暨南大学离散数学周密试卷数理逻辑与集合论—参考试卷

合集下载

大学《离散数学》题库及答案

大学《离散数学》题库及答案

《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( A )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z(考察定义在公式∀x A和∃x A中,称x为指导变元,A为量词的辖域。

在∀x A和∃x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。

于是A(x)、B(y,x)和∃z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命题必须满足是陈述句,不能是疑问句或者祈使句。

)6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

《离散数学》考试试卷(试卷库20卷)及答案

《离散数学》考试试卷(试卷库20卷)及答案

《离散数学》考试试卷(试卷库20卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库20卷)试题总分: 100 分考试时限:120 分钟、选择题(每题2分,共20分)1. 设论域为全总个体域,M(x):x 是人,Mortal(x):x 是要死的,则“人总是要死的”谓词公式表示为( )(A ))()(x Mortal x M → (B ))()(x Mortal x M ∧(C )))()((x Mortal x M x →?(D )))()((x Mortal x M x ∧?2. 判断下列命题哪个正确?( )(A )若A∪B=A∪C,则B =C (B ){a,b}={b,a}(C )P(A∩B)≠P(A)∩P (B)(P(S)表示S 的幂集)(D )若A 为非空集,则A ≠A∪A 成立3. 集合},2{N n x x A n∈==对( )运算封闭(A )乘法(B )减法(C )加法(D )y x -4. 设≤><,N 是偏序格,其中N 是自然数集合,“≤”是普通的数间“小于等于”关系,则N b a ∈?,有=∨b a ( )(A )a(B )b(C )min(a ,b)(D ) max(a ,b)5. 有向图D=,则41v v 到长度为2的通路有( )条(A )0 (B )1 (C )2 (D )36. 设无向图G 有18条边且每个顶点的度数都是3,则图G 有( )个顶点(A )10 (B )4 (C )8 (D )127. 下面哪一种图不一定是树?()(A )无回路的连通图(B )有n 个结点n-1条边的连通图(C )每对结点间都有通路的图(D )连通但删去一条边则不连通的图 8. 设P :我将去镇上,Q :我有时间。

命题“我将去镇上,仅当我有时间”符号化为()(A )P →Q (B )Q →P (C )P Q (D )Q P ?∨? 9. 下列代数系统中,其中*是加法运算,()不是群。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

暨南大学离散数学周密试卷数理逻辑与集合论 — 参考试卷

暨南大学离散数学周密试卷数理逻辑与集合论 — 参考试卷

暨 南 大 学 考 试 试 卷一、填空题(共10小题,每小题2分,共20分)1. 设命题 p :罗素悖论的真值为假,q :暨南大学的校训是信敏廉毅,r :离散数学是计算机科学不可分割的一门基础课程,则复合命题:()()()()()p q r q p r p ⌝∧⌝∨∧⌝↔⌝→∨的真值为 ;2. 下列各式中为永真式的有: (1) Q Q P P →→∧))(( (2) Q Q P →→)( (3) )(Q P P ∨→(3) Q Q P P →∨∧⌝))(((5) )(Q P Q ∧→3. A 是个10元集合,B 是个2元集合,则集合A B 中元素的个数为4. 设M(x):x 是人,C(x):x 很聪明,则命题:“尽管有人很聪明,但未必一切人都聪明。

”可符号化为:5. 设R(x):x 是实数;L(x, y):x 小于y ,则谓词公式:(()(()(,)))x R x y R y L x y ∀→∃∧用自然语言表述就是:6. 设个体域为A={a, b, c},消去公式()()xP x xQ x ∀→∃中的量词得到的与之等值的谓词公式为:7. P(A)表示集合A 的幂集,则((()))P P P ∅ =8. ())(B A B B A ⋃-⋂⋃=9. 设D 为同一平面上直线的集合,并且 // 表示两直线的平行关系,⊥表示两直线间的垂直关系,则 20// = ,21⊥=10. 设{}c ,b ,a A =,{},,,A R a b b a I =<><>⋃是A 上的等价关系,设自然映射,R /A A :g →,那么()=a g二、简答题(共4小题,每小题6分,共24分)1.(1)求公式()()⌝∨⌝→↔⌝P Q P Q 的主析取范式(要有过程);(4分) (2)根据主析取范式直接写出该公式的主合取范式;(2分)2. 求与下面谓词公式等值的前束范式(要有过程):(()())(()())x F x G x xF x xG x ∀→→∃→∃3. 设A ={1,2,3,4},在A ?A 上定义二元关系R :< <x , y >, <u , v > >?R ? x+y = u+v ,求R 导出的划分。

离散期末考试题及答案

离散期末考试题及答案

离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。

最新离散数学试题及答案

最新离散数学试题及答案

最新离散数学试题及答案一、选择题(每题2分,共20分)1. 在离散数学中,以下哪个不是命题逻辑的基本联结词?A. 与(∧)B. 或(∨)C. 非(¬)D. 模(%)答案:D2. 以下哪个选项不是命题逻辑的真值表的正确形式?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P | Q | P → QD. P | Q | P ↔ Q答案:B3. 集合A={1, 2, 3},集合B={2, 3, 4},求A∪B的结果。

A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {4}答案:C4. 以下哪个是等价关系的属性?A. 自反性B. 对称性C. 传递性D. 所有选项都是答案:D5. 以下哪个是图论中的基本概念?A. 顶点B. 边C. 路径D. 所有选项都是答案:D6. 在有向图中,如果存在一条从顶点u到顶点v的有向路径,那么称v为u的后继。

以下哪个选项不是后继的定义?A. 存在一条从u到v的有向路径B. 存在一条从v到u的有向路径C. 存在一条从u到v的有向简单路径D. 存在一条从v到u的有向简单路径答案:B7. 以下哪个是二元关系R的自反性的定义?A. 对于所有a,(a, a) ∈ RB. 对于所有a,(a, a) ∉ RC. 对于所有a和b,如果(a, b) ∈ R,则(b, a) ∈ RD. 对于所有a和b,如果(a, b) ∈ R,则(a, a) ∈ R答案:A8. 在命题逻辑中,以下哪个是德摩根定律的表达式?A. ¬(P ∧ Q) ↔¬P ∨ ¬QB. ¬(P ∨ Q) ↔¬P ∧ ¬QC. P ∧ Q ↔¬P ∨ ¬QD. P ∨ Q ↔¬P ∧ ¬Q答案:B9. 以下哪个是集合的幂集?A. 包含集合本身的所有子集的集合B. 包含集合本身的所有超集的集合C. 包含集合本身的所有真子集的集合D. 包含集合本身的所有非空子集的集合答案:A10. 在图论中,以下哪个是强连通性的图?A. 任意两个顶点之间都存在有向路径B. 任意两个顶点之间都存在无向路径C. 任意两个顶点之间都存在有向简单路径D. 任意两个顶点之间都存在无向简单路径答案:C二、填空题(每空1分,共10分)11. 命题逻辑中的“与”操作可以用符号________表示。

[试题]离散数学复习题(请参考课件)

[试题]离散数学复习题(请参考课件)

离散数学Part1_数理逻辑部分1.将下列命题符号化。

P48(1)豆沙包是由面粉和红小豆做成的.(2)苹果树和梨树都是落叶乔木.(3)王小红或李大明是物理组成员.(4)王小红或李大明中的一人是物理组成员.(5)由于交通阻塞,他迟到了.(6)如果交通不阻塞,他就不会迟到.(7)他没迟到,所以交通没阻塞.(8)除非交通阻塞,否则他不会迟到.(9)他迟到当且仅当交通阻塞.分清复合命题与简单命题分清相容或与排斥或分清必要与充分条件及必要充分条件答案:(1)是简单命题(2)是合取式(3)是析取式(相容或)(4)是析取式(排斥或)请分别写出(1)—(4)的符号化形式设p: 交通阻塞,q: 他迟到(5)p→q, (6)⌝p→⌝q或q→p(7)⌝q→⌝p或p→q, (8)q→p或⌝p→⌝q(9)p↔q或⌝p↔⌝q可见(5)与(7),(6)与(8)相同(等值)3.用真值表判断下面公式的类型P51(1)p r (q p)(2)((p q) ( q p)) r(3)(p q) (p r)按层次写真值表,由最后一列判类型答案:(1)为矛盾式,(2)为重言式,(3)为可满足式例用等值演算法判断下列公式的类型P59(1)q (p q)(2)(p q) ( q p)(3)((p q) (p q)) r)解(1)q (p q)q ( p q) (蕴涵等值式)q (p q) (德摩根律)p (q q) (交换律,结合律)p 0 (矛盾律)0 (零律)由最后一步可知,(1)为矛盾式.(2)(p q) ( q p)( p q) (q p) (蕴涵等值式)( p q) ( p q) (交换律)1由最后一步可知,(2)为重言式.问:最后一步为什么等值于1?说明:(2)的演算步骤可长可短,以上演算最省.(3)((p q) (p q)) r)(p (q q)) r(分配律)p 1 r(排中律)p r(同一律)由最后一步可知,(3)不是矛盾式,也不是重言式,它是可满足式,其实101, 111是成真赋值,000, 010等是成假赋值.总结:从此例可看出A为矛盾式当且仅当A 0A为重言式当且仅当A 1例求公式A=(p q) r的主析取范式与主合取范式. P71(1)求主析取范式(p q) r(p q) r(析取范式)①(p q)(p q) ( r r)(p q r) (p q r)m6 m7②r( p p) ( q q) r( p q r) ( p q r) (p q r) (p q r)m1 m3 m5 m7 ③②, ③代入①并排序,得(p q) r m1 m3 m5 m6 m7 (主析取范式)(2)求A的主合取范式(p q) r(p r) (q r) (合取范式)①p rp (q q) r(p q r) (p q r)M0 M2 ②q r(p p) q r(p q r) ( p q r)M0 M4 ③②, ③代入①并排序,得(p q) r M0 M2 M4 (主合取范式1.设A与B均为含n个命题变项的公式,判断下列命题是否为真?P85(1)A B当且仅当A与B有相同的主析取范式(2)若A为重言式,则A的主合取范式为0(3)若A为矛盾式,则A的主析取范式为1(4)任何公式都能等值地化成{ , }中的公式(5)任何公式都能等值地化成{ , , }中的公式(1)为真,这是显然的(2)为假. 注意, 任何公式与它的主范式是等值的,显然重言式不能与0等值。

离散数学考试题目及答案

离散数学考试题目及答案

离散数学考试题目及答案1. 试述命题逻辑中的等价关系和蕴含关系。

答案:命题逻辑中的等价关系是指两个命题在所有可能的真值赋值下都具有相同的真值。

若命题P和Q等价,则记作P⇔Q。

蕴含关系是指如果命题P为真,则命题Q也为真,但Q为真时P不一定为真。

若命题P蕴含Q,则记作P→Q。

2. 证明:若集合A和B的交集非空,则它们的并集包含A和B。

答案:设x属于A∩B,即x同时属于A和B。

根据并集的定义,若元素属于A或B,则它属于A∪B。

因此,x属于A∪B。

由于x是任意属于A∩B的元素,所以A∩B≠∅意味着A∪B至少包含A∩B中的所有元素,即A∪B包含A和B。

3. 给定一个有向图G,如何判断G中是否存在环?答案:判断有向图G中是否存在环,可以采用深度优先搜索(DFS)算法。

在DFS过程中,记录每个顶点的访问状态,如果遇到一个已访问过的顶点,且该顶点不是当前路径的直接前驱,则表示存在环。

4. 描述有限自动机的组成部分及其功能。

答案:有限自动机由以下几部分组成:输入字母表、状态集合、转移函数、初始状态和接受状态集合。

输入字母表定义了自动机可以接收的符号集合;状态集合包含了自动机所有可能的状态;转移函数定义了在给定输入符号和当前状态的情况下,自动机如何转移到下一个状态;初始状态是自动机开始工作时的状态;接受状态集合包含了所有使自动机接受输入字符串的状态。

5. 什么是图的连通分量?如何确定一个无向图的连通分量?答案:图的连通分量是指图中最大的连通子图。

在一个无向图中,如果两个顶点之间存在路径,则称这两个顶点是连通的。

确定无向图的连通分量可以通过深度优先搜索(DFS)或广度优先搜索(BFS)算法。

从任一顶点开始搜索,搜索过程中访问的所有顶点构成一个连通分量。

重复此过程,直到所有顶点都被访问过,即可确定图中所有连通分量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

暨 南 大 学 考 试 试 卷
一、填空题(共10小题,每小题2分,共20分)
1. 设命题 p :罗素悖论的真值为假,q :暨南大学的校训是信敏廉毅,r :离散数学是计算机科学不可分割的一门基础课程,则复合命题:
()()()()()
p q r q p r p ⌝∧⌝∨∧⌝↔⌝→∨的真值
为 ;
2. 下列各式中为永真式的有: (1) Q Q P P →→∧))(( (2) Q Q P →→)( (3) )(Q P P ∨→
(3) Q Q P P →∨∧⌝))((
(5) )(Q P Q ∧→
3. A 是个10元集合,B 是个2元集合,则集合A B 中元素的个数为
4. 设M(x):x 是人,C(x):x 很聪明,则命题:“尽管有人很聪明,但未必一切人都聪明。

”可符号化为:
5. 设R(x):x 是实数;L(x, y):x 小于y ,则谓词公式:
(()(()(,)))x R x y R y L x y ∀→∃∧用自然语言表述就是:
6. 设个体域为A={a, b, c},消去公式()()xP x xQ x ∀→∃中的量词得到的与之等值的谓词公式为:
7. P(A)表示集合A 的幂集,则((()))P P P ∅ =
8. ())(B A B B A ⋃-⋂⋃=
9. 设D 为同一平面上直线的集合,并且 // 表示两直线的平行关系,⊥表示两直线间的垂直关系,则 20// = ,21⊥= 10.设
{}c ,b ,a A =,{}
,,,A R a b b a I =<><>⋃是A 上的等价关系,
设自然映射,R /A A :g →,那么()=a g
二、简答题(共4小题,每小题6分,共24分)
1.(1)求公式()()⌝∨⌝→↔⌝P Q P Q 的主析取式(要有过程);(4分) (2)根据主析取式直接写出该公式的主合取式;(2分)
2. 求与下面谓词公式等值的前束式(要有过程):
∀→→∃→∃
(()())(()())
x F x G x xF x xG x
3. 设A ={1,2,3,4},在A ⨯A 上定义二元关系R :
< <x , y >, <u , v > >∈R ⇔ x+y = u+v ,
求R 导出的划分。

4. 下图是偏序集<≤>,X 的哈斯图,求 X 和 ≤ 的集合表达式,并指出该偏序集的极大元、极小元、最大元和最小元。

三、证明、推理题(共4小题,每小题10分,共40分)
1.
(1)用反证法证明
前提: (),→→∧P Q R P Q
结论: ∨R S (4分)
(2)
前提:()(()()),()()∃→∀→∃→∃xF x y G y H y xR x yG y
结论:(()())()∃∧→∃x F x R x xH x (6分)
2.根据推理理论证明:每个旅客或者坐头等舱或者坐二等舱;每个旅客当且仅当他富裕时坐头等舱;有些旅客富裕但并非所有的旅客都富裕。

因此,有些旅客坐二等舱。

论域为全总论域。

3. 设A,B 为任意集合,证明: (1)()()⊆⇒⊆A B P A P B (4分) (2)()()⊆⇒⊆P A P B A B
(4分)
(3)()()=⇔=A B P A P B (2分)
4. 设 R 是 A 上的关系
(1)若R 是自反的和传递的,证明
R R R =o
(5分)
(2)若R R R =o ,证明R 是传递的,但自反性不一定成立(举出反例)(5分)
四、计算题(共2小题,每小题8分,共16分)
1. 设A= {1, 2, 3}, R= {<x,y> | x, y∈A且x+2y≤6 },S= {<1,2>, <1,3>,<2,2>}, 求
(1)R的集合表达式(1分)
(2)R-1 (1分)
(3)dom R, ran R, fld R (2分)
(4)R S, R3(2分)
(5)r(R), s(R), t(R) (2分)
2. 对给定的A, B和f, 判断是否构成函数f:A→B. 如果是, 说明f:A→B是否为单射、满射、双射. 并根据要求进行计算. (第1,2,3题各1分,第4题2分,第5题3分)
(1)A={1,2,3,4,5}, B={6,7,8,9,10}, f ={<1,8>,<3,9> ,<4,10>, <2,6>, <5,9>}.
(2)A, B同(1), f ={<1,7>,<2,6>,<4,5>,<1,9>,<5,10>}.
(3)A=B=R+, f(x)=x/(x2+1).
(4)A=B=R×R, f(<x,y>)=<x+y,x-y>, 令L={<x,y>|x,y∈R∧y=x+1}, 计算f(L).
(5)A=N×N, B=N, f(<x,y>)=|x2-y2|. 计算f(N×{0}), f -1({0}).。

相关文档
最新文档