山东省2014届高三高考仿真模拟冲刺考试(一)数学(理)试题

合集下载

30.山东省实验中学2014届高三第一次模考(三诊)数学(理)

30.山东省实验中学2014届高三第一次模考(三诊)数学(理)

山东省实验中学2011级高三第一次模拟考试数学试题(理科) (2014.3)第I 卷(选择题 50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}211,log 1,M x x N x x M N =-<<=<⋂则等于 A.{}01x x << B.{}1x x -<<2 C.{}x x -1<<0 D.{}11x x -<<2.设()()()1111201411n n i i f n n Z f i i -++-⎛⎫⎛⎫=+∈= ⎪ ⎪-+⎝⎭⎝⎭,则 A.2 B.2- C.2i D.2i -3.下列函数中既是奇函数,又在区间[]1,1-上单调递减的函数是A.()tan 2f x x =B.()1f x x =-+C.()()1222x x f x -=-D.()22x f x x-=+ 4.下列有关命题的说法正确的是A.命题“若211x x ==,则”的否命题为:“若211x x =≠,则”;B.“1m =”是“直线00x my x my -=+=和直线互相垂直”的充要条件C.命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”;D.命题“已知x,y 为一个三角形的两内角,若x=y ,则sin sin x y =”的逆命题为真命题.5.已知正三棱锥V-ABC 的主视图、俯视图如下图所示,其中4,VA AC ==,则该三棱锥的左视图的面积为A.9B.6C.6.已知x 、y 的取值如下表所示:若y 与x 线性相关,且0.95,y x a a ∧=+=则A.2.2B.2.9C.2.8D.2.67.定义行列式运算()1234sin 2142 3.cos2a a x a a x a a a a f x =-=将函数的图象向右平移()0m m >个单位,所得图象对应的函数为奇函数,则m 的最小值为 A.12π B. 6π C. 3π D. 23π8.已知函数()()()2,l n ,1x f x x g x x x x x =+=+--的零点分别为123123,,,,x x x x x x ,则的大小关系是A.123x x x <<B. 213x x x <<C. 132x x x <<D. 321x x x << 9.八个一样的小球按顺序排成一排,涂上红、白两种颜色,5个涂红色,三个涂白色,恰好有三个连续的小球涂红色,则涂法共有A.24种B.30种C.20种D.36种10.若()1,2,3,,i A i n AOB =⋅⋅⋅∆是所在的平面内的点,且i OA OB OA OB ⋅=⋅.给出下列说法: ①12n OA OA OA OA ==⋅⋅⋅==; ②1OA 的最小值一定是OB ;③点A 、i A 在一条直线上;④向量i OA OA OB 及在向量的方向上的投影必相等.其中正确的个数是A.1个B.2个C.3个D.4个二、填空题:本大题共5小题,每小题5分,共25分.11.阅读右面的程序框图,执行相应的程序,则输出k 的结果是_______12.设函数()3f x x x a =+--的图象关于点(1,0)中心对称,则a 的值为_______13.在()60a a x ⎫>⎪⎭的展开式中含常数项的系数是60,则0sin axdx ⎰的值为_______14.已知点(),p x y 满足条件0,,20x y x x y k ≥⎧⎪≤⎨⎪++≤⎩(k 为常数),若3z x y =+的最大值为8,则k=_________.15.双曲线22221x y a b-=的左右焦点为12,F F ,P 是双曲线左支上一点,满足2221122PF F F PF x y a =+=,直线与圆相切,则双曲线的离心率e 为________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分12分)已知函数()()22sinsin cos 0,263x f x x x x R ωππωωω⎛⎫⎛⎫=-++-+>∈ ⎪ ⎪⎝⎭⎝⎭,且函数()f x 的最小正周期为π。

山东省2014年高考仿真模拟冲刺卷理科数学模拟1

山东省2014年高考仿真模拟冲刺卷理科数学模拟1

绝密★启用前 试卷类型:A山东省2014年高考仿真模拟冲刺卷(一)理科数学满分150分 考试用时120分钟参考公式:如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概 率:).,,2,1,0()1()(n k p p C k P kn kkn n =-=-第Ⅰ卷(选择题 共50分)一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.已知全集UR =,集合{|2A x x =<-或3}x >,2{|340}B x x x =--≤,则集合A B = ( )A .{|24}x x -≤≤B .{|13}x x -≤≤C .{|21}x x -≤≤-D .{|34}x x <≤3.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A .12B .11C .3D .-1 4.等差数列{}n a 中,若75913a a =,则139S S =( )A . 1B .139C .913D .25.在△ABC 中,AB=2,AC=3,AB BC= 1则BC =( )A . CD 6.已知命题p :函数12x y a +=-恒过(1,2)点;命题q :若函数(1)f x -为偶函数,则()f x的图像关于直线1x =对称,则下列命题为真命题的是( )A .p q ∧B .p q ⌝∧⌝C .p q ⌝∧D .p q ∧⌝7.定义在R 上的奇函数()f x 满足:对任意[)12,0,x x ∈+∞,且12x x ≠,都有1212()[()()]0x x f x f x -->,则 ( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-8.在某跳水运动员的一项跳水实验中,先后要完成6个动作,其中动作P 只能出现在第一步或最后一步,动作Q 和R 实施时必须相邻,则动作顺序的编排方法共有( )A .96种B .48种C .24种D .144种9.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A .12πB .C .3πD . 10.如果函数2()ln(1)a f x x b =-+的图象在1x =处的切线l 过点1(0,)b-,并且l 与圆C :221x y +=相离,则点(a ,b )与圆C 的位置关系是( )A .在圆内B .在圆外C .在圆上D .不能确定第Ⅱ卷(非选择题 共100分)二、填空题:(本大题共5小题,每小题5分,共25分)11.已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为 . 12.若11(2)3ln 2(1)ax dx a x+=+>⎰,则a 的值是13.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠= .14.若存在实数1[,2]3x ∈满足22x a x>-,则实数a 的取值范围是 .15. 已知点P 是△ABC 的中位线EF 上任意一点,且EF//BC ,实数x ,y 满足0=++PC y PB x PA 。

山东省2014届高三仿真模拟测试理科数学试题四(word版)(精校)

山东省2014届高三仿真模拟测试理科数学试题四(word版)(精校)

山东省2014届高考仿真模拟测试试题四高三数学(理科)本试卷共4页,满分150分,考试时间120分钟第Ⅰ卷(选择题)一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 复数21ii+(i 是虚数单位)的虚部为( ) A .1- B .i C .1 D .22. 已知全集R U =,集合{}2|0A x x x =->,{}|ln 0B x x =≤,则()U C A B =( )A .(0,1]B .(,0)(1,)-∞+∞C .∅D .(0,1)3. 某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,现从中抽取一个容量为200人的样本,则高中二年级被抽取的人数为( )A .28B .32C .40D .64 4. 曲线32y x x =-在(1,1)-处的切线方程为( )A .20x y --=B .20x y -+=C .20x y +-=D .20x y ++= 5. 设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是( ) A .若//,//,a b a α则//b α B .若,//,a αβα⊥则a β⊥ C .若,,a αββ⊥⊥则//a αD .若,,,a b a b αβ⊥⊥⊥则αβ⊥6. 设,z x y =+其中实数,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最大值为12,则z 的最小值为( )A . 3-B .6-C .3D .67. 函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示,若12,(,)63x x ππ∈-,且12()()f x f x =,则12()f x x +=( )A . 1B .21 C .22 D .23 8. 在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,则实验顺序的编排方法共有( )A .34种B .48种C .96种D .144种9.函数2()ln(2)f x x =+的图象大致是( )10. 如图,从点0(,4)M x 发出的光线,沿平行于抛物线28y x =的 对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射 向抛物线上的点Q ,再经抛物线反射后射向直线:100l x y --= 上的点N ,经直线反射后又回到点M ,则0x 等于( )A .5B .6C .7D .8第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡上. 11.已知向量()2,1a =,()1,b k =-,若⊥,则实数k =______.12.圆22:2440C x y x y +--+=的圆心到直线:3440l x y ++=的距离d = .13.如图是某算法的程序框图,若任意输入[1,19]中的实数x ,则输 出的x 大于49的概率为 .14.已知,x y 均为正实数,且3xy x y =++,则xy 的最小值为__________.15.如果对定义在R 上的函数()f x ,对任意两个不相等的实数12,x x ,都有11221221()()()()x f x x f x x f x x f x +>+,则称函数()f x 为“H 函数”.给出下列函数①31y x x =-++;②32(sin cos )y x x x =--;③1xy e =+;④ln 0()00x x f x x ⎧≠⎪=⎨=⎪⎩.以上函数是“H 函数”的所有序号为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题满分12分) 已知向量)sin ,)62(sin(x x m π+=,)sin ,1(x =,21)(-⋅=x f . (Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,a =1()22Af =, 若C C A cos 2)sin(3=+,求b 的大小. 17.(本小题满分12分)袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为512. 现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取1个球,取出的球不放回, 直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数. (Ⅰ)求袋中原有白球的个数;(Ⅱ)求随机变量X 的概率分布及数学期望()E X .18.(本题满分12分)如图,四棱锥P ABCD -中, PA ⊥面ABCD ,E 、F 分别为BD 、PD 的中点,=1EA EB AB ==,2PA =.(Ⅰ)证明:PB ∥面AEF ;(Ⅱ)求面PBD 与面AEF 所成锐角的余弦值. 19.(本小题满分12分)在数列{}n a )N (*∈n 中,其前n 项和为n S ,满足22n n S n -=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎪⎩⎪⎨⎧=+-=⋅=k n nn k n n b n a n 2,2112,22(k 为正整数),求数列{}n b 的前n 2项和n T 2.20.(本小题满分13分) 已知函数()1x f x e x =--. (Ⅰ)求()f x 的最小值;(Ⅱ)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设2()(()1)(1)g x f x x '=+-,试问函数()g x 在(1,)+∞上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由. 21.(本小题满分14分)设1F ,2F 分别是椭圆D :)0(12222>>=+b a b y a x 的左、右焦点,过2F 作倾斜角为3π的直线交椭圆D 于A ,B 两点, 1F 到直线AB 的距离为3,连接椭圆D 的四个顶点得到的菱形面积为4.(Ⅰ)求椭圆D 的方程;(Ⅱ)已知点),(01-M ,设E 是椭圆D 上的一点,过E 、M 两点的直线l 交y 轴于点C ,若CE EM λ=,求λ的取值范围;(Ⅲ)作直线1l 与椭圆D 交于不同的两点P ,Q ,其中P 点的坐标为(2,0)-,若点),0(t N 是线段PQ 垂直平分线上一点,且满足4=⋅NQ NP ,求实数t 的值.山东省2014届高考仿真模拟测试试题高三数学(理科答案)一、 选择题: CADAD BDCDB 二、 填空题:本大题共5小题,每小题5分,共25分. 11. 2 12. 3 13.2314. 9 15. ②③ 三、解答题:17.解:(Ⅰ)设袋中原有n 个白球,则从9个球中任取2个球都是白球的概率为229n C C ………2分由题意知229512n C C =,化简得2300n n --=.解得6n =或5n =-(舍去)……………………5分故袋中原有白球的个数为6……………………6分 (Ⅱ)由题意,X 的可能取值为1,2,3,4.2(1)3P X ==; 361(2)984P X ⨯===⨯; 3261(3)98714P X ⨯⨯===⨯⨯;32161(4)987684P X ⨯⨯⨯===⨯⨯⨯. 所以取球次数X 的概率分布列为:……………10分所求数学期望为211110()12343414847E X =⨯+⨯+⨯+⨯=…………………12分所以1(1,0,0),(0,0,2),(2B D P F E 则133(1,0,2),(0,3,2),(,,0),(0,2PB PD AE AF =-=-==………8分 设1111(,,)n x y z=、2222(,,)n x y z =分别是面PBD 与面AEF 的法向量则11112020x z z -=⎧⎪-=,令1n =又22220102y z x y +=⎨⎪+=⎪⎩,令2(2n =-……11分 所以12121211cos ,19n n n n n n ⋅==……………12分 19.解:(Ⅰ)由题设得:22n n S n -=,所以)2()1(1221≥---=-n n n S n 所以n S S a n n n -=-=-11 )2(≥n ……………2分当1=n 时,011==S a ,数列{}n a 是01=a 为首项、公差为1-的等差数列, 故n a n -=1.……………5分(Ⅱ)由(Ⅰ)知椭圆D 的方程为1422=+y x设11(,)E x y ,),0(m C ,由于CE EM λ=,所以有),1(),(1111y x m y x ---=-λλλλ+=+-=∴1,111my x ……………7分 又E 是椭圆D 上的一点,则1)1(4)1(22=+++-λλλm 所以04)2)(23(2≥++=λλm解得:23λ≥-或2λ≤- ……………9分(Ⅲ)由)0,2(-P , 设),(11y x Q 根据题意可知直线1l 的斜率存在,可设直线斜率为k ,则直线1l 的方程为)2(+=x k y把它代入椭圆D 的方程,消去y ,整理得: 0)416(16)41(2222=-+++k x k x k由韦达定理得22141162k k x +-=+-,则2214182k k x +-=,=+=)2(11x k y 2414k k +所以线段PQ 的中点坐标为,418(22k k +-)4122kk +。

山东省2014届高三仿真模拟测试理科数学试题十二(word版)(精校)

山东省2014届高三仿真模拟测试理科数学试题十二(word版)(精校)

山东省2014届高考仿真模拟测试试题十二高三数学(理科)本试卷共4页,满分150分,考试时间120分钟第I 卷(选择题)一、 选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项.)1.已知集合A={|<5}x Z x ∈ ,B=|20}{x x -≥ ,A∩B 等于( )A. (2, 5)B. [2, 5)C. {2, 3, 4}D. {3, 4, 5} 2.在复平面内,复数12i-(i 是虚数单位)对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.等比数列}{n a 中,63=a ,前三项的和318S =,则公比q 的值为( )A.1B.21-C.1 或21-D.1- 或21-4.阅读右侧程序框图,输出结果i 的值为( )A. 5B. 6C.7D. 95.给出命题p :直线310ax y ++=()2110x a y +++=与直线互相平行的充要条件是3a =-;命题q :若210mx mx --<恒成立,则40m -<<.关于以上两个命题,下列结论正确的是( ) A.命题“p q ∧”为真 B. 命题“p q ∨”为假 C.命题“p q ∧⌝”为真 D. 命题“p q ∨⌝”为真6.设αβγ、、为平面,l n m 、、为直线,以下四组条件,可以作为β⊥m 的一个充分条件的是( ) A .,,l m l αβαβ⊥=⊥B .,,m αγαγβγ=⊥⊥C .,,m αγβγα⊥⊥⊥D .,,n n m αβα⊥⊥⊥7.函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( )8.某几何体三视图如下图所示,则该几何体的体积是( ) A. 112π+ B. 16π+C. 13π+D. 1π+ 9.将函数sin()y x θ=+的图象F 向左平移6π个单位长度后得到图象F ',若F '的一个对称中心为(,0)4π,则θ的一个可能取值是( ) A .12π B .6π C .56π D .712π 10.已知离心率为e的椭圆有相同的焦点1F 、2F ,P 是两曲线的一个公共点,若123F PF π∠=,则e 等于( )B.25C.D.3第II 卷(非选择题)二、 填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡上)11.…(,m n 都是正 整数,且,m n 互质),通过推理可推测m 、n 的值,则-m n =. 12.设()0sin cos a x x dx π=+⎰,则二项式6⎛⎝的展开式的常数项是_________.13.已知点)3,3(A , O 为坐标原点,点P (x ,y )的坐标x , y 满足⎪⎪⎩⎪⎪⎨⎧≥≥+-≤-0,02303y y x y x 则APCFE向量OP 在向量A O 方向上的投影的取值范围是_________.14.设区域Ω是由直线0,=1x x y π==±和所围成的平面图形,区域D 是由余弦曲线y=cos x 和直线x=0,x=π和y=1±所围成的平面图形,在区域Ω内随机抛掷一粒豆子,则该豆子落在区域D 的概率是_________.15.对于两个图形12,F F ,我们将图形1F 上的任意一点与图形2F 上的任意一点间的距离中的最小值,叫做图形1F 与图形2F 的距离.若两个函数图像的距离小于1,陈这两个函数互为“可及函数”.给出下列几对函数,其中互为“可及函数”的是_________.(写出所有正确命题的编号) ①()cos ,()2f x x g x ==; ②()x f x e =,()g x x =;③22()log (25)f x x x =-+,()sin2g x x π=; ④2()f x x x=+,()ln 2g xx =+; ⑤()f x =315()44g x x =+.三、解答题(本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程)16.(本小题满分12分)在ABC ∆中, c b a ,,分别是角CB A ,,的对边,且2cos cos (tan tan 1)1A CA C -=. (Ⅰ)求B 的大小; (Ⅱ)若2a c +=,b =求ABC ∆的面积. 17.(本题满分12分)如图,四棱锥ABCD P -的底面ABCD 是平行四边形,1,2==AB AD ,60=∠ABC ,⊥PA 面ABCD ,设E 为PC中点,点F 在线段PD 上且FD PF 2=. (Ⅰ)求证://BE 平面ACF ; (Ⅱ)设二面角D CF A --的大小为θ, 若1442|cos |=θ,求PA 的长. 18.(本小题满分12分)某校高二年级进行社会实践,对[25, 55]岁的人群随机抽取n 个人进行了一次是否开通“微信”,若开通“微信”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如图1所示统计表,如图2所示各年龄段人数频率分布直方图: 请完成以下问题:(1)补全频率直方图,并求n ,a ,p 的值;(2)从[40,45)岁和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络“时尚达人”大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁得人数为ξ,求ξ的分布列和数学期望E (X ). 19.(本小题满分12分)正项数列{}n a 的前n 项和为n S 满足:221220n n n n S S ++-=. (1)求数列{}n a 的通项公式;(2)令12(1)(1)n n n n b S a -=--,数列{}n b 的前n 项和为n T ,证明:对于任意的*n N ∈,都有2n T <. 20. (本小题满分13分)设函数2()ln(1)f x x b x =++,其中0b ≠. (1)当12b >时,判断函数()f x 在定义域上的单调性; (2)求函数()f x 的极值点;(3)证明对任意的正整数n ,不等式23111ln 1n n n⎛⎫+>- ⎪⎝⎭都成立. 21.(本小题满分14分) 已知椭圆2222:1x y E ab+=(a >b >0)的离心率为212).(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线l:y=kx+t 与圆222:C x y R +=(1<R <2)相切于点A ,且l 与椭圆E 只有一个公共点B . ①求证:22214R k R-=-;②当R 为何值时,AB 取得最大值?并求出最大值.山东省2014届高考仿真模拟测试试题高三数学(理科答案)一、选择题:(51050)''⨯= CACCC DBAD10.C 解析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为2c ,1PF m =,2PF n =,且不妨设m n >,由 12m n a +=,22m n a -=得12m a a =+,12n a a =-.又123F PF π∠=,∴222221243c m n mn a a =+-=+,∴22122234a a c c+=,即234e=,解得e =,选C.二、填空题:本大题共5小题,每小题5分,共25分. 11. 41 12. -160 13. [14.1124π+ 15. ②④ 三、解答题:17.解:(Ⅰ)由1,2==AB AD , 60=∠ABC 得3=AC ,AC AB ⊥.又⊥PA 面ABCD ,所以以AP AC AB ,,分别为z y x ,,图.则),0,3,1(),0,3,0(),0,0,1(),0,0,0(-D C B A 设),0,0(c P )2,23,0(cE .设),,(z y xF ,2=得: )z y x c z y x ----=-,3,1(2),,(. 解得:32-=x ,332=y ,3c z =,所以)3,332,32(c F -. 所以)3,332,32(c AF -=, )0,3,0(=AC ,)2,23,1(cBE -=. 设面ACF 的法向量为),,(z y x n = ,则⎪⎩⎪⎨⎧==++-00333232y z c y x ,取)2,0,(c n =.因为0=+-=⋅c c BE n,且⊄BE 面ACF ,所以//BE 平面ACF .(Ⅱ)设面PCD 法向量为),,(z y x =, 因为),3,0(c -=,),3,1(c --=,所以⎪⎩⎪⎨⎧=-+-=-0303cz y x cz y ,取)3,,0(c m =.由1442|cos |==θ,得1442343222=++c c .044724=-+c c ,2=c ,所以2=PA . 18.解:(Ⅰ)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为0.30.065=,频率分布直方图如下: 第一组的人数为1202000.6=, 频率为0.04×5=0.2,所以20010000.2=,所以第二组人数为1000×0.3=300,1950.65300p == 第四组的频率为0.03×5=0.15,人数为1000×0.15=150,1500.460a =⨯=.(Ⅱ)因为[40,45)岁与[45,50)岁年龄段的“时尚族”的比值为60:30=2:1,所以分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人,随机变量ξ服从超几何分布:()03126318C C 50C 204P ξ===,()12126318C C 151C 68P ξ===,()21126318C C 332C 68P ξ===, ()30126318C C 553C 204P ξ===,所以ξ的分布列为数学期望为()012322046868204E ξ=⨯+⨯+⨯+⨯= 19.解:(1)221220n n n n S S ++-=,122)0n n n n S S +-+=()(,解得2n n S = 当1n =时,112a S ==;当2n ≥时,111222n n n n n n a S S ---=-=-=(1n =不适合),所以12,1,2,2n n n a n -=⎧=⎨≥⎩(2)当1n =时,111211211(1)(1)(21)b S a -===---,1112T b ==<; 当2n ≥时,111211(21)(21)2121n n n n n n b ---==-----, 22311111111()()()212121212121n n n T -=+-+-++------- 12221n=-<- 综上,对于任意的*n N ∈,都有2n T <.即2()220g x x x b =++>在(1)-+∞,上恒成立,∴当(1)x ∈-+∞,时,()0f x '>,∴当12b >时,函数()f x 在定义域(1)-+∞,上单调递增. (2)①由(1)得,当12b >时,函数()f x 无极值点.②12b =时,3122()01x f x x ⎛⎫+ ⎪⎝⎭'==+有两个相同的解12x =-, 112x ⎛⎫∈-- ⎪⎝⎭,时,()0f x '>,12x ⎛⎫∈-+∞ ⎪⎝⎭,时,()0f x '>,12b ∴=时,函数()f x 在(1)-+∞,上无极值点.③当12b <时,()0f x '=有两个不同解,112x -=,212x -+=,0b <时,11x =<-,20x =>,即1(1)x ∈-+∞,,[)21x ∈-+∞,.()f x ',()f x 随x 的变化情况如下表:由此表可知:0b <时,()f x 有惟一极小值点1x =当102b <<时,11x =>-,12(1)x x ∴∈-+∞,, 此时,()f x ',()f x 随x 的变化情况如下表:由此表可知:102b <<时,()f x 有一个极大值1x =和一个极小值点2x =;综上所述:0b <时,()f x 有惟一最小值点x =;102b <<时,()f x 有一个极大值点x =和一个极小值点x =;12b ≥时,()f x 无极值点.(3)当1b =-时,函数2()ln(1)f x x x =-+,令函数332()()ln(1)h x x f x x x x =-=-++,则22213(1)()3211x x h x x x x x +-'=-+=++.∴当[)0x ∈+∞,时,()0f x '>,所以函数()h x 在[)0+∞,上单调递增,又(0)0h =. (0)x ∴∈+∞,时,恒有()(0)0h x h >=,即32ln(1)x x x >-+恒成立.故当(0)x ∈+∞,时,有23ln(1)x x x +>-. 对任意正整数n 取1(0)x n =∈+∞,,则有23111ln 1n n n⎛⎫+>- ⎪⎝⎭.所以结论成立. 21.(Ⅰ) 椭圆E 的方程为2214x y +=. (Ⅱ) ①因为直线l 与圆C : 222(12)x y R R +=<<相切于A ,得R =,即 222(1)t R k =+ ① 又因为l 与椭圆E 只有一个公共点B ,由2214y kx tx y =+⎧⎪⎨+=⎪⎩ ,得 222(14)8440k x ktx t +++-=,且此方程有唯一解. 则2222226416(14)(1)16(41)0,k t k t k t ∆=-+-=-+= 即22410k t -+=.②由①②,得 2221.4R k R -=- ② 设00(,)B x y ,由22214R k R -=-得 22234R t R=-,由韦达定理,222022*********t R x k R --==+,∵00(,)B x y 点在椭圆上, ∴222002141,43R y x R -=-=∴22200245OB x y R =+=-, 在直角三角形OAB 中, 22222224455(),AB OB OA R R R R=-=--=-+2244,R R +≥当且仅当R =(1,2), ∴2max 541, 1.AB AB ≤-=∴=。

数学_2014年山东省高考数学模拟试卷(一)(理科)_(含答案)

数学_2014年山东省高考数学模拟试卷(一)(理科)_(含答案)

2014年山东省高考数学模拟试卷(一)(理科)一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件 2. 已知全集U =R ,集合A ={x|x <−2或x >3},B ={x|x 2−3x −4≤0},则集合A ∩B =( )A {x|−2≤x ≤4}B {x|3<x ≤4}C {x|−2≤x ≤−1}D {x|−1≤x ≤3} 3. 已知变量x ,y 满足约束条件{y ≤2x +y ≥1x −y ≤1,则z =3x +y 的最大值为( )A 12B 11C 3D −14. 等差数列{a n }中,若a 7a 5=913,则S13S 9=( )A 1B 139C 913D 25. 在△ABC 中,AB =2,AC =3,AB →⋅BC →=1,则BC 等于( )A √3B √7C 2√2D √236. 已知命题p :函数y =2−a x+1恒过(1, 2)点;命题q :若函数f(x −1)为偶函数,则f(x)的图象关于直线x =1对称,则下列命题为真命题的是( ) A p ∧q B ¬p ∧¬q C ¬p ∧q D p ∧¬q7. 定义在R 上的偶函数f(x)满足:对∀x 1,x 2∈[0, +∞),且x 1≠x 2,都有(x 1−x 2)[f(x 1)−f(x 2)]>0,则( )A f(3)<f(−2)<f(1)B f(1)<f(−2)<f(3)C f(−2)<f(1)<f(3)D f(3)<f(1)<f(−2)8. 在某跳水运动员的一项跳水实验中,先后要完成6个动作,其中动作P 只能出现在第一步或最后一步,动作Q 和R 实施时必须相邻,则动作顺序的编排方法共有( ) A 24种 B 48种 C 96种 D 144种9. 一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积是( ) A 12π B 4√3π C 3π D 12√3π 10. 如果函数f(x)=−2a bln(x +1)的图象在x =1处的切线l 过点(0,−1b ),并且l 与圆C:x 2+y 2=110相离,则点(a, b)与圆x 2+y 2=10的位置关系是( )A 在圆内B 在圆外C 在圆上D 不能确定二、填空题:(本大题共5小题,每小题5分,共25分)11. 已知函数f(x)的定义域为(−1, 0),则函数f(2x −1)的定义域为________. 12. 若∫(a12x +1x )dx =3+ln2(a >1),则实数a 的值是________.13. 在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c .asinBcosC +csinBcosA =12b ,且a >b ,则∠B =________.14. 若存在实数x ∈[13, 2]满足2x >a −2x,则实数a 的取值范围是________.15. 已知点P 是△ABC 的中位线EF 上任意一点,且EF // BC ,实数x ,y 满足PA →+xPB →+yPC →=0.设△ABC ,△PBC ,△PCA ,△PAB 的面积分别为S ,S 1,S 2,S 3,记S1S =λ1,S 2S =λ2,S3S=λ3.则λ2⋅λ3取最大值时,2x +y 的值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤(共6题,共75分)16. 在△ABC 中,a =3,b =2√6,∠B =2∠A . (1)求cosA 的值;(2)求c 的值.17. 某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积. (1)记“函数f(x)=x 2+ξ⋅x 为R 上的偶函数”为事件A ,求事件A 的概率; (2)求ξ的分布列和数学期望.18. 如图,在四面体A −BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =2√2.M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . (1)证明:PQ // 平面BCD ;(2)若二面角C −BM −D 的大小为60∘,求∠BDC 的大小. 19. 在数列{a n }中,已知a 1=14,a n+1a n=14,b n +2=3log 14a n (n ∈N ∗).(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等差数列;(3)设数列{c n}满足c n=a n⋅b n,求{c n}的前n项和S n.20. 椭圆C:x2a2+y2b2=1(a>0,b>0)的左右焦点分别是F1,F2,离心率为√32,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m, 0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明1kk1+1kk2为定值,并求出这个定值.21. 已知函数f(x)=lnx+ke x(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1, f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间;(3)设g(x)=(x2+x)f′(x),其中f′(x)是f(x)的导函数.证明:对任意x>0,g(x)< 1+e−2.2014年山东省高考数学模拟试卷(一)(理科)答案1. B2. B3. B4. A5. A6. B7. B8. C9. C10. A11. (0,12)12. 213. 30∘14. (−∞,203)15. 3216. 解:(1)根据题意:利用正弦定理可得asinA =bsinB,即3sinA =2√6sin2A=2√62sinAcosA,解得cosA=√63.(2)由余弦定理可得a2=b2+c2−2bc⋅cosA,即9=(2√6)2+c2−2×2√6×c×√63,即c2−8c+15=0,解方程求得c=5,或c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得B=90∘,A=C=45∘,则△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去;当c=5时,求得cosB=a 2+c2−b22ac=13,cosA=b2+c2−a22bc=√63,∴ cos2A=2cos2A−1=13=cosB,∴ B=2A,满足条件.综上,c=5.17. 若函数f(x)=x2+ξ⋅x为R上的偶函数,则ξ=0当ξ=0时,表示该学生选修三门功课或三门功课都没选.∴ P(A)=P(ξ=0)=xyz+(1−x)(1−y)(1−z)=0.4×0.5×0.6+(1−0.4)(1−0.5)(1−0.6)=0.24∴ 事件A的概率为0.24依题意知ξ的取值为0和2由(1)所求可知P(ξ=0)=0.24P(ξ=2)=1−P(ξ=0)=0.76则ξ的分布列为∴ ξ的数学期望为Eξ=0×0.24+2×0.76=1.5218. (1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ∵ △ACD中,AQ=3QC且DF=3CF,∴ QF // AD且QF=14AD∵ △BDM中,O、P分别为BD、BM的中点∴ OP // DM,且OP=12DM,结合M为AD中点得:OP // AD且OP=14AD∴ OP // QF且OP=QF,可得四边形OPQF是平行四边形∴ PQ // OF∵ PQ⊄平面BCD且OF⊂平面BCD,∴ PQ // 平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH ∵ AD⊥平面BCD,CG⊂平面BCD,∴ AD⊥CG又∵ CG ⊥BD ,AD 、BD 是平面ABD 内的相交直线 ∴ CG ⊥平面ABD ,结合BM ⊂平面ABD ,得CG ⊥BM ∵ GH ⊥BM ,CG 、GH 是平面CGH 内的相交直线 ∴ BM ⊥平面CGH ,可得BM ⊥CH因此,∠CHG 是二面角C −BM −D 的平面角,可得∠CHG =60∘ 设∠BDC =θ,可得Rt △BCD 中,CD =BDcosθ=2√2cosθ,CG =CDsinθ=2√2sinθcosθ,BG =BCsinθ=2√2sin 2θRt △BMD 中,HG =BG⋅DM BM=2√23sin 2θ;Rt △CHG 中,tan∠CHG =CGGH =3cosθsinθ=√3∴ tanθ=√3,可得θ=60∘,即∠BDC =60∘ 19. 解:(1)∵a n+1a n=14∴ 数列{a n }是首项为14,公比为14的等比数列, ∴ a n =(14)n (n ∈N ∗).(2)∵ b n =3log 14a n −2∴ b n =3log 14(14)n −2=3n −2.∴ b 1=1,公差d =3∴ 数列{b n }是首项b 1=1,公差d =3的等差数列. (3)由(1)知,a n =(14)n ,b n =3n −2(n ∈N ∗)∴ c n =(3n −2)×(14)n ,(n ∈N ∗).∴ S n =1×14+4×(14)2+7×(14)3++(3n −5)×(14)n−1+(3n −2)×(14)n , 于是14S n =1×(14)2+4×(14)3+7×(14)4++(3n −5)×(14)n +(3n −2)×(14)n+1两式相减得34S n =14+3[(14)2+(14)3++(14)n ]−(3n −2)×(14)n+1=12−(3n +2)×(14)n+1.∴ S n =23−12n+83×(14)n+1(n ∈N ∗).20. (1)解:把−c 代入椭圆方程得c 2a 2+y 2b 2=1, 解得y =±b 2a .∵ 过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1, ∴2b 2a=1.又e =ca =√32,联立得{2b2a=1,a2=b2+c2,c a =√32,解得a=2,b =1,c=√3,∴ 椭圆C的方程为x24+y2=1.(2)解:如图所示,设|PF1|=t,|PF2|=n,由角平分线的性质可得tn =|MF1||F2M|=m+√3√3−m,又t+n=2a=4,消去t得到4−nn =√3+m√3−m,化为n=2(√3−m)√3,∵ a−c<n<a+c,即2−√3<n<2+√3,即2−√3<2(√3−m)√3<2+√3,解得−32<m<32,∴ m的取值范围:(−32,32).(3)证明:设P(x0, y0),不妨设y0>0,由椭圆方程x24+y2=1,取y=√1−x24,则y′=−2x 42√1−x 24=−x4√1−x24,∴ k =k l =04√1−024=−x 04y 0.∵ k 1=x +√3,k 2=0x −√3,∴ 1k 1+1k 2=2x 0y 0,∴ 1kk 1+1kk 2=−4y 0x 0×2x 0y 0=−8为定值. 21. (1)解:f′(x)=1x−lnx−k e x,依题意,∵ 曲线y =f(x) 在点(1, f(1))处的切线与x 轴平行, ∴ f′(1)=1−k e=0,∴ k =1为所求.(2)解:k =1时,f′(x)=1x−lnx−1e x(x >0)记ℎ(x)=1x −lnx −1,函数只有一个零点1,且当x >1时,ℎ(x)<0,当0<x <1时,ℎ(x)>0,∴ 当x >1时,f′(x)<0,∴ 原函数在(1, +∞)上为减函数;当0<x <1时,f′(x)>0, ∴ 原函数在(0, 1)上为增函数.∴ 函数f(x)的增区间为(0, 1),减区间为(1, +∞). (3)证明:g(x)=(x 2+x)f′(x)=1+x e x(1−xlnx −x),先研究1−xlnx −x ,再研究1+x e x.①记r(x)=1−xlnx −x ,x >0,∴ r′(x)=−lnx −2,令r′(x)=0,得x =e −2, 当x ∈(0, e −2)时,r′(x)>0,r(x)单增; 当x ∈(e −2, +∞)时,r′(x)<0,r(x)单减.∴ r(x)max =r(e −2)=1+e −2,即1−xlnx −x ≤1+e −2. ②记s(x)=1+x e x ,x >0,∴ s′(x)=−x e x<0,∴ s(x)在(0, +∞)单减,∴ s(x)<s(0)=1,即1+x e x<1.综①、②知,g(x))=1+x e x(1−xlnx −x)≤(1+x e x)(1+e −2)<1+e −2.。

2014高考数学理科模拟试题

2014高考数学理科模拟试题

理科综合本试卷分第I卷和第II卷两部分,共12页。

满分300分。

考试用时150分钟。

第Ⅰ卷(必做,共107分)以下数据可供答题时参考相对原子质量:N 14 O 16 S 32 Fe 56一、选择题(本小题包括13小题,每题5分,每小题只有一个选项符合题意)1.下列有关生物体物质和结构基础的叙述错误的是()A.真核细胞DNA的复制和转录主要在细胞核中完成B.细胞膜的成分有蛋白质、脂质和少量的糖类C.抗体是蛋白质,RNA聚合酶也是蛋白质D.细胞核只具有储存和复制遗传物质的功能2.下列关于实验的叙述正确的是()A.低倍镜观察的视野右上角有一不清晰物象时,应换用高倍物镜并调节细准焦螺旋B.观察细胞有丝分裂时,剪取洋葱根尖2~3mm的原因是其内可找到分生区细胞C.用斐林试剂检验某组织样液,若出现砖红色沉淀则说明其中一定含有葡萄糖D.选取经低温诱导的洋葱根尖制作临时装片,可在显微镜下观察到联会现象3.右图是描述某种生命活动的模型,下列叙述正确的是()A.若A代表兔同化的能量,a代表兔摄入的食物,则b、c可分别代表被下一营养级摄入和排便的能量流动途径所产生的[H]和ATPC.若A为调节中枢,a为渗透压升高,则b、c可分别代表抗利尿激素减少和产生渴觉D.若A代表人体B细胞,a为抗原刺激,则b、c可分别代表浆细胞和记忆细胞的形成4.对下列四幅图所对应的生物活动叙述错误的是()A.(1)图中虚线能正确表示适当升高温度,而其他条件不变时,生成物量变化的曲线B.(2)图中若要抑制肿瘤细胞增殖,则药物作用的时期最可能是在S期C.(3)图表示次级精母细胞时,则该生物体细胞中染色体数最多为4个D.(4)图中①④的基本单位不相同,③约有20种5.果蝇有一种缺刻翅的变异类型,这种变异是由染色体上某个基因缺失引起的,并且有纯合致死效应。

已知在果蝇群体中不存在缺刻翅的雄性个体。

用缺刻翅雌果蝇与正常翅雄果蝇杂交,然后让F 1中雄雌果蝇自由交配得F 2以下分析正确的是 ( )A .缺刻翅变异类型属于基因突变B .控制翅型的基因位于常染色体上C .F 1中雌雄果蝇比例为1:1D .F 2中雄果蝇个体占3/76.右图表示某草场以牧民的定居点为核心统计牧草覆盖率的变化情况,3年中的气候条件基本相同。

山东省2014届高三4月模拟考试数学(理)试题含答案

山东省2014届高三4月模拟考试数学(理)试题含答案

理 科 数 学(根据2014年山东省最新考试说明命制)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米及以上黑色字迹的签字笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持答题卡上面清洁,不折叠,不破损.第I 卷(共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数1i z i=-(i 是虚数单位)的共轭复数z 在复平面内对应的点在 A.第一象限B.第二象限C.第三象限D.第四象限 2.设集合{}{}260,2x M x x x N y y M N =+-<==⋂=,则A. ()0,2B. [)0,2C. ()0,3D. [)0,33.已知某篮球运动员2013年度参加了25场比赛,我从中抽取5场,用茎叶图统计该运动员5场 中的得分如图1所示,则该样本的方差为A.25B.24C.18D.164.执行如图2所示的程序框图,输出的Z 值为A.3B.4C.5D.65.在△ABC 中,内角A ,B ,C 的对边分别为,,a b c 已知cos cos sin ,a B b A c C +=222b c a B +-==,则 A. 6π B. 3π C. 2π D. 23π 6.设命题:p 平面=l m l m αββ⋂⊥⊥平面,若,则;命题:q 函数cos 2y x π⎛⎫=-⎪⎝⎭的图象关于直线2x π=对称.则下列判断正确的是 A.p 为真B. q ⌝为假C. ∨p q 为假D. p q ∧为真 7.函数()cos x f x e x =的部分图象是8.三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图3所示)的面积为8,则该三棱柱外接球的表面积为 A. 163π B. 283π C. 643π D. 24π9.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,以12F F 为直径的圆与双曲线渐近线的一个交点为()4,3,则此双曲线的方程为 A. 22134x y -= B. 22143x y -= C. 221916x y -= D. 221169x y -= 10.已知函数()2,01,0kx x f x nx x +≤⎧=⎨>⎩()k R ∈,若函数()y f x k =+有三个零点,则实数k 的取值范围是 A. 2k ≤- B. 21k -≤<-C. 10k -<<D. 2k ≤第II 卷(共100分)二、填空题(本大题共5小题,每小题5分,共25分).11.二项式()62ax +的展开式的第二项的系数为12,则22a x dx -=⎰ . 12.若存在实数x 使13x a x -+-≤成立,则实数a 的取值范围是 .13.数列{}n a 的前n 项和为()11,1,21n n n S a a S n N *+==+∈,则n a = . 14.设变量x ,y 满足约束条件220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,若目标函数y z x =的最大值为a ,最小值为b ,则a —b 的值为 .15.矩形ABCD 中,若()()3,1,2,,AD AB AC k =-=- 则= .三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(本题满分12分)如图4,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且,32a ππ⎛⎫∈ ⎪⎝⎭.将角α的始边按逆时针方向旋转6π,交单位圆于点B ,记()()1122,,,A x y B x y.(1)若1214x x =求; (2)分别过A ,B 作x 轴的垂线,垂足依次为C 、D ,记.1122,B O D S A O C S S ∆∆=的面积为的面积为若S ,求角α的值.17.(本题满分12分)四棱锥P —ABCD 的底面是平行四边形,平面1ABCD PA=PB=AB=AD BAD=602PAB ︒⊥∠平面,,,E ,F 分别为AD ,PC 的中点.(1)求证:PBD EF ⊥平面;(2)求二面角D —PA —B 的余弦值.18.(本小题满分12分)已知在等比数列{}213121, 1.n a a a a a =+-=中,(1)若数列{}n b 满足()32123n n b b b b a n N n*+++⋅⋅⋅+=∈,求数列{}n b 的通项公式; (2)求数列{}n b 的前n 项和n S .19.(本题满分13分)交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,交通指数取值范围为0~10,分为五个级别,0~2畅通;2~4基本畅通;4~6轻度拥堵;6~8中度拥堵;8~10严重拥堵.晚高峰时段,从某市交通指挥中心随机选取了市区20个交通路段,依据其交通指数数据绘制的直方图如图所示.(1)这20个路段为中度拥堵的有多少个?(2)从这20个路段中随机抽出3个路段,用X 表示抽取的中度拥堵的路段的个数,求X 的分布列及期望.20.(本题满分13分)已知12,F F 分别为椭圆()2212210y x C a b a b+=>>:的上下焦点,其1F 是抛物线22:4C x y =的焦点,点M 是1C 与2C 在第二象限的交点,且15.3MF =(1)试求椭圆1C 的方程;(2)与圆()2211x y ++=相切的直线()():0l y k x t t =+≠交椭圆于A ,B 两点,若椭圆上一点P 满足,OA OB OP λλ+= 求实数的取值范围.21.(本题满分13分)已知函数()()(),.ln x g x f x g x ax x==- (1)求函数()g x 的单调区间;(2)若函数()f x 在()1+∞上是减函数,求实数a 的最小值;(3)若()()21212,,x x e e f x f x a '⎡⎤∃∈≤+⎣⎦,使成立,求实数a 的取值范围.。

2014山东省济南市一模试卷理科数学及答案

2014山东省济南市一模试卷理科数学及答案

2014山东省济南市一模试卷理科数学及答案2014年山东省济南市一模试卷理科数学本试卷分为第I卷和第Ⅱ卷两部分,共4页。

考试时间120分钟,总分150分。

考试结束后,请将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上。

2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上。

如需改动,先划掉原来的答案,然后再写上新的答案。

不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:如果事件A、B互斥,那么P(A∪B)=P(A)+P(B);如果事件A、B独立,那么P(A∩B)=P(A)×P(B)。

第I卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分。

每小题给出的四个选项中只有一项是符合题目要求的。

1) 已知复数z满足z(1+i)=1(其中i为虚数单位),则z的共轭复数z是A) 1+i (B) -i (C) -1+i (D) -1-i2) 已知集合A={x||x-1|<2},B={x|y=lg(x+x)},设U=R,则A∩(U-B)等于A) [3,+∞) (B) (-1,0) (C) (3,+∞) (D) [-1,0]3) 某几何体三视图如图所示,则该几何体的体积等于A) 2 (B) 4 (C) 8 (D) 124) 函数y=ln((x-sin(x))/(x+sin(x)))的图象大致是A)1B)C)D)5) 执行右面的程序框图,输出的S的值为A) 1 (B) 2 (C) 3 (D) 4sinC/5=3.b^2-a^2=ac,则cosB的值为A)1B)2C)3D)46) 在△ABC中,若sinC/5=3.b^2-a^2=ac,则cosB的值为7) 如图,设抛物线y=-x+1的顶点为A,与x轴正半轴的交点为B,设抛物线与两坐标轴正半轴围成的区域为M,随机往M内投一点P,则点P落在△AOB内的概率是A)2/5B)6/15C)3/5D)4/58) 已知4x^2-5x-2≤0,则x的取值范围是二、填空题:本大题共10个小题,每小题2分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前 试卷类型:A山东省2014届高三高考仿真模拟冲刺考试(一)数学(理)试题满分150分 考试用时120分钟参考公式:如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概 率:).,,2,1,0()1()(n k p p C k P kn kkn n =-=-第Ⅰ卷(选择题 共50分)一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.已知全集U R =,集合{|2A x x =<-或3}x >,2{|340}B x x x =--≤,则集合A B =( )A .{|24}x x -≤≤B .{|13}x x -≤≤C .{|21}x x -≤≤-D .{|34}x x <≤3.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A .12B .11C .3D .-1 4.等差数列{}n a 中,若75913a a =,则139SS =( )A . 1B .139C .913D .25.在△ABC 中,AB=2,AC=3,AB BC= 1则BC =( )A . CD .6.已知命题p :函数12x y a +=-恒过(1,2)点;命题q :若函数(1)f x -为偶函数,则()f x的图像关于直线1x =对称,则下列命题为真命题的是( )A .p q ∧B .p q ⌝∧⌝C .p q ⌝∧D .p q ∧⌝7.定义在R 上的奇函数()f x 满足:对任意[)12,0,x x ∈+∞,且12x x ≠,都有1212()[()()]0x x f x f x -->,则( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-8.在某跳水运动员的一项跳水实验中,先后要完成6个动作,其中动作P 只能出现在第一步或最后一步,动作Q 和R 实施时必须相邻,则动作顺序的编排方法共有( )A .96种B .48种C .24种D .144种9.一个几何体的三视图如图所示,其中主视图和左视图 是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A .12πB .C .3πD . 10.如果函数2()ln(1)a f x x b =-+的图象在1x =处的切线l 过点1(0,)b-,并且l 与圆C :221x y +=相离,则点(a ,b )与圆C 的位置关系是( )A .在圆内B .在圆外C .在圆上D .不能确定第Ⅱ卷(非选择题 共100分)二、填空题:(本大题共5小题,每小题5分,共25分) 11.已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为 .12.若11(2)3ln 2(1)ax dx a x+=+>⎰,则a 的值是13.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠= .14.若存在实数1[,2]3x ∈满足22x a x>-,则实数a 的取值范围是 .15. 已知点P 是△ABC 的中位线EF 上任意一点,且EF//BC ,实数x ,y 满足0=++y x 。

设△ABC ,△PBC ,△PCA ,△PAB 的面积分别为S ,S 1,S 2,S 3,记32332211·,,,λλλλλ则===S S S S S S 取最大值时,y x +2的值为_____________.三、解答题:解答应写出文字说明,证明过程或演算步骤(共6题,共75分) 16.(本题满分12分)在ABC ∆中,a =3,b ,B ∠=2A ∠.(Ⅰ)求cos A 的值; (Ⅱ)求c 的值.某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.(Ⅰ)记“函数ξ+=2)(xxf x为R上的偶函数”为事件A,求事件A的概率;(Ⅱ)求ξ的分布列和数学期望.如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(Ⅰ)证明://PQ 平面BCD ; (Ⅱ)若二面角D BM C --的大小为060,求BDC ∠的大小.19.(本小题满分12分) 在数列{}n a 中,已知)(log 32,41,41*4111N n a b a a a n n n n ∈=+==+. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求证:数列{}n b 是等差数列;(Ⅲ)设数列{}n c 满足n n n b a c ⋅=,求数列{}n c 的前n 项和n S .椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,离心率为,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.已知函数ln ()x x k f x e+=(k 为常数, 2.71828...e =是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()'()g x x x f x =+,其中'()f x 是()f x 的导函数.证明:对任意0x >,2()1g x e -<+.山东省2014年高考仿真模拟冲刺卷参考答案理科数学(一)20,=ξξ∴的数学期望为 。

18.解:((Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以//PQ 面BDC ;方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1//2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以////PO QH PQ OH ∴,且OH BCD ⊂,所以//PQ 面BDC ;(Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以CHG ∠就是C BM D --的二面角;由已知得到813BM=+=,设BDC α∠=,所以cos ,sin 22cos ,22cos sin ,22sin ,CD CG CBCD CG BC BD CD BDαααααα===⇒===, 在RT BCG ∆中,2sin 22sin BGBCG BG BCααα∠=∴=∴=,所以在RT BHG ∆中, 22122sin 3322sin HGHG αα=∴=,所以在RT CHG ∆中222cos sin tan tan 60322sin 3CG CHG HG ααα∠==== tan 3(0,90)6060BDC ααα∴=∴∈∴=∴∠= .19、解:( 1)∵411=+n n a a ,∴数列{n a }是首项为41,公比为41的等比数列,∴)()41(*N n a n n ∈=. (2)∵2log 341-=n n a b ,∴1413log ()2324nn b n =-=-.∴n≥2时,b n —b n-1=3,∴11=b ,公差d=3,∴数列}{n b 是首项11=b ,公差3=d 的等差数列.(3)由(1)、(2)知,n n a )41(=,23-=n b n (n *N ∈)∴)(,)41()23(*N n n c n n ∈⨯-=. ∴n n n n n S )41()23()41()53()41(7)41(4411132⨯-+⨯-+⋯+⨯+⨯+⨯=-, ① 于是1432)41()23()41()53()41(7)41(4)41(141+⨯-+⨯-+⋯+⨯+⨯+⨯=n n n n n S ② 两式①-②相减得132)41()23(])41()41()41[(34143+⨯--+⋯+++=n n n n S =1)41()23(21+⨯+-n n .∴ )()41(381232*1N n n S n n ∈⨯+-=+. 20.解:(Ⅰ)由于222c a b =-,将x c =-代入椭圆方程22221x y a b +=得2b y a =± 由题意知221b a =,即22a b =又c e a ==所以2a =,1b = 所以椭圆方程为2214x y +=1211kk kk +=-。

相关文档
最新文档