等差数列,所以2(a 2+1)=a 1+a 3+1.又因为a 1=1,所以2(q +1)=2+q 2,即q 2-2q =0,所以q =2或q =0(舍去),所以a n =2n -1. (2)由(1)知a n =2n -1,若选择条件①,则b n =n ·2n -1, 所以T 2n =1×20+2×21+…+2n ×22n -1, 则2T 2n =1×21+2×22+…+2n ×22n , 两式相减得-T 2n=1×20+1×21+…+1×22n -1-2n ×22n =1-22n1-2-2n ×22n =(1-2n )×22n -1, 所以T 2n =(2n -1)·22n +1.由(1)知a n =2n -1,若选择条件②,则b n =⎩⎪⎨⎪⎧2n -1,n 为奇数,n -1,n 为偶数,所以T 2n =(20+1)+(22+3)+…+(22n -2+2n -1)=(20+22+…+22n -2)+(1+3+…+2n -1) =1-4n 1-4+n (1+2n -1)2=4n 3+n 2-13.由(1)知a n =2n -1,若选择条件③,则b n =1n (n +1),所以T 2n =11×2+12×3+…+12n (2n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12n -12n +1=1-12n +1=2n2n +1. 17.已知{a n }是等差数列,{b n }是等比数列,且{b n }的前n 项和为S n ,2a 1=b 1=2,a 5=5(a 4-a 3),________.在①b 5=4(b 4-b 3),②b n +1=S n +2这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答.(1)求数列{a n }和{b n }的通项公式; (2)求数列{a n -b n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.17.解析 (1)若选条件①,b 5=4(b 4-b 3).设等差数列{a n }的公差为d ,∵2a 1=2,a 5=5(a 4-a 3),∴a 1+4d =5(a 1+3d -a 1-2d ),∴a 1=d =1.∴a n =1+(n -1)×1=n . 设等比数列{b n }的公比为q .由b 1=2,且b 5=4(b 4-b 3),得b 1q 4=4(b 1q 3-b 1q 2).∴q 2-4q +4=0,解得q =2.所以{b n }是首项为2,公比为2的等比数列.故b n =2×2n -1=2n (n ∈N *). 若选条件②,b n +1=S n +2.令n =1,得b 2=S 1+2=b 1+2=4.∴公比q =b 2b 1=2.∴数列{b n }是首项为2,公比为2的等比数列.从而b n =2×2n -1=2n (n ∈N *). (2)由(1)知a n -b n =n -2n ,∴T n =(1+2+3+…+n )-(21+22+23+…+2n ), ∴T n =n (1+n )2-2(1-2n )1-2,∴T n =2-2n +1+n 22+n 2.18.已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围.18.解析 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7,故公差d =a 4-a 3=7-5=2,故a n =a 3+(n -3)d =2n -1. (2)由(1)知b n =22n -1+2n -1,T n =21+1+23+3+…+22n -1+2n -1=21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n 1+2n -12=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.19.已知等比数列{a n }为递增数列,且a 4=23,a 3+a 5=209,设b n =log 3a n2(n ∈N *).(1)求数列{b n }的前n 项和S n ;(2)令T n =b 1+b 2+b 22+…+b 2n -1,求使T n >0成立的最小值n .19.解析 (1)设等比数列{a n}的公比为q ,由题意知,⎩⎨⎧a 1q 3=23,a 1q 2+a 1q 4=209,两式相除,得q 1+q 2=310, 解得q =3或q =13,∵{a n }为递增数列,∴q =3,a 1=281.∴a n =a 1q n -1=281·3n -1=2·3n -5.∴b n =log 3a n2=n -5,数列{b n }的前n 项和S n =n (-4+n -5)2=12(n 2-9n ).(2)T n =b 1+b 2+b 22+…+b 2n -1=(1-5)+(2-5)+(22-5)+…+(2n -1-5)=1-2n1-2-5n >0, 即2n >5n +1,∵24<5×4+1,25>5×5+1,∴n min =5.20.已知数列{a n }的前n 项和S n 满足关系式S n =ka n +1,k 为不等于0的常数.(1)试判断数列{a n }是否为等比数列; (2)若a 2=12,a 3=1.①求数列{a n }的通项公式及前n 项和S n 的表达式;②设b n =log 2S n ,数列{c n }满足c n =1b n +3b n +4+b n +2·2n b,数列{c n }的前n 项和为T n ,当n >1时,求使4n -1T n <S n +3+n +122成立的最小正整数n 的值.20.解析 (1)若数列{a n }是等比数列,则由n =1得a 1=S 1=ka 2,从而a 2=ka 3.又取n =2,得a 1+a 2=S 2=ka 3,于是a 1=0,显然矛盾,故数列{a n }不是等比数列.(2)①由条件得⎩⎨⎧a 1=12k ,a 1+12=k ,解得⎩⎪⎨⎪⎧a 1=12,k =1,从而S n =a n +1.当n ≥2时,由S n -1=a n ,得a n =S n -S n -1=a n +1-a n ,即a n +1=2a n ,此时数列是首项为a 2=12,公比为2的等比数列.综上所述,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧12,n =1,2n -3,n ≥2.从而其前n 项和S n =2n -2(n ∈N *). ②由①得b n =n -2,从而c n =1(n +1)(n +2)+n ·2n -2.记C 1=12×3+13×4+…+1(n +1)(n +2)=⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n +1-1n +2=n 2(n +2), 记C 2=1·2-1+2·20+…+n ·2n -2,则2C 2=1·20+2·21+…+n ·2n -1, 两式相减得C 2=(n -1)·2n -1+12,从而T n =n 2(n +2)+(n -1)·2n -1+12=n +1n +2+(n -1)·2n -1,则不等式4n -1T n <S n +3+n +122可化为4(n +1)(n -1)(n +2)+2n +1<2n +1+n +122,即n 2+n -90>0,因为n ∈N *且n ≠1,故n >9, 从而最小正整数n 的值是10.。

数列求和的3种方法——分组转化、裂项相消和错位相减

数列求和的3种方法——分组转化、裂项相消和错位相减
在相加抵消过程中,有的是依次抵消,有的是间隔抵消, 特别是间隔抵消时要注意规律性.
一般地,若{an}为等差数列,则求数列ana1n+1的前 n 项和 可 尝 试 此 方 法 , 事 实 上 , 1 = d = an+1-an =
anan+1 danan+1 danan+1 1d·a1n-an1+1.
数列求和的3种方法——分组转化、裂项相消和错位相减 结 束
高考研究课(三 数列求和的 3 种方法——分组转化、裂项相消和错位相减
非等差、等比数列的一般数列求和,主要有两种思想: 1转化的思想,即将一般数列设法转化为等差或等比数 列,这一思想方法往往通过通项分解或错位相消来完成. 2不能转化为等差或等比的特殊数列,往往通过裂项相 消法、错位相减法、倒序相加法等来求和.
数列求和的3种方法——分组转化、裂项相消和错位相减
[即时训练]
结束
1.(2017·福州质检)已知函数f(x)=xa的图象过点(4,2),令an=
fn+11+fn,n∈N*.记数列{an}的前n项和为Sn,则S2 016=(
)
A. 2 015-1
B. 2 016-1
数列求和的3种方法——分组转化、裂项相消和错位相减 结 束
[方法技巧]
(1)若数列{cn}的通项公式为 cn=an±bn,且{an},{bn} 为等差或等比数列,可采用分组求和法求数列{cn}的前 n 项和.
(2)若数列{cn}的通项公式为
cn=
an,n为奇数, bn,n为偶数,

中数列{an},{bn}是等比数列或等差数列,可采用分组求和
数列求和的3种方法——分组转化、裂项相消和错位相减 结 束
(2017·沈阳质检)已知数列an是递增的等比数列,且 a1+a4=9, a2a3=8. (2)设 Sn 为数列{an}的前 n 项和,bn=SanSn+n+1 1,求数列{bn}的前 n 项和 Tn. [解] Sn=(a111--qqn)=2n-1,又 bn=SanSn+n+1 1=SSn+nS1-n+S1 n =S1n-Sn1+1,所以 Tn=b1+b2+…+bn =S11-S12+S12-S13+…+S1n-Sn1+1=S11-Sn1+1 =1-2n+11-1,n∈N*.

【小升初专项训练】2 数列分组

【小升初专项训练】2 数列分组

第5讲数列分组第一关【例1】将下列6个数分成两组,每组3个,要求两组中各数的和相等:6,12,26,38,50,68【答案】6+26+68=12+38+50【例2】将下列10个数分成两组,每组5个,要求两组中各数的乘积相等:6,8,9,13,21,26,35,44,50,55【答案】44×13×21×50×6=55×26×35×8×9【例3】将下列10个数分成2组,每组5个,要求一组为公差是8的等差数列,一组是公比是3的等比数列。

2,6,18,26,34,42,50,54,58,162【答案】等比数列:2,6,18,54,162;等差数列:26,34,42,50,58【例4】将下列9个数分成2组,每组5个(可重复使用),要求一组为公差是5的等差数列,一组是公比是2的等比数列。

7,8,13,14,18,23,28,56,112【答案】等比数列:7,14,28,56,112;等差数列:8,13,18,23,28【例5】将下列10个数分成2组,每组5个,要求一组为公差是35的等差数列,一组是公比是5的等比数列。

5,15,25,50,85,120,125,155,625,3125【答案】等比数列:5,25,125,625,3125;等差数列:15,50,85,120,155第二关等差等比数列【例6】按规律填数:1,2,4,4,7,8,______,______,13,______,______。

【答案】10,16,32,16【例7】按规律填数:3,5,6,10,12,15,______,______,48,______,______。

【答案】24,20,25,92【例8】自然数按下图所示的方法排列.问:(l)射线b上第1995个数是几?(2)数1995在哪条射线上?【答案】(1)5984;(2)C【例9】有一列数:1,1993,1992,1,1991,1990,1,…,从第三个数起,每一个数都是它前面两个数中大数减小数的差,求从第一个起到1993个数这1993个数之和.【答案】1766241第三关【例10】下面是一组有规律排列的数组11 123(,,);111 456(,,);111 789(,,)……;求第100个括号内三个分数分母的和。

数的分组与数的分组法则

数的分组与数的分组法则

数的分组与数的分组法则随着社会的发展和生产力的提高,我们经常需要对一些数量庞大的事物进行分类和分组。

在数学中,也存在着数的分组与数的分组法则,帮助我们更好地理解和解决问题。

一、数的分组的概念和作用数的分组是指根据一定的规则和特征,将一系列数按照某种方式划分成若干组。

它的主要作用在于更好地管理和比较大量数据,提供更高效的分析和解决问题的方法。

二、数的分组的方法数的分组可以采用不同的方法,根据问题的具体情况和要求选择适合的方式。

下面介绍几种常见的数的分组方法:1. 等差数列分组法等差数列分组法是将数列中连续的数按照相同的差值分成若干组。

这种方法常用于一些递增或递减的数列,如等差数列、等比数列等。

通过等差数列的分组,我们可以更加清晰地观察数的规律和特点,从而得到更有价值的信息。

2. 区间分组法区间分组法是将数列按照一定的区间范围进行分组。

这种方法常见于统计学中对数据进行分组统计的情况。

通过合理设定区间,我们可以更准确地描述数据的分布情况,进行数据分析和比较。

3. 四舍五入分组法四舍五入分组法是将一系列数按照某个标准进行四舍五入,得到近似的整数,然后再进行分组。

这种方法常用于统计学中对数据进行舍入近似处理的情况。

通过四舍五入分组,我们可以简化数据的表示,减少计算的复杂性。

4. 相邻数位分组法相邻数位分组法是将数列中的数按照相邻的数位进行分组。

这种方法常见于数论中对数的特征进行研究的情况。

通过相邻数位的分组,我们可以更好地观察数的模式和周期性,探索数的规律性。

三、数的分组法则在进行数的分组时,我们需要遵循一些基本的法则和原则,以确保分组的准确性和合理性。

1. 包容性原则每个数必须且只能属于一个分组,避免重复和遗漏。

确保分组全面细致,不出现漏掉或重复统计的情况。

2. 互斥性原则不同的分组之间必须互斥,即每个数只能属于其中一个分组。

确保分组之间的彼此独立性和互不干扰性。

3. 基数约束原则每个分组的数目应当尽量平均,避免出现分组数目差异过大的情况。

高中数学数列分组求和法题型

高中数学数列分组求和法题型

高中数学数列分组求和法题型
数列分组求和法是一种将多组数列的元素分成一个个子组,然后求出每一组的和,再求整体的和的算法,它是高中数学中常见的一类题型,要想做好这类题目,从下列几点可以作为思路:
(1)首先要熟悉掌握分组求和的运算方法以及相关知识,以便更好地解决题目。

(2)其次,在解题之前,要把多组数列整理成二维数组,记录其中的每组元素及其和,然后对于每一组元素进行分组求和,最后求出整体的和。

(3)最后,在解答这类题目的过程中,要多思考、用笔记录,以便更加准确地解答。

经过以上几条提示思考,我们可以发现,数列分组求和的解题法并不只是限定在高中数学题型中,它也有很多其他令人着迷的应用。

比如在填空题、解答问题等中,
我们还有可能采用分组求和中的各种运算法,来辅助我们解答题目。

总而言之,数列分组求和在高中数学中是一种常见的解题方法,它也可以在填空题、解答问题等中得到应用。

要想解答这类题型,除了要掌握分组求和的相关知识外,还应当注重仔细观察,多思考、多记录,以便更好解决问题。

数列之分组并项倒序求和

数列之分组并项倒序求和
2n
2(1-2

2n
3+…+(-1) ×2n]=
+n=22n+1+n-2.
1-2
8 已知数列 {
} 的前 项和 =
2 +
,
2
∈ ∗ .
(1)求数列 { } 的通项公式;
(2)设 = 2 + (−1) ,求数列 { } 的前 2 项和.
(3) 求数列 { } 的前 项和 .
A.2n+n2-1
B.2n+1+n2-1
C.2n+1+n2-2
D.2n+n-2
2(1-2 ) (1+2 -1) n+1
解析 Sn= 1-2 + 2 =2 -2+n2.
1
2n-2n
1
1
1
2 数列 1,,2,,4,,…的前 2n 项和 S2n=________.
2
4
8
解析
1 1 1
1
1 n 1
-1
n
n
S2n=(1+2+4+…+2 )+( + + +…+ n)=2 -1+1- n=2 - n.
3+6066
2
2×2
2(+2021)
2021) =
+
+ ⋯.+
, ( + 2021) + ⋯ . +(3) +
3+6066
3+6066
3+6066
2(+2021)
2×2
2
(2) + (1) =
+ ⋯.+
+
, ∴ (1) + (2) + ⋯ + (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的分组
例1.把自然数按下表的规律排列,其中12在8的正下方,在88正下方的数是.
例2.计算:1996+1995-1994-1993+1992+1991-1990-1989+…+4+3-2-1,结果是.
例4.把所有的奇数依次一项,二项,三项,四项循环分为:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,则第100个括号内的各数之和为.
例5.有一串数,第100行的第四个数是.
1,2
3,4,5,6
7,8,9,10,11,12
13,14,15,16,17,18,19,20.
【课后练习】
1.有一列由三个数组成的数组,它们依次是(1,5,10);(2,10,20);(3,15,30);…第99个数组内三个数的和是.
2.有数组:(1,1,1),(2,4,8),(3,9,27),…,第100组的三个数之和是.
3.有数组{1,2,3,4},{2,4,6,8},{3,6,9,12},…,那么第100个数组的四个数的和是.
4.将自然数按下面的规律分组:(1,2),(3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18,19,20),…,第1991组的第一个数和最后一个数各是.
5.将奇数按下列方式分组:(1),(3,5),(7,9,11),(13,15,17,19),….
(1)第15组中第一个数是;
(2)第15组中所有数的和是;
(3)999位于第组第号.
6.设自然数按下图的格式排列:
1 2 5 10 17 …
4 3 6 11 18 …
9 8 7 12 19 …
16 15 14 13 20 …
25 24 23 22 21 …

(1)200所在的位置是第行,第列;
(2)第10行第10个数是.
7.紧接着1989后面写一串数字,写下的数字都是它们前面两个数字之积的个位数,例如8×9=72,在9后面写2,2×9=18,在2后面写8,…,这样得到一串数字,从1开始,第1989个数字是.
8.把由1开始的自然数依次写下来:
1 2 3 4 5 6 7 8 9 10 11 12 13 14….
重新分组,按三个数字为一组:
123,456,789,101,112,131,…,
问第10个数是几?
9.根据下图回答:
(1)第一行的第8个数是几?
(2)第五行第六列上的数是几?
(3)200的位置在哪一格(说出所在行和列的序号)?
4.大于1的整数加下图所示,排成4列,数1000将在第列.
2 3 4 5
9 8 7 6
10 11 12 13
17 16 15 14.
5.将所有自然数如下图排列.15120这个数应在第行第个位置上.
1
2 3 4
5 6 7 8 9
10 11 12 13 14 15 16.
6.11个数排成一列,相邻三个数之和等于20.已知第2个数是1,第13个数是9,第9个数是.
7.一数列相邻四个数的和都是45,已知第6个数是11,第19个数是5,第44个数是24,那么第一个数是.
9.在1,2,3,4,5,6,7,8,9,10,11,…中第70个数被5除余.10.如图,有一个六边形点阵,它的中心是个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,…这个六边形点阵共有n层,第n层有个点,这个点阵共有个点.
13.全体奇数排成下图形式,十字框子框出5个数,要使这五个数之和等于,
(1)1989;(2)1990;(3)2005;(4)2035,能否办到?若能办到,请你写出十字框中的五个数.
1 3 5 7 9 11
13 15 17 19 21 23
25 27 29 31 33 35
37 39 41 43 45 47.。

相关文档
最新文档