实验Euler法求微分方程的解27页PPT
微分方程 欧拉

微分方程欧拉
摘要:
1.微分方程的定义与背景
2.欧拉的贡献与成就
3.欧拉微分方程的形式与解法
4.欧拉微分方程在科学领域的应用
5.结论
正文:
微分方程是一种数学模型,用于描述现实世界中许多连续变化的过程。
在微分方程的发展史上,有很多杰出的数学家做出了重要的贡献,其中就包括莱昂哈德·欧拉。
欧拉是数学史上最杰出的科学家之一,他的研究领域涉及数学、力学、光学、天文学和音乐理论等。
在微分方程领域,欧拉提出了许多重要的理论和方法,为微分方程的发展奠定了基础。
欧拉微分方程是一类特殊的微分方程,它的形式通常是关于未知函数的导数和函数本身的关系。
欧拉微分方程的解法有很多,其中最著名的是欧拉方法。
这种方法通过对方程进行迭代求解,可以得到方程的近似解。
欧拉方法在实际应用中有着广泛的应用,例如在数值分析、工程计算和生物学等领域。
欧拉微分方程在科学领域的应用非常广泛。
例如,在物理学中,欧拉微分方程可以用来描述电磁场、波动和力学系统等;在化学中,它可以用于描述化学反应的动力学过程;在生物学中,欧拉微分方程可以用于描述生物种群的增
长和演化。
总之,欧拉在微分方程领域做出了杰出贡献。
Euler 方法

| y( x ) y( xm ) | dx
Kh / 2 L
| y( xm ( x xm )) | ( x xm ) dx
( K LM )h2 / 2
其中: 0 1, M max | y( x ) | max | f ( x, y( x )) | 。
(*)
<< 第10页/共26页 >>
注意:对于Euler方法
h2 将 R M1代入()式得: 若 0 y0 y x0 0, 2
m 1
hM 1 L( b a ) e 1 2L
这里M 1 =( K LM ), 可记为 m O h ,
说明Euler方法的整体截断误差与h同阶。
欧拉方法的几何意义:
y X
y x2
yn
y0
y x1
y1
y2
x0
x1
x2
X
h步长
Euler方法的几何意义
<< 第4页/共26页 >>
xn
二、误差分析
Rm 称为局部截断误差,它表示当 ym y( xm )为
精确值时, 计算时 y( xm h) 的误差。
m y( xm ) ym , 记:
<< 第8页/共26页 >>
从而有:
| m 1 || m | hL | m | R,
对任一 m 0,1,
, N 1, 有:
| m | (1 hL) | m 1 | R
(1 hL)2 | m 2 | (1 hL) R R
(1 hL)m | 0 | R (1 hL) j
求微分方程的解PPT课件

y(0) 1
fun=inline('-2*y+2*x^2+2*x','x','y'); [x,y]=ode23(fun,[0,0.5],1);
注:也可以在 tspan 中指定对求解区间的分割,如:
[x,y]=ode23(fun,[0:0.1:0.5],1); %此时 x=[0:0.1:0.5]
第19页/共23页
solver 为Matlab的ODE求解器(可以是 ode45、ode23、ode113、
ode15s、ode23s、ode23t、ode23tb)
没有一种算法可以有效地解决所有的 ODE 问题,因此MATLAB 提供了多 种ODE求解器,对于不同的ODE,可以调用不同的求解器。
第17页/共23页
Matlab提供的ODE求解器
度均可到 10-3~10-6
ode23t 适度刚性 采用梯形算法
适度刚性情形
ode15s
刚性 多步法;Gear’s 反向数值微 若 ode45 失效时,可
分;精度中等
尝试使用
ode23s 刚性 单步法;2 阶Rosebrock 算 当精度较低时,计算时
法;低精度
间比 ode15s 短
ode23tb 刚性 梯形算法;低精度
x y
|t 0 |t 0
1 0
[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0', ... 'x(0)=1', 'y(0)=0', 't')
ezplot(x,y,[0,1.3]);
注:解微分方程组时,如果所给的输出个数与方程个数相同,则方程组的解按词 典顺序输出;如果只给一个输出,则输出的是一个包含解的结构(structure)类型 的数据。
MATLAB Euler法解常微分方程

Euler 法解常微分方程Euler 法解常微分方程算法:Step 1 分别取积分上限、积分下限、步长Step 2计算h n n +=判断b n ≤是否成立,成立转到Step 3,否则继续进行Step 4 Step 3 计算),(1n n n n y x hf y y +=+Step 4 ),(1n n n n y x hf y y +=+Euler 法解常微分方程算程序:function euler2(fun,y0,A,h)%fun--y'%y0---初值%A----x 取值范围%a----x 左区间端点值%b----x 右区间端点值%h----给定步长x=min(A);b=max(A);y=y0;while x<b-hb=y;y=y+h*feval(fun,x,b)x=x+h;end例:用Euler 法计算下列初值问题(取步长h=0.2))6.00(1)0('2≤≤⎩⎨⎧=--=x y xy y y输入:fun=inline('-y-x*y^2')euler2(fun,1,[0 0.6],0.2)得到:y =0.8000y =0.6144y =0.4613指导教师: 年 月 日改进Euelr 法解常微分方程改进Euler 法解常微分方程算法:Step 1 分别取积分上限、积分下限、步长Step 2 取一个以h 为步长,a ,b 分别为左右端点的矩阵Step 3 (1)做显性Euler 预测),(1n n i i y x hf y y +=+(2)将1+i y 带入)],(),([2h 111+++++=i i i i i i y x f y x f y y Step 4计算h n n +=判断b n ≤是否成立,成立返回Step 3,否则继续进行Step 5 Step 5 )],(),([2h 111+++++=i i i i i i y x f y x f y y 改进Euler 法解常微分方程算程序:function gaijineuler2(fun,y0,A,h)%fun--y'%y0---初值%A----x 取值范围%a----x 左区间端点值%b----x 右区间端点值%h----给定步长a=min(A);b=max(A);x=a:h:b;y(1)=y0;for i=1:length(x)-1w1=feval(fun,x(i),y(i));y(i+1)=y(i)+h*w1;w2=feval(fun,x(i+1),y(i+1));y(i+1)=y(i)+h*(w1+w2)/2;endx=x'y=y'例:用改进Euler 法计算下列初值问题(取步长h=0.25) )50(2)0('2≤≤⎩⎨⎧=-=x y xy y 输入:fun=inline('-x*y^2')gaijineuler2(fun,2,[0 5],0.25)得到:x =0.25000.50000.75001.00001.25001.50001.75002.00002.25002.50002.75003.00003.25003.50003.75004.00004.25004.50004.75005.0000y =2.00001.87501.59391.28241.00960.79320.62820.50370.40970.33790.28240.23890.20430.17650.15380.13520.11960.10660.09550.08610.0779指导教师:年月日。
欧拉方程解法课件

一阶线性欧拉方程的解
举例
(y' = 2xy) 的解为 (y = x^2),通过分离变量法得到。
举例
(y' = frac{1}{x}) 的解为 (y = ln x),通过变量代换法得到。
二阶常系数线性欧拉方程的解
举例
(y'' + 4xy = 0) 的解为 (y = c_1x^2 + c_2x^2),通过特征值法得到。
应用示例
对于形如 (frac{partial^2 u}{partial x^2} + frac{partial^2 u}{partial y^2} = f(x,y)) 的偏微分方程,可以 使用有限差分法、有限元法等数值解 法进行求解。
03
欧拉方程的解的性质
解的存在性和唯一性
存在性
对于给定的初值条件和边界条件,欧 拉方程存在一个解。
应用示例
对于形如 (u(x,y) = v(x)w(y)) 的函数,如果满足一定的条件,可以将方程分解为两个独立的常微分方程, 分别求解后再组合得到原方程的解。
积分因子法
01
总结词
通过引入一个积分因子,将偏微分方程转化为全微分方程 ,从而简化求解过程。
02 03
详细描述
积分因子法是一种通过引入一个积分因子来简化偏微分方 程的方法。这种方法适用于具有特定对称性的偏微分方程 ,通过引入积分因子可以将偏微分方程转化为全微分方程 ,从而简化求解过程。
并行计算
将计算任务分解成多个子 任务,利用多核处理器或 分布式计算资源并行处理, 加快计算速度。
THANKS
感谢观看
VS
举例
(y'' - 2y' + y = 0) 的解为 (y = c_1e^x + c_2e^{-x}),通过常数变易法得到。
微分方程欧拉方程解法

微分方程欧拉方程解法一、引言微分方程是数学中重要的一部分,它在物理、工程、经济等学科的研究中具有广泛的应用。
在解微分方程的过程中,欧拉方程是一种常见的解法之一。
本文将介绍欧拉方程的基本概念和求解方法,并通过具体的例子来说明其应用。
二、欧拉方程的定义欧拉方程是指具有形如F(x,y,y′,y″,...)=0的形式的微分方程。
其中,F是关于x,y,y′,y″,...的函数,y是未知函数,y′,y″分别表示y的一阶、二阶导数等。
解欧拉方程即是要找到满足该方程的函数y=f(x)。
三、欧拉方程的求解方法欧拉方程的求解方法主要有以下几种:3.1 变量分离法变量分离法是一种常用的解微分方程的方法,也适用于欧拉方程的求解。
具体步骤如下: 1. 将方程中所有含有y′的项移到方程的一边,其它项移到方程的另一边,得到F(x,y)−y′G(x,y,y′,y″...)=0的形式; 2. 观察方程的左边和右边是否可以通过变量分离,即是否可以将y和x分离开来; 3. 若能分离,则将左边只含有y的项移到右边,只含有x的项移到左边; 4. 对两边分别积分,得到H(x)+C=∫G(x,y,y′,y″...) dx的形式; 5. 求解上述积分方程,得到H(x)的表达式; 6. 将H(x)代入F(x,y)中,得到关于y的方程; 7. 求解该关于y的方程,得到解y=f(x)。
3.2 特征方程法特征方程法是欧拉方程求解的一种常用方法,适用于形如x n y(n)+a n−1x n−1y(n−1)+...+a0y=f(x)的方程。
具体步骤如下: 1. 假设解为y=x m,代入原方程,得到特征方程; 2. 求解特征方程,得到特征方程的根m; 3. 根据特征方程的根,给出通解的形式; 4. 根据边界条件,求解常数,得到特解。
四、欧拉方程的例子及求解过程为了更好地理解欧拉方程的求解方法,我们来看一个具体的例子:x2y″+xy′−4y=0。
下面是求解该方程的步骤:4.1 将方程变形为欧拉方程将方程变形为x2y″+xy′−4y=x2(d2ydx2)+x(dydx)−4y=0。
计算方法课件第八章常微分方程初值问题的数值解法

整体截断误差与局部截断误差的关系
定理:如果f(x,y)满足李普希兹(Lipschitz)条件
f(x ,y 1 )f(x ,y 2) L y 1y 2
且局部截断误差有界:
|R n|1 2h2M 2
(n1,2, )
则Euler法的整体截断误差n满足估计式:
ne(ba)L 0h 2L M 2(e(ba)L1)
分光滑。初值问题的解析解(理论解)用 y(x表n ) 示, 数值解法的精确解用 y表n 示。
常微分方程数值解法一般分为:
(1)一步法:在计算y n 1 时,只用到x n 1 ,x n和 y,n 即前一步的值。
(2)多步法:计算 y n 1 时,除用到 x n 1 ,x n 和 y n 以外,还要用 x n p 和 y n p (p1 ,2 k;k0) ,即前
其中L为李普希兹常数,b-a为求解区间长度,
M2 mayx(x) 。 axb
证明参见教材。
Remark:该定理表明,整体截断误差比局部截 断误差低一阶。对其它方法,也有类似的结论。
收敛性与稳定性
收敛性定义:如果某一数值方法对于任意固定的
xn=x0+nh,当h0(同时n )时有yn y(xn),
则称该方法收敛。 稳定性定义 定义 用一个数值方法,求解微分方程初值问 题时,对给定的步长h>0,若在计算 y n 时引入 误差 (n 也称扰动),但由此引起计算后面的 ynk(k1,2, )时的误差按绝对值均不增加,则 称这个数值方法是稳定的。
一般的显式rk方法可以写成型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多其中为常数选取这些常数的原则是要求第一式的右端在处泰勒展开后按h型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多上述公式叫做n级的rungekutta方法其局部截断误差为显然euler法是一级一阶rk方法
欧拉公式求解常微分方程数值解培训教材

例:用欧拉法解初值问题
y=yxy2(0x0.6)
y(0)=1
取步长 h = 0.2.计算过程保留4位小数.
解:f(x,y)=-y-xy2 , h = 0.2,由欧拉公式得
yk+ 1=yk+h(fxk,yk)=ykhky hkx yk 2 =0.2yk(4xkyk)k(=0,1,2)
故y(0.2)y1=0.2×1(4-0×1)=0.800 0 y(0.4)y2=0.2×0.8×(4-0.2×0.8)=0.614 4 y(0.6)y3=0.2×0.614 4×(4-0.4×0.4613)=0.800 0
Step 2: 将 K2 代入第1式,得到 y i+ 1 = y i+ h1 y ( x i) + 2 [ y ( x i) + p y ( h x i) + O ( h 2 )] = y i+ (1 + 2 ) h y ( x i) + 2 p 2 y h ( x i) + O ( h 3 )
f y ( x, f y ( x,
y) y)
dy dx f (x,
y)
K 2= f(x i+ p,y h i+ p1 h ) K = f(x i,y i)+ px h (x i,y fi)+ p1 h fy (x K i,y i)+ O (h 2 ) = y (x i)+ py h (x i)+ O (h 2 )
例1:用预报-校正公式求解初值问题
y
+y+
y
sinx=
y() =
取步长 h = 0.2,计算 y(1.2), y(1.4)的近似值,计算过程保
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
60、人民的幸福是有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
实验Euler法求微分方程的解
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克