离散数学试题
离散数学试题及答案

离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。
答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。
答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。
答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。
自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。
2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。
答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。
判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。
四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。
答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。
2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。
找出所有强连通分量。
答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。
离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
离散数学试题与参考答案

离散数学试题与参考答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《离散数学》试题及答案一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。
(A). P Q →; (B).P Q ∧; (C).P Q ⌝→⌝; (D).P Q ⌝∨.3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( ) (A) 1A (B) {1,2, 3}A (C) {{4,5}}A (D) A4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >} (C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>} 5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图;(C)欧拉图; (D) 平面图.二、填空题:本大题共5小题,每小题4分,共20分。
把答案填在对应题号后的横线上。
6. 设集合A ={,{a }},则A 的幂集P (A )=7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><, 那么R -1=8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系. 9. 写出一个不含“→”的逻辑联结词的完备集 . 10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为三、证明题(共30分)11. (10分)已知A 、B 、C 是三个集合,证明A ∩(B ∪C)=(A ∩B)∪(A ∩C) 12. (10分)构造证明:(P (Q S))∧(R ∨P)∧Q R S13.(10分)证明(0,1)与[0,1),[0,1)与[0,1]等势。
离散数学练习题(含答案)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( B ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。
(完整版)离散数学试题及答案,推荐文档

11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
二、选择题
1. C. 2. D. 3. B. 4. B.
5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B.
第 5 页 共 18 页
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.
14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.
离散数学练习题(含答案)

离散数学练习题(含答案)离散数学试题第一部分选择题1.下列命题变元p,q的小项是(C)。
A。
p∧┐p∧qB。
┐p∨qC。
┐p∧qD。
┐p∨p∨q2.命题“虽然今天下雪了,但是路不滑”可符号化为(D)。
A。
p→┐qB。
p∨┐qC。
p∧qD。
p∧┐q3.只有语句“1+1=10”是命题(A)。
A。
1+1=10B。
x+y=10___<0D。
x mod 3=24.下列等值式不正确的是(C)。
A。
┐(x)A(x)┐AB。
(x)(B→A(x))B→(x)A(x)C。
(x)(A(x)∧B(x))(x)A(x)∧(x)B(x)D。
(x)(y)(A(x)→B(y))(x)A(x)→(y)B(y) 5.量词x的辖域是“Q(x,z)→(x)(y)R(x,y,z)”(C)。
A。
(x)Q(x,z)→(x)(y)R(x,y,z))B。
Q(x,z)→(y)R(x,y,z)C。
Q(x,z)→(x)(y)R(x,y,z)D。
Q(x,z)6.设A={a,b,c,d},A上的等价关系R={。
}∪IA则对应于R的A的划分是(D)。
A。
{{a},{b,c},{d}}B。
{{a,b},{c},{d}}C。
{{a},{b},{c},{d}}D。
{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是(A)。
A。
{Ø,{Ø}}∈BB。
{{Ø,Ø}}∈BC。
{{Ø},{{Ø}}}∈BD。
{Ø,{{Ø}}}∈B8.集合相对补运算中,不正确的等式是(A)。
A。
(X-Y)-Z=X-(Y∩Z)B。
(X-Y)-Z=(X-Z)-YC。
(X-Y)-Z=(X-Z)-(Y-Z)D。
(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,不可结合的定义的运算是(D)。
A。
a*b=min(a,b)B。
a*b=a+bC。
a*b=GCD(a,b) (a,b的最大公约数)D。
电大离散数学本科试题及答案

电大离散数学本科试题及答案一、选择题(每题3分,共30分)1. 在离散数学中,下列哪个概念是用来描述两个集合之间元素的一一对应关系?A. 并集B. 交集C. 笛卡尔积D. 子集答案:D2. 命题逻辑中,德摩根定律描述的是哪种命题的否定形式?A. 合取命题B. 析取命题C. 条件命题D. 生成命题答案:B3. 在图论中,一个没有自环且任意两个顶点之间至多只有一条边的图被称为:A. 有向图B. 无向图C. 完全图D. 树答案:B4. 以下哪个算法用于判断一个命题逻辑表达式的真值表是否存在矛盾?A. 归并排序B. 快速排序C. 归约子句法D. 拓扑排序答案:C5. 集合{1, 2, 3}的幂集含有多少个元素?A. 4B. 6C. 8D. 16答案:C6. 在关系数据库中,一个关系模式的候选键是:A. 能唯一标识元组的属性集合B. 可以为空的属性C. 必须包含所有属性的超键D. 必须包含所有属性的候选键答案:A7. 以下哪个是离散数学中归纳证明的步骤?A. 基础步骤B. 归纳假设C. 归纳步骤D. 所有以上答案:D8. 在命题逻辑中,一个命题函数是:A. 仅包含逻辑运算符的表达式B. 可以取真假值的表达式C. 包含变量和逻辑运算符的表达式D. 仅包含逻辑运算符和变量的表达式答案:C9. 一个布尔代数中的幺元是指:A. 恒等元B. 恒真元C. 恒假元D. 单位元答案:D10. 在有限自动机中,状态的转移是由:A. 输入符号决定B. 当前状态和输入符号决定C. 输出符号决定D. 状态本身决定答案:B二、填空题(每题2分,共20分)11. 在离散数学中,一个集合的子集的总数是2的该集合元素数量的______次方。
答案:对数12. 如果一个命题逻辑表达式中只包含两个命题变量,那么它的真值表有______行。
答案:413. 在图论中,一个图的度序列是指该图所有顶点的______之和的非增序列。
答案:度数14. 一个关系R在域D上的闭包是指R通过______和______运算后得到的关系。
离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。
A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。
B. 有些狗不会游泳。
C. 所有的狗都不会游泳。
D. 以上都不是真命题。
4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。
A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。
B. 有些鸟不会飞。
C. 所有的哺乳动物都是温血动物。
D. 以上都不是假命题。
9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。
A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。
A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。
2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最坑的就是D选项,[公式]是一个偏序关系不错,但是[公式]是偏序集而不是偏序关系,这是一个概念游戏。
所以这个重组题只能选B。
之后就是七条判断题,总体来看概念题偏多,基本上就概念辨析,没有什么大难度。
填空题比较中规中矩,这里给出比较典型的一些小题目。
P2.已知自然数均为无穷公理构造的,那么求[公式]的值;
的确,这题会比较反直觉(集合论公理没几条ቤተ መጻሕፍቲ ባይዱ合直觉的(x)),但是如果我们知道[公式]以及[公式],就可以知道这题答案是[公式]。
P3.已知集合[公式],求值:[公式];
这题不是难题,但也延续了集合论的精髓,即大括号数不过来(x);实际上只要认真写一写,认真数一数括号,这题一定会做对的;
除去一个我已经记不得题目的推理证明题,解答题里面还有个分值大于十分的大题,这个题粗看就让人迷惑,但是细细想来还有点小意思。
P10.规定以下集合:
[公式]
给出偏序集[公式]的极小元、极大元、最小元、最大元、上界、下界、上确界、下确界;
(这题实际上比这个更加细致,但是核心就是这几问)
我们很容易大概画出来集合[公式]的图,但是比较烦的就是理解[公式]这个二元关系到底代表什么;
A. [公式]
B. [公式]
C.谓词表达式[公式]在域[公式]上可满足
D.规定[公式]上的关系[公式],那么[公式]是偏序关系
首先是A选项,我们容易看出来这是错的。
这是因为[公式],那么[公式];但是[公式],这就不相等。
同时B选项是正确的。
由于两个集合之间所有函数构成的集合的基数是可以通过公式直接计算的;我们可以得到这个等式的左边就是[公式],右边就是[公式];显然相等。
(可以给高一刚学集合的高中生当作练习题(弥天大雾))
答案是:
[公式]
希望阅卷助教眼睛受得了。
P4.求值:[公式];
这题直接算啊,没有什么特别大的难度:
[公式]
最后答案就是[公式];
P5.已知集合[公式]是一个[公式]元集合,计算[公式]上可以定义多少种不同的既自反又反对称的二元关系;
这个题就是计算小题,组合计数题我觉得高中应该练过不少。这里我们要把自反以及反对称这个条件转化好。
P8.计算一个六元集合上可以定义的不同的等价关系个数;
虽然我明白这是第二类斯特林数,但平时让我们计算四元集合就已经不想算,六元就有点魔鬼了。虽然极其不愿意,但是为了分数,我依然艰苦卓绝算出了答案为[公式]。
P9.证明以下集合的等势关系:
(1) [公式]
(2) [公式],其中[公式]为所有整数部分为完全平方数的实数构成的集合
编辑于01-09
由于离散数学(这一学期比较注重数理逻辑以及集合论)并不是一个大众化的通识数学,所以说我这次杂tu谈cao应该有点小众。
首先要说的是这次备用卷把所有单项选择改成了不定项选择,所以说复杂程度大大提升(排除法失效了),并且所有的选项都并不是那么好对付的,这里就罗列几个印象比较深的。
P1.以下说法正确的有?(这是一道重组题)
最后就是压轴罗素证明题,但是我没有时间做完了,就先放在这里吧:
P11.使用罗素公理系统证明[公式];(罗素公理系统使用就知道这个公理系统是多么反直觉了)
总体来说这份卷子题量相当大,难度也不是特别低;可能这里给出的题都看起来挺基础的,但是在当时做起来就觉得怪异。考完之后也是哀嚎一片,希望老师心善吧。
实际上这个二元关系就是表示坐标系第一象限格点的一个“大小关系”,如果[公式]在[公式]右上方,那就[公式];左下方就是[公式];
那么最后答案就显然易见了;
极大元为[公式],极小元为[公式],没有最大元,最小元为[公式],上界为[公式],下界为[公式],上确界为[公式],下确界为[公式];
我说这个题有点意思就是因为他在第一问是把[公式]当作二元关系处理的,但是之后就当作一般集合了。实际上我们发现关系和集合之间的界限其实不是特别明显,更加体现了“万物都是集合”的思想吧。
[公式]
填空题还算一般,解答题前几题也是风平浪静,被不定项选择题折磨致死的心灵暂时被宽慰,但是这个时候,出现了一些奇怪的题目。
首先给几个中规中矩的证明,答案不陈述,毕竟还算简单吧。
P6.已知集合[公式]满足[公式],求证[公式];
P7.求证下列等值关系式:
[公式]
之后就开始不正常,首先就是一个非常可恨的计算题:
我们构建一个自反关系,就是给每个点加上自环,实际上这个性质不影响我们计数。至于反对称,就是说只要两个不同的点之间有边,那么这个边必然单向。那么我们构造反对称,就可以首先选出一些地方让他们之间有边,之后决定这个边的指向。由于[公式]之中一共有[公式]个边,所以我们选[公式]个就会有[公式]种选择,每个边指向有两个选择,一共[公式]种,所以最后答案就是:
这种题就是花式构造双射函数,第一小题的构造就是把最为正常的正切构造变成了余切构造,或者模仿证明[公式]的方式找等比数列,反正就是随意构造;
我直接使用的以下构造:
[公式]
第二题就是要注意这个[公式]虽然很诡异,但是可以很容易通过整数部分的对应关系证明得到[公式]的,至于这个集合为什么等势于[公式],那么就留作习题吧(滑稽)。
离散数学试题
这次考试是真正的滑稽考试。考前大概两个小时,某一个助教不小心将考试题上传到了课程微信群里面,虽然一秒之内就撤回了,但是依然被许多同学浏览保存。于是,我们启用了天杀的备用卷...
备用卷就是传说之中命题老师抱着反正用不上就随便放难题的地方。果不其然,今天下午拿到试卷,就开始一脸懵逼,完全不是平时练习的风格,然后就自我放逐随便答题了。