数列分组求和法
数列求和各种方法总结归纳汇总

3.错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应 项之积构成的,那么这个数列的前n项和即可用此法来求.
【错位相减法】设 {an}的前n项和为Sn,an=n·2n,则Sn=
解析:∵Sn=1·21+2·22+3·23+…
+n·2n
①
∴2Sn=
1·22+2·23+3·24+…+(n-1)·2n+n·2n-21n
B.n2+2-21n
C.n2+1-2n1-1
D.n2+2-2n1-1
解析:因为an=2n-1+21n, 则Sn=1+22n-1n+1211--1221n=n2+1-21n.
2.(2011·北京东城二模)已知{an}是首项为19,公差为-2的等差 数列,Sn为{an}的前n项和.
数列求和的方法
(1)一般的数列求和,应从通项入手,若无通项,先求通 项,然后通过对通项变形,转化为与特殊数列有关或具备 某种方法适用特点的形式,从而选择合适的方法求和.
(2)解决非等差、等比数列的求和,主要有两种思路: ①转化的思想,即将一般数列设法转化为等差或等比 数列,这一思想方法往往通过通项分解或错位相减来 完成. ②不能转化为等差或等比数列的数列,往往通过裂项 相消法、错位相减法、倒序相加法等来求和.
如果一个数列{an},首末两端等“距离”的两项的和相等 或等于同一常数,那么求这个数列的前n项和即可用倒 序相加法,如等差数列的前n项和即是用此法推导的.
2.分组求和法 若一个数列的通项公式是由若干个等差数列或等比数列 或可求和的数列组成,则求和时可用分组转化法,分别 求和而后相加减.
【分组求和法】数列{(-1)n·n}的前n项和Sn=?
一、公式法
1.如果一个数列是等差数列或等比数列,则求和时直接利用等
专题32 数列中分组求和法问题(解析版)

专题32 数列中分组求和法问题【高考真题】 2022年没考查 【方法总结】 分组转化法求和有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个可求和的数列,先分别求和,然后再合并.(1)若a n =b n ±c n ,且{b n },{c n }为可求和的数列(等差或等比数列),可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是可求和的数列(等比数列或等差数列),可采用分组求和法求和.【题型突破】1.已知数列{a n }为等差数列,其中a 5=3a 2,a 2+a 3=8. (1)求数列{a n }的通项公式;(2)数列{b n }中,b 1=1,b 2=2,从数列{a n }中取出第b n 项记为c n ,若{c n }是等比数列,求{b n }的前n 项和.1.解析 (1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+3d =8,a 1+4d =3a 1+3d ,解得a 1=1,d =2,从而{a n }的通项公式为a n =2n -1,n ∈N *.(2)c 1=ab 1=a 1=1,c 2=ab 2=a 2=3,从而等比数列{c n }的公比为3,因此c n =1×3n -1=3n -1. 另一方面,c n =a bn =2b n -1,所以2b n -1=3n -1,因此b n =3n -1+12.记{b n }的前n 项和为S n ,则S n =(1+31+…+3n -1)+n 2=3n +2n -14.2.已知递增等比数列{a n }的前三项之积为8,且这三项分别加上1,2,2后又成等差数列. (1)求等比数列{a n }的通项公式;(2)记b n =a n +2n ,求数列{b n }的前n 项和T n .2.解析 (1)设等比数列前三项分别为a 1,a 2,a 3,公比为q ,则a 1+1,a 2+2,a 3+2成等差数列.依题意得⎩⎪⎨⎪⎧a 1a 2a 3=8,2(a 2+2)=(a 1+1)+(a 3+2),即⎩⎪⎨⎪⎧a 1·a 1q ·a 1q 2=8,2(a 1q +2)=a 1+1+a 1·q 2+2,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=4,q =12(舍去).∴数列{a n }的通项公式为a n =2n -1.(2)由b n =a n +2n ,得b n =2n -1+2n ,∴T n =b 1+b 2+…+b n =(20+21+22+…+2n -1)+2×(1+2+3+…+n )=20(1-2n )1-2+2×n (1+n )2=2n +n 2+n -1.3.已知数列{a n }是等差数列,S n 是其前n 项和,且a 1=2,S 3=12. (1)求数列{a n }的通项公式;(2)设b n =a n +4n ,求数列{b n }的前n 项和T n .3.解析 (1)∵数列{a n }是等差数列,S n 是其前n 项和,a 1=2,S 3=12, ∴S 3=3×2+3×22d =12,解得d =2,∴a n =2+(n -1)×2=2n .(2)∵b n =a n +4n =2n +4n , ∴T n=2(1+2+3+…+n )+(4+42+43+…+4n )=2×n (n +1)2+4(1-4n )1-4=n 2+n +4n +13-43. 4.已知数列{a n }是各项均为正数的等比数列,且a 1+a 2=2⎝⎛⎭⎫1a 1+1a 2,a 3+a 4=32⎝⎛⎭⎫1a 3+1a 4. (1)求数列{a n }的通项公式;(2)设b n =a 2n +log 2a n ,求数列{b n }的前n 项和T n .4.解析 (1)设等比数列{a n }的公比为q (q >0),则a n =a 1q n -1,且a n >0,由已知得⎩⎨⎧a 1+a 1q =2⎝⎛⎭⎫1a 1+1a 1q ,a 1q 2+a 1q 3=32⎝⎛⎭⎫1a 1q 2+1a 1q 3,化简得⎩⎪⎨⎪⎧ a 21q (q +1)=2(q +1),a 21q 5(q +1)=32(q +1),即⎩⎪⎨⎪⎧a 21q =2,a 21q 5=32,又∵a 1>0,q >0,∴a 1=1,q =2,∴数列{a n }的通项公式为a n =2n -1.(2)由(1)知b n =a 2n +log 2a n=4n -1+n -1, ∴T n=(1+4+42+…+4n -1)+(0+1+2+3+…+n -1)=4n -14-1+n (n -1)2=4n -13+n (n -1)2.5.已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列. (1)求数列{a n }的通项公式;(2)设b n =2n a+(-1)n a n ,求数列{b n }的前2n 项和T 2n .5.解析 (1)∵{a n }为各项都不相等的等差数列,a 6=6,且a 1,a 2,a 4成等比数列. ∴⎩⎪⎨⎪⎧a 6=a 1+5d =6,a 1+d 2=a 1a 1+3d ,d ≠0,解得a 1=1,d =1,∴数列{a n }的通项公式a n =1+(n -1)×1=n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n , 则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 6.由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4. (1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.6.解析 (1)由题意,设数列{a n }的公差为d ,因为a 3=5,a 1a 2=2a 4,可得⎩⎪⎨⎪⎧a 1+2d =5,a 1·a 1+d =2a 1+3d ,整理得(5-2d )(5-d )=2(5+d ),即2d 2-17d +15=0,解得d =152或d =1,因为{a n }为整数数列,所以d =1,又由a 1+2d =5,可得a 1=3, 所以数列{a n }的通项公式为a n =n +2.(2)由(1)知,数列{a n }的通项公式为a n =n +2,又由数列{b n }的通项公式为b n =2n , 根据题意,得新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,则T 4n +3=b 1+a 1+a 2+b 2+b 3+a 3+a 4+b 4+…+b 2n -1+a 2n -1+a 2n +b 2n +b 2n +1+a 2n +1+a 2n +2 =(b 1+b 2+b 3+b 4+…+b 2n +1)+(a 1+a 2+a 3+a 4+…+a 2n +2) =2×(1-22n +1)1-2+(3+2n +4)(2n +2)2=4n +1+2n 2+9n +5.7.若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *). (1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .7.解析 (1)∵S n =2a n -λ,当n =1时,得a 1=λ, 当n ≥2时,S n -1=2a n -1-λ,∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列,∴a n =λ·2n -1.(2)∵λ=4,∴a n =4·2n -1=2n +1,∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数,∴T 2n =22+3+24+5+26+7+…+22n +2n +1=(22+24+…+22n )+(3+5+…+2n +1) =4-4n ·41-4+n (3+2n +1)2=4n +1-43+n (n +2),∴T 2n =4n +13+n 2+2n -43.8.已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12. (1)求数列{a n }的通项公式;(2)令c n =4b n ·b n +1+a n,求数列{c n }的前n 项和S n .8.解析 (1)由b n =log 2a n 和b 1+b 2+b 3=12,得log 2(a 1a 2a 3)=12,∴a 1a 2a 3=212. 设等比数列{a n }的公比为q ,∵a 1=4,∴a 1a 2a 3=4·4q ·4q 2=26·q 3=212,解得q =4, ∴a n =4·4n -1=4n .(2)由(1)得b n =log 24n =2n ,c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n .设数列⎩⎨⎧⎭⎬⎫1n (n +1)的前n 项和为A n ,则A n =1-12+12-13+…+1n -1n +1=nn +1,设数列{4n}的前n 项和为B n ,则B n =4-4n ·41-4=43(4n-1),∴S n =n n +1+43(4n -1).9.已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12. (1)求数列{a n }的通项公式;(2)令c n =4b n ·b n +1+a n,求数列{c n }的前n 项和S n .9.解析 (1)由b n =log 2a n 和b 1+b 2+b 3=12,得log 2(a 1a 2a 3)=12,∴a 1a 2a 3=212. 设等比数列{a n }的公比为q ,∵a 1=4,∴a 1a 2a 3=4·4q ·4q 2=26·q 3=212,解得q =4, ∴a n =4·4n -1=4n .(2)由(1)得b n =log 24n =2n ,c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n .设数列⎩⎨⎧⎭⎬⎫1n (n +1)的前n 项和为A n ,则A n =1-12+12-13+…+1n -1n +1=nn +1,设数列{4n}的前n 项和为B n ,则B n =4-4n ·41-4=43(4n-1),∴S n =n n +1+43(4n -1).10.在各项均为正数的等比数列{a n }中,a 1a 3=4,a 3是a 2-2与a 4的等差中项,若a n +1=2n b(n ∈N *).(1)求数列{b n }的通项公式;(2)若数列{}c n 满足c n =a n +1+1b 2n -1·b 2n +1,求数列{}c n 的前n 项和S n .10.解析 (1)设等比数列{a n }的公比为q ,且q >0,由a n >0,a 1a 3=4,得a 2=2,又a 3是a 2-2与a 4的等差中项,故2a 3=a 2-2+a 4,∴2·2q =2-2+2q 2, ∴q =2或q =0(舍).∴a n =a 2q n -2=2n -1, ∴a n +1=2n =2n b,∴b n =n (n ∈N *).(2)由(1)得,c n =a n +1+1b 2n -1·b 2n +1=2n +1(2n -1)(2n +1)=2n +12⎝⎛⎭⎫12n -1-12n +1,∴数列{}c n 的前n 项和S n =2+22+…+2n +12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=2(1-2n )1-2+12⎝⎛⎭⎫1-12n +1=2n +1-2+n 2n +1(n ∈N *). 11.(2019·天津)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).11.解析 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q (q >0).依题意,得⎩⎪⎨⎪⎧3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n .(2)a 1c 1+a 2c 2+…+a 2n c 2n =(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n )=⎣⎡⎦⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ).记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,②②-①得,2T n =-3-32-33-…-3n +n ×3n +1=-3(-3n )1-3+n ×3n +1=(2n -1)3n +1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).12.已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1.(1)求数列{a n }和{b n }的通项公式;(2)令c n =b n 2n +1+1n (n +1),其中n ∈N *,若数列{c n }的前n 项和为T n ,求T n .12.解析 (1)由a 1=-3S 1+4=-3a 1+4,得a 1=1,由a n =-3S n +4,知a n +1=-3S n +1+4,两式相减并化简得a n +1=14a n ,∴数列{a n }是首项为1,公比为14的等比数列,∴a n =⎝⎛⎭⎫14n -1,b n =-log 2a n +1=-log 2⎝⎛⎭⎫14n=2n . (2)由题意知,c n =n 2n +1n (n +1).令H n =12+222+323+…+n2n ,①则12H n =122+223+…+n -12n +n2n +1,② ①-②得,12H n =12+122+123+…+12n -n2n +1=1-n +22n +1.∴H n =2-n +22n .又M n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,∴T n =H n +M n =2-n +22n +nn +1.13.在数列{a n }中,已知a 1=1,a n ·a n +1=⎝⎛⎭⎫12n,记S n 为{a n }的前n 项和,b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并写出其通项公式; (2)求数列{a n }的通项公式; (3)求S n .13.解析 (1)因为a n ·a n +1=⎝⎛⎭⎫12n ,所以a n +1·a n +2=⎝⎛⎭⎫12n +1,所以a n +2a n =12,即a n +2=12a n . 因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,所以数列{b n }是公比为12的等比数列.因为a 1=1,a 1·a 2=12,所以a 2=12,b 1=a 1+a 2=32,所以b n =32×⎝⎛⎭⎫12n -1=32n ,n ∈N *.(2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列,所以a 2n -1=⎝⎛⎭⎫12n -1,a 2n =⎝⎛⎭⎫12n , 所以a n =11221,21 2n n n n +-⎧⎛⎫⎪ ⎪⎪⎝⎭⎨⎪⎛⎫⎪ ⎪⎝⎭⎩,为奇数,为偶数. (3)因为S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n ,又S 2n -1=S 2n -a 2n =3-32n -12n =3-42n ,所以S n =21233, 2432n n n n +⎧-⎪⎪⎨⎪-⎪⎩,为偶数,为奇数.14.(2021·新高考Ⅰ)已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前20项和.14.解析 (1)因为b n =a 2n ,且a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数,所以b 1=a 2=a 1+1=2,b 2=a 4=a 3+1=a 2+2+1=5.因为b n =a 2n ,所以b n +1=a 2n +2=a 2n +1+1=a 2n +1+1=a 2n +2+1=a 2n +3,所以b n +1-b n =a 2n +3-a 2n =3,所以数列{b n }是以2为首项,3为公差的等差数列, 所以b n =2+3(n -1)=3n -1,n ∈N *.(2)因为a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n+2,n 为偶数,所以k ∈N *时,a 2k =a 2k -1+1=a 2k -1+1,即a 2k =a 2k -1+1,①,a 2k +1=a 2k +2,② a 2k +2=a 2k +1+1=a 2k +1+1,即a 2k +2=a 2k +1+1,③ 所以①+②得a 2k +1=a 2k -1+3,即a 2k +1-a 2k -1=3,所以数列{a n }的奇数项是以1为首项,3为公差的等差数列; ②+③得a 2k +2=a 2k +3,即a 2k +2-a 2k =3,又a 2=2,所以数列{a n }的偶数项是以2为首项,3为公差的等差数列. 所以数列{a n }的前20项和S 20=(a 1+a 3+a 5+…+a 19)+(a 2+a 4+a 6+…+a 20)=10+10×92×3+20+10×92×3=300.15.已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .15.解析 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5,又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数,T n =T n -1+(-1)n ·n 2=(n -1)n 2-n 2=-n (n +1)2.综上可知,T n =(-1)n n (n +1)2.16.在①b n =na n ,②b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n,n 为偶数,③b n =1(log 2a n +1)(log 2a n +2)这三个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }是等比数列,且a 1=1,其中a 1,a 2+1,a 3+1成等差数列. (1)求数列{a n }的通项公式;(2)记________,求数列{b n }的前2n 项和T 2n .16.解析 (1)设数列{a n }的公比为q ,因为a 1,a 2+1,a 3+1成等差数列,所以2(a 2+1)=a 1+a 3+1.又因为a 1=1,所以2(q +1)=2+q 2,即q 2-2q =0,所以q =2或q =0(舍去),所以a n =2n -1. (2)由(1)知a n =2n -1,若选择条件①,则b n =n ·2n -1, 所以T 2n =1×20+2×21+…+2n ×22n -1, 则2T 2n =1×21+2×22+…+2n ×22n , 两式相减得-T 2n=1×20+1×21+…+1×22n -1-2n ×22n =1-22n1-2-2n ×22n =(1-2n )×22n -1, 所以T 2n =(2n -1)·22n +1.由(1)知a n =2n -1,若选择条件②,则b n =⎩⎪⎨⎪⎧2n -1,n 为奇数,n -1,n 为偶数,所以T 2n =(20+1)+(22+3)+…+(22n -2+2n -1)=(20+22+…+22n -2)+(1+3+…+2n -1) =1-4n 1-4+n (1+2n -1)2=4n 3+n 2-13.由(1)知a n =2n -1,若选择条件③,则b n =1n (n +1),所以T 2n =11×2+12×3+…+12n (2n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12n -12n +1=1-12n +1=2n2n +1. 17.已知{a n }是等差数列,{b n }是等比数列,且{b n }的前n 项和为S n ,2a 1=b 1=2,a 5=5(a 4-a 3),________.在①b 5=4(b 4-b 3),②b n +1=S n +2这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答.(1)求数列{a n }和{b n }的通项公式; (2)求数列{a n -b n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.17.解析 (1)若选条件①,b 5=4(b 4-b 3).设等差数列{a n }的公差为d ,∵2a 1=2,a 5=5(a 4-a 3),∴a 1+4d =5(a 1+3d -a 1-2d ),∴a 1=d =1.∴a n =1+(n -1)×1=n . 设等比数列{b n }的公比为q .由b 1=2,且b 5=4(b 4-b 3),得b 1q 4=4(b 1q 3-b 1q 2).∴q 2-4q +4=0,解得q =2.所以{b n }是首项为2,公比为2的等比数列.故b n =2×2n -1=2n (n ∈N *). 若选条件②,b n +1=S n +2.令n =1,得b 2=S 1+2=b 1+2=4.∴公比q =b 2b 1=2.∴数列{b n }是首项为2,公比为2的等比数列.从而b n =2×2n -1=2n (n ∈N *). (2)由(1)知a n -b n =n -2n ,∴T n =(1+2+3+…+n )-(21+22+23+…+2n ), ∴T n =n (1+n )2-2(1-2n )1-2,∴T n =2-2n +1+n 22+n 2.18.已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围.18.解析 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7,故公差d =a 4-a 3=7-5=2,故a n =a 3+(n -3)d =2n -1. (2)由(1)知b n =22n -1+2n -1,T n =21+1+23+3+…+22n -1+2n -1=21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n 1+2n -12=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.19.已知等比数列{a n }为递增数列,且a 4=23,a 3+a 5=209,设b n =log 3a n2(n ∈N *).(1)求数列{b n }的前n 项和S n ;(2)令T n =b 1+b 2+b 22+…+b 2n -1,求使T n >0成立的最小值n .19.解析 (1)设等比数列{a n}的公比为q ,由题意知,⎩⎨⎧a 1q 3=23,a 1q 2+a 1q 4=209,两式相除,得q 1+q 2=310, 解得q =3或q =13,∵{a n }为递增数列,∴q =3,a 1=281.∴a n =a 1q n -1=281·3n -1=2·3n -5.∴b n =log 3a n2=n -5,数列{b n }的前n 项和S n =n (-4+n -5)2=12(n 2-9n ).(2)T n =b 1+b 2+b 22+…+b 2n -1=(1-5)+(2-5)+(22-5)+…+(2n -1-5)=1-2n1-2-5n >0, 即2n >5n +1,∵24<5×4+1,25>5×5+1,∴n min =5.20.已知数列{a n }的前n 项和S n 满足关系式S n =ka n +1,k 为不等于0的常数.(1)试判断数列{a n }是否为等比数列; (2)若a 2=12,a 3=1.①求数列{a n }的通项公式及前n 项和S n 的表达式;②设b n =log 2S n ,数列{c n }满足c n =1b n +3b n +4+b n +2·2n b,数列{c n }的前n 项和为T n ,当n >1时,求使4n -1T n <S n +3+n +122成立的最小正整数n 的值.20.解析 (1)若数列{a n }是等比数列,则由n =1得a 1=S 1=ka 2,从而a 2=ka 3.又取n =2,得a 1+a 2=S 2=ka 3,于是a 1=0,显然矛盾,故数列{a n }不是等比数列.(2)①由条件得⎩⎨⎧a 1=12k ,a 1+12=k ,解得⎩⎪⎨⎪⎧a 1=12,k =1,从而S n =a n +1.当n ≥2时,由S n -1=a n ,得a n =S n -S n -1=a n +1-a n ,即a n +1=2a n ,此时数列是首项为a 2=12,公比为2的等比数列.综上所述,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧12,n =1,2n -3,n ≥2.从而其前n 项和S n =2n -2(n ∈N *). ②由①得b n =n -2,从而c n =1(n +1)(n +2)+n ·2n -2.记C 1=12×3+13×4+…+1(n +1)(n +2)=⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n +1-1n +2=n 2(n +2), 记C 2=1·2-1+2·20+…+n ·2n -2,则2C 2=1·20+2·21+…+n ·2n -1, 两式相减得C 2=(n -1)·2n -1+12,从而T n =n 2(n +2)+(n -1)·2n -1+12=n +1n +2+(n -1)·2n -1,则不等式4n -1T n <S n +3+n +122可化为4(n +1)(n -1)(n +2)+2n +1<2n +1+n +122,即n 2+n -90>0,因为n ∈N *且n ≠1,故n >9, 从而最小正整数n 的值是10.。
数列分组求和法

数列分组求和法
数列分组求和法是一种将一个数列分成若干个小组,并对每个小组进行求和的方法。
具体的步骤如下:
1. 将给定的数列按照一定的规则分成若干个小组。
规则可以是根据奇偶数、按照某个数字的大小等。
2. 对每个小组进行求和。
将每个小组中的数字相加得到该小组的和。
3. 将每个小组的和相加,得到最终的结果。
这种方法可以用于对数列中的数字进行分类、分析和比较。
举例说明:
假设有一个数列:1, 2, 3, 4, 5, 6, 7, 8, 9, 10
按照奇偶数进行分组,可以得到两个小组:
奇数组:1, 3, 5, 7, 9
偶数组:2, 4, 6, 8, 10
对每个小组进行求和,奇数组的和为:1 + 3 + 5 + 7 + 9 = 25
偶数组的和为:2 + 4 + 6 + 8 + 10 = 30
最终的结果为:25 + 30 = 55
这种方法可以对数列进行更深入的分析,比如可以计算出奇数组和偶数组之间的差距,或者比较两个小组的总和等。
怎样运用分组求和法求数列的和

解:(1)an = 2n - 1 ;(过程略)
(2)因为 {bn - an} 是首项为1、公差为2的等差数列,
即
an + 2
=
1 2
an
+
1
.
当
n
=
1
时,S1
=
1
-
2a2
,即
a1
=
1 2,a2=1 2 Nhomakorabeaa1
=
1 4
;
所以数列
{an}
是以
1 2
为首项、21
为公比的等比数
列,
即
an
=
21∙(
1 2
)n
-1
=(
1 2
)n
,则
log0.5an
=
log0.5(
1 2
)n
=
n
.
ìn (n为奇数),
则
bn
=
ï
íîï(
1 2
)n
(n为偶数),
所以 T2n =(b1 + b3 + ⋯ + b2n - 1) +(b2 + b4 + ⋯ + b2n)
+
1 4
éê1 ë
-
æ è
1 4
öønùûú
1
-
1 4
= n2 +
1 3
-
1 3 × 4n
.
数列 {bn} 的奇数项和偶数项的通项公式不同,需
采用分组求和法求解.将数列分为两组,即所有的奇数
高中数学数列分组求和法题型

高中数学数列分组求和法题型
数列分组求和法是一种将多组数列的元素分成一个个子组,然后求出每一组的和,再求整体的和的算法,它是高中数学中常见的一类题型,要想做好这类题目,从下列几点可以作为思路:
(1)首先要熟悉掌握分组求和的运算方法以及相关知识,以便更好地解决题目。
(2)其次,在解题之前,要把多组数列整理成二维数组,记录其中的每组元素及其和,然后对于每一组元素进行分组求和,最后求出整体的和。
(3)最后,在解答这类题目的过程中,要多思考、用笔记录,以便更加准确地解答。
经过以上几条提示思考,我们可以发现,数列分组求和的解题法并不只是限定在高中数学题型中,它也有很多其他令人着迷的应用。
比如在填空题、解答问题等中,
我们还有可能采用分组求和中的各种运算法,来辅助我们解答题目。
总而言之,数列分组求和在高中数学中是一种常见的解题方法,它也可以在填空题、解答问题等中得到应用。
要想解答这类题型,除了要掌握分组求和的相关知识外,还应当注重仔细观察,多思考、多记录,以便更好解决问题。
数列之分组并项倒序求和

2(1-2
)
2n
3+…+(-1) ×2n]=
+n=22n+1+n-2.
1-2
8 已知数列 {
} 的前 项和 =
2 +
,
2
∈ ∗ .
(1)求数列 { } 的通项公式;
(2)设 = 2 + (−1) ,求数列 { } 的前 2 项和.
(3) 求数列 { } 的前 项和 .
A.2n+n2-1
B.2n+1+n2-1
C.2n+1+n2-2
D.2n+n-2
2(1-2 ) (1+2 -1) n+1
解析 Sn= 1-2 + 2 =2 -2+n2.
1
2n-2n
1
1
1
2 数列 1,,2,,4,,…的前 2n 项和 S2n=________.
2
4
8
解析
1 1 1
1
1 n 1
-1
n
n
S2n=(1+2+4+…+2 )+( + + +…+ n)=2 -1+1- n=2 - n.
3+6066
2
2×2
2(+2021)
2021) =
+
+ ⋯.+
, ( + 2021) + ⋯ . +(3) +
3+6066
3+6066
3+6066
2(+2021)
2×2
2
(2) + (1) =
+ ⋯.+
+
, ∴ (1) + (2) + ⋯ + (
数列求和(分组求和、并项法、错位相减、裂项相消)综合经典例题(收藏版)含答案详解

数列求和综合(经典总结版)含答案详解包括四种题型:分组求和、并项法、错位相减、裂项相消一、分组求和例1.求和.练1已知数列{}n x 的首项13x =,通项2n n x p n q =⋅+⋅(*n ∈N ,,p q 是常数),且145,,x x x 成等差数列.(1)求,p q 的值;(2)求数列{}n x 的前n 项和n S .例2.(奇偶性)已知等差数列{a n }中,a 1=1,且a 1,a 2,a 4+2成等比数列.(Ⅰ)求数列{a n }的通项公式及前n 项和S n ;(Ⅱ)设b n =,求数列{b n }的前2n 项和T 2n .二、并项法例1.已知数列的前项和,求,的值以及Sn 的值.练1.求,,,,…,,…的前50项之和以及前项之和.三、错位相减例1 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥(I )求数列a n 的通项公式; (Ⅱ)若b n =n ·a n ,求数列{b n }的前n 项和T n 。
11111232482n n ⎛⎫+++⋅⋅⋅++ ⎪⎝⎭{}n a n 1159131721...(1)(43)n n S n -=-+-+-++--15S 22S 21-2223-242(1)n n •-50S n n S练1 等比数列{a n }的前n 项和为S n .已知S 1,S 3,S 2成等差数列.若a 1-a 3=-32,求数列{n ·a n }的前n 项和T n .练2 设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .例2已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =…. (Ⅰ)证明:数列1{1}na -是等比数列;(Ⅱ)数列{}n n a 的前n 项和n S .练1 已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n bn a )21(2=,设nnn a b c =,求数列{}n c 的前n 项和n T .练2、已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求S n .例3 在等比数列{a n }中,a 2a 3=32,a 5=32.(1)求数列{a n }的通项公式; (2)设数列{a n }的前n 项和为S n ,求S 1+2S 2+…+nS n .例4.已知数列{a n }的前n 项和为S n =3n ,数列{b n }满足b 1=-1,b n +1=b n +(2n -1)(n ∈N *). (1)求数列{a n }的通项公式a n ;(2)求数列{b n }的通项公式b n ;(3)若c n =a n ·b nn ,求数列{c n }的前n 项和T n .四、裂项相消裂项相消的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,以达到求和的目的. 常见的裂项相消形式有: 1. 111(1)1n a n n n n ==-++ 1111()(2)22n a n n n n ==-++ ┈┈1111()()n a n n k k n n k ==-++2n p a An Bn C ⇒=++(分母可分解为n 的系数相同的两个因式)2. 1111()(21)(21)22121n a n n n n ==--+-+ 1111()(21)(23)22123n a n n n n ==-++++1111()(65)(61)66561n a n n n n ==--+-+3. 1111(1)(2)2(1)(1)(2)n a n n n n n n n ⎡⎤==-⎢⎥+++++⎣⎦4.)121121(211)12)(12()2(2+--+=+-n n n n n 5. 111211(21)(21)2121n n n n n n a ---==-++++ +1+1211(21)(21)2121nnn n n n a ==-++++122(1)111(1)2(1)22(1)2n n n n n n n n a n n n n n n -++-==⋅=-++⋅+6.=┈┈12=1k=- 例1.正项数列}{n a 满足02)12(2=---n a n a n n .(Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1nn a n b +=求数列}{n b 的前n 项和n T .练1.等比数列}{n a 的各项均为正数,且6223219,132a a a a a ==+.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1{nb 的前n 项和.例2.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S .(Ⅰ)求n a 及n S ; (Ⅱ)令),(11*2N n a b n n ∈-=求数列}{n b 的前n 项和n T .例3.已知等差数列}{n a 的公差为2,前n 项和为n S ,且421,,S S S 成等比数列.(1)求数列}{n a 的通项公式;(2)令,4)1(112+--=n n n a a nb 求数列}{n b 的前n 项和n T .例4.正项数列}{n a 的前n 项和n S 满足:0)()1(222=+--+-n n S n n S n n .(1)求数列}{n a 的通项公式n a ;(2)令,)2(122n n a n n b ++=数列}{n b 的前n 项和为n T ,证明:对于,*N n ∈∀都有645<n T .练1、已知数列{}n a 是首相为1,公差为1的等差数列,21n n n b a a +=⋅,n S 为{}n b 的前n 项和,证明:1334n S ≤<.例5.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =,求数列{b n }的前n 项和T n .例6. (无理型)设数列{}n a 满足01=a 且111111=---+nn a a ,(1)求{}n a 的通项公式;(2)设na b n n 11+-=,记∑==nk kn bS 1,证明:1<n S .例7.(指数型).已知数列{a n }的前n 项和为S n ,且a 2=8,S n =﹣n ﹣1.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)求数列{}的前n 项和T n .例8.设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(Ⅰ)求{a n }和{b n }的通项公式; (Ⅱ)设数列{S n }的前n 项和为T n (n ∈N *), (i )求T n ;(ii )证明=﹣2(n ∈N *)作业:1.设231()2222()n f n n N ++=++++∈,则()f n 等于( )A.21n -B.22n -C. 122n +-D. 222n +-2.满足*12121,log log 1()n n a a a n +==+∈N ,它的前n 项和为n S ,则满足1025n S >的最小n 值是( )A .9B .10C .11D .123.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{1+n n a a 的前100项和为( A ) A .100101 B .99101 C .99100 D .1011004.求和2345672223242526272+⨯+⨯+⨯+⨯+⨯+⨯= . 5.定义在上的函数满足, 则6.已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n .(1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n ,求T 2 012;(3)若c n =a n ·f (a n ),求{c n }的前n 项和U n .7.已知数列{a n }为公差不为零的等差数列,a 1=1,各项均为正数的等比数列{b n }的第1项,第3项,第5项分别是a 1,a 3,a 21.(1)求数列{a n }与{b n }的通项公式;(2)求数列{a n b n }的前n 项和S n .8. 已知数列{an}的前n 项和Sn =-12n 2+kn(其中k ∈N +),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和Tn.R )(x f 2)21()21(=-++x f x f )83()82()81(f f f ++67()()_______88f f +++=数列求和综合答案详解版一、分组求和例1.求和. 【解析】(1+2+3+…+n)+ =【总结升华】1. 一般数列求和,先认真理解分析所给数列的特征规律,联系所学,考虑化归为等差、等比数列或常数列,然后用熟知的公式求解.2. 一般地,如果等差数列与等比数列的对应项相加而形成的数列都用分组求和的办法来求前项之和.练1已知数列{}n x 的首项13x =,通项2n n x p n q =⋅+⋅(*n ∈N ,,p q 是常数),且145,,x x x 成等差数列.(1)求,p q 的值;(2)求数列{}n x 的前n 项和n S . 【解析】(1)232(164)2325p q p q p q p p +=⎧⎨+=+++⎩ 解得11q p =⎧⎨=⎩(2)12212(21)(22)+(2)n n S x x x n =+++=+++++………… =12(22+2)(123+n)n ++++++…………=1(1)222n n n ++-+ 例2.(奇偶性)已知等差数列{a n }中,a 1=1,且a 1,a 2,a 4+2成等比数列.(Ⅰ)求数列{a n }的通项公式及前n 项和S n ; (Ⅱ)设b n =,求数列{b n }的前2n 项和T 2n .【解答】解:(I )设等差数列{a n }的过程为d ,∵a 1=1,且a 1,a 2,a 4+2成等比数列. ∴=a 1•(a 4+2),即(1+d )2=1×(1+3d +2),化为:d 2﹣d ﹣2=0,解得d =2或﹣1.其中d =﹣1时,a 2=0,舍去.∴d =2.a n =1+2(n ﹣1)=2n ﹣1,S n ==n 2.(Ⅱ)设b n ==,∴n 为偶数时,==16,b 2=8;11111232482n n ⎛⎫+++⋅⋅⋅++ ⎪⎝⎭11111232482n n S n ⎛⎫=+++⋅⋅⋅++= ⎪⎝⎭111242n ⎛⎫++⋅⋅⋅+ ⎪⎝⎭(1)1122n n n ++-{}n a {}n b {}n n a b +n n Sn 为奇数时,==,b 1=.∴数列{b n }的奇数项是首项为,公比为.数列{b n }的偶数项是首项为8,公比为16.∴数列{b n }的前2n 项和T 2n =+=.二、并项法例1.已知数列的前项和,求,的值以及Sn 的值.【思路点拨】该数列{}n a 的特征:1(1)(43)n n a n -=--,既非等差亦非等比,但也有规律:所有奇数项构成以1为首项8为公差的等差数列,偶数项构成以-5为首项-8为公差的等差数列,因而可以对奇数项和偶数项分组求和;还有规律:1234561...4n n a a a a a a a a ++=+=+==+=-(n 为奇数),可以将相邻两项组合在一起. 【解析】(1)法1(分组)由可得,法2(并项)a1+a2=−4,a3+a4=−4(2)由∴当为奇数,时, ,Sn=( a1+a2)+ a3+a4……(a n-2-a n-1)+an=−4(n−12)+4n-3=2n-1当为偶数,时,,Sn=( a1+a2)+ a3+a4……(a n-1+an )=−4×n2=−2n 【总结升华】1.对通项公式中含有或的一类数列,在求时要注意讨论的奇偶情况.2. 对正负相间的项中的相邻两项进行恰当的组合,可能会有意料之结. 举一反三:【变式1】求,,,,…,,…的前50项之和以及前项之和.{}n a n 1159131721...(1)(43)n n S n -=-+-+-++--15S 22S 1(1)(43)n n a n -=--158(157)7(553)[19...(4153)][513...(4143)]2922S ++=+++⨯--+++⨯-=-=2211(181)11(585)[19...(4213)][513...(4223)]4422S ++=+++⨯--+++⨯-=-=-1(1)(43)n n a n -=--n n N +∈1(43)(41)4n n a a n n ++=--+=-n n N +∈1(43)(41)4n n a a n n ++=--++=n )1(-1n )1(+-n S n 21-2223-242(1)n n •-50S n n S【解析】(1)设,则数列为等差数列,且是的前25项之和, 所以.(2)当为偶数即时,.当为奇数即时,.三、错位相减例1 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥ (I )求数列a n 的通项公式;(Ⅱ)若b n =n ·a n ,求数列{b n }的前n 项和T n 。
分组求和、并项求和

3 1 第二题:sn n (n 1) 1 n 4 5
第三题:S列直接应用求和公式求和。 • 非等差、等比的数列,通过通项化归的思 想设法转化为等差、等比数列,常用方法 有倒序相加法、错位相减法、拆项并组法 • 不能转化为等差、等比的数列,往往通过 裂项相消法求和。
当堂诊学
• 对下列式子进行求和:
1 2 2 求 S 2 3 5 4 3 5 n
(2 4 6 1 1 2 n) ( 4 8
1 4 1 1 n 2 1 1 2
1 n 1 ) 2
n(2 2n) 2
1 1 n ( n 1) n 1 2 2
引 导 探 究
1
解: 1 Sn a 1 a 2
a7 1, a8 3, a9 2, a10 1, a11 3, a12 2, 所以 a6k 1 1, a6k 2 3, a6k 3 2, a6k 4 1, a6k 5 3, a6k 6 2 a4 1, a5 3, a6 2, 易知:
(找特殊性质项)
) (a6k 1 a6k 2 a6k 6 )
(a1993 a1994 a1998 ) a1999 a2000 a2001 a2002
= a1999 a2000 a2001 a2002 = a6k 1 a6k 2 a6k 3 a6k 4 =5
1 2 2 1 2 1 ( x ) , ( x 2 ) , x x
1 2 , (x n ) x
n
2 n 3 5 n
3、在各项均为正数的等比数列中,若的 a5 a6 9, 求 log3 a1 log3 a2 log3 a10 值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分组求和法 i 典题导入[例1] (2011山东高考)等比数列{a n }中,a i , a 2, a 3分别是下表第一、二、三行中的 某一个数,且a i , a 2, a 3中的任何两个数不在下表的同一列⑴求数列{a n }的通项公式;(2)若数列{ b n }满足:b n = a n + ( — 1) b G,求数列{ b n }的前2n 项和S an . [自主解答](1)当a 1 = 3时,不合题意;当a 1= 2时,当且仅当 a 2= 6, a 3= 18时,符合题意; 当a 1= 10时,不合题意.因此 a 1 = 2, a 2= 6, a 3 = 18.所以公比 q = 3,故 a n = 2 3 1.nn — 1nn — 1n — 1n(2)因为 b n = a n + ( — 1) ln a n = 2 3 + ( — 1) ln(2 3 ) = 2 3 + ( — 1) (In 2 — In 3)+ ( — 1)n n ln 3 ,所以 S 2n = b+ b 2+ …+ b 2n = 2(1 + 3 +…+ 32n— 1) + [ — 1 +1 — 1 + ・・・+ ( — 1)2n ](ln 2— In3)2n2nI 32n+ [ — 1 + 2— 3+ "•+ ( — 1)22 n ]ln3 = 2X -------- + n ln 3 = 32+ n ln 3 — 1.1 — 3-由题悟法分组转化法求和的常见类型(1)若a n = b n ic n ,且{ b n } , { C n }为等差或等比数列, 可采用分组求和法求{ a n }的前门项和.数列,可采用分组求和法求和.u 以题试法1. (2013威海模拟)已知数列{X n }的首项X 1 = 3,通项X n = 2n p + nq ( n € N *, p, q 为常数), 且X 1 , X 4 , X 5成等差数列.求:(1) p , q 的值;(2) 数列{X n }前n 项和S 的公式.(2)通项公式为b n , n 为奇数,叫C n , n 为偶数 的数列,其中数列{b n } , {C n }是等比数列或等差解:(1)由X1= 3,得2p+ q= 3,又因为X4= 24p+ 4q,5 5 5X5= 2 p+ 5q,且X1 + X5 = 2X4,得3 + 2 p+ 5q= 2 p+ 8q, 解得p= 1, q= 1.1n(2) V b n = 2a n + 2n = 4 + 2n , ...T n = b 1 + b 2 + …+ b n=2(4 + 42+…+ 4n ) + 2(1 + 2+- + n),n + 1=—6— + n 2+ n = 3 • 4n + n 2+ n — 3.4.设{a n }是公比为正数的等比数列,a 1 = 2, a 3= a 2 + 4.(1)求{a n }的通项公式;,知 X n = 2 + n,所以 S= (2 + 22+ …+ 2n) + (1 + 2+ …+ n ) = 2n +1n n + 1—2—2.数列 1 12, 1 134, 58, 1 7〔6,…的前n 项和S n 为( A. n 2+ 1-2J -1n 2 + 2-J C. n 2+ 1-;n 2 + 2-2〔1解析 由题意知已知数列的通项为a n = 2n -1 +1 2' 1 — 则 S n = —1+ 2匸1- +2 1— 2=n 2+ 1- 2n . 答案 C3.已知等差数列{a n }的前n 项和为S ,且a 3 = 5, S5= 225.(1) 求数列{a n }的通项公式;(2) 设b n = 2a n + 2n ,求数列{b n }的前n 项和T n . 解析:(1)设等差数列{a n }的首项为a 1,公差为d ,Q + 2d = 5,由题意,得15』笃叫=225,解得号", 0= 2,• - a n = 2n — 1.⑵ 设{b n }是首项为1,公差为2的等差数列,求数列{a n + b n }的前n 项和S. 解析⑴设q 为等比数列{a n }的公比,则由a i = 2, a 3 = a ?+ 4得2q 2 = 2q + 4,即 q 2— q -2= 0,解得 q = 2 或 q = — 1(舍去),因此 q = 2. 所以{a n }的通项为 a n = 2 • 2 1 = 2“( n € N )n丄2 1 — 2nn — 1n +12 (2) S = d 门 + n x 1+门x 2= 2 +1+ n 2— 2.1 —2 25.求和 S n = 1+ 1 + 2+ 1 + 2+ 4+…+ 1 +1+ ;+••• + 211.解和式中第k 项为6.数列{a n }的前 n 项和为 Si , a i = 1, a 2= 2, a n +2 — a n = 1 + ( —1^( n € N),则 S oo =答案 2 600解析 由 a n + 2 — a n = 1 + ( — 1)知 a 2k + 2 — a 2k = 2 ,a 2k +1 — a 2k —1 = 0,二 a 1 = a 3= a 5 = ■•• = a 2n — 1 = 1,数列{a 2k }是等差数列, a 2k = 2k .1 2n n n +1 1 — —n + 1.2 2⑵当x = ±1时,S= 4n .当x 工±时,1 1 1 1 -2)a k= 1 + 2 + 4 + …+ 2卩1 =1—1=21-2k .=2[(1+ 1+…+ 1n 个一(2+ 22+…+2n)]j n21+ —丄刃---Si oo = (a 1 + a 3 + a s + …+ a 99) + (a 2 + a 4 + a 6 + …+ a 1oo )=50 + (2 + 4 + 6+ …+ 100) = 50 + ’\ 50 = 2 600.nn 2 + 1一2"—;n. J_ 2n I .x3 9 25 657.求和:(1) S = +/+ 8+ 16+ …+ 2 ,一12 .2 1 4⑵ S= x + %"+ x +%2+…+x"+ x & 丄十 n 2n +11解(1)由于 a n =2n= n + 2n , S n = 1 + ?1 + 2 ++ 3++…+ n +&(11 1 1、=(1 + 2 + 3+ -+ n ) + 2+ 22+ 23+…+ 2nn(n + 1 ) 2 , 2 +1 1 —-2••• $=21-;+• a n = *12n — 5心2得 n w 5,•当n w 2时, a n <0,当 n 》3 时,a n >0,• I a 1 +1 a 2| + …+ | ae| =— (a 1+ a 2) + (a 3 + a 4 + …+ a© = S 10— 2S = 66.n 110.数列{a n }的通项公式为a n = ( — 1)(4n — 3),则它的前100项之和等于()C . 400A. 200.—200 .—400答案 B解析 S i00= (4 X 1 — 3) — (4 X 2— 3) + (4 X 3— 3)— —(4 X 100 — 3) = 4X [(1 — 2) + (3—4) + …+ (99 — 100)] = 4X ( — 50) =— 200.11.(2012 答案 课标全国)数列{a n }满足a n +1 + ( — 1)n a n = 2n — 1,则{a n }的前60项和为1 830 解析n■/ a n +1 + ( — 1) a n = 2n —• a 2 = 1 + a 1, a 3= 2 — a 1, a 4= 7 —曰,a s = a, a 6= 9+ a, a 7= 2 — a 1, a s = 15— a 1, a 9= a 1, ae = 17 + a 1, an = 2一 a 1, a 12= 23一 a 1,…,a 57= a 1, a 58= 113+ a 1, ct 9 = 2一 a 1, a 6o = 119 —a 1,8.已知数列{a n }中,a 1 = — 60, a n +1= a n + 3,则这个数列前 30项的绝对值的和是答案 765解析 由题意知{a n }是等差数列,a n = — 60 + 3( n — 1) = 3n — 63,令a n 》0,解得n 》21. • -1 a i | +1 a 2| + | a 3| +…+ | a 3o | =—(a 1 + a 2+ …+ a 2o ) + (a 21 + …+ a 3o ) =S 3o — 2Sa 0=—60 + 9(2一63 X 30— ( — 60 + 60 — 63) X 20 = 765._ 29.数列{a n }的前 n 项和 S n = n — 4n + 2,则 | + | a 2| + …+1 ao| =答案 66解析 当 n = 1 时,a 1= S 1 = — 1. 当 n 》2 时,a n = S — S n -1 = 2n — 5.n = 1♦ +•••+ x n +1n 2< x x 4+ 2+ £4 + …+ x 2n+ 2 +1\x 2n1 14+ …+ 2nx x2n242n=(x + x + …+ x ) + 2n +22n“— 2— 2n=X_x_ 一1+ XJ ——2— + 2nx — 1 1 — x2n “ 2n + 2“x — 1 x + 1=2n 2彳 + 2 n.x x— 1[4nx = ±1a i + a2 + …+ a6o= (a i+ a2 + a3 + a4)+ (a5 + a6 + a + a8)+ …+ (a57 + a58 + a59+ 空。
)=10+ 26 + 42 + …+ 23415X 10+ 234= 2= 1 830.12.已知数列2 008,2 009,1 , - 2 008,- 2 009 ,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 013项之和S2 013等于( )A. 1 B . 2 010 C . 4 018 D . 0答案C解析由已知得a n = a n-1 + a n+ 1 ( n》2) , a n+ 1 = a n —a n - 1 .故数列的前8 项依次为 2 008,2 009,1 , — 2 008 , — 2 009 , —1, 2 008,2 009.由此可知数列为周期数列,周期为6,且S s= 0. T 2 013 = 6 X 335 + 3, • $=$= 4 018.13.设f(x) = x1L,利用课本中推导等差数列前n项和公式的方法,可求2+'2f(-5) f(-4) f(0)… f(5) f(6)的值为A. 3.2 B . , 2 C . 2 2 Dv2 1解:由于f(x) f(1-x) ,则原式{[ f (-5) f(6)] [ f (-4) f (5)]2 2[f(6) - f(-5)]} J 12 2=3.2,选 A2 214.数列{a n}的前n项和为S n,满足:印h,3tS n - (2t 3)6」=3t,其中t • 0 , n・N且n 一2 ( i )求证:数列{a n}是等比数列;1(n )设数列{a n}的公比为f (t),数列{b n}满足b1 -1,b^ f ( )(n -2),求b n的通项b n_L式•20 (川)记T n 二b』2 —b2b3 b3b4 —b4b5 •…b2n:b2n —b2n b2n・1,求证:T n9解(i )当n 一2时,3tS n -(2t 3)S n4 =3t ①,3tS n d -(2t - 3)S n = 3t ②②一①得:3tam -(2t 3)a n =0 = 2T3(门一?)a n 3t2t +3又印=13佝a?)-(2t 3)印=3t,解得:a? ,3t(n)w 「七b n 1.b n-b n 」=2,则b n =1 (n -1) - - 2n -3333(川)T n= b ? (d - b 3) b 4(b 3 - b 5)■■ b ?n (b 2n 1 ~©2“ 1)当门_2时,2n 2 3n 为增「_一冷 52015. 1002 -992 982 -972 川…卷22 -12的值是A . 2525B . 5050C . 10100D 解:原式=(100 99) (98 97)(2 1)=5050,选 B16.等差数列{a n }的公差不为零,a 4= 7, a 1, a 2, a s 成等比数列,数列{T n }满足条件T n = a 2 + a 4 +a s + …+ a 2n ,贝U T n = _____________ .解析:设{a n }的公差为0,由a 1, a 2, a 5成等比数列,得 a 2= a^,2即(7 - 2d ) = (7 - 3d )(7 + d ) ••• d = 2 或 d = 0(舍去).••• a n = 7 + (n —4) X 2=2n - 1. 又 a 2n = 2 2n -1 = 2n +1 - 1, • T n = (2 - 1) + (2 - 1) + (2 - 1) + …+ (2 +- 1)23n +1n + 2=(2 + 2+・・・ + 2 ) - n = 2 - n -4.a ?a 1 a2a n3t ■ {a n }是首项为 1,公比为2t : 3的等比数列。