RISC和CISC比较

合集下载

risc, cisc等指令集

risc, cisc等指令集

risc, cisc等指令集计算机指令集是计算机体系结构的重要组成部分,主要用于指导和控制计算机硬件进行各种运算和操作。

在计算机发展的早期阶段,两个主要的指令集体系结构方案被广泛应用,它们分别是RISC (Reduced Instruction Set Computer)和CISC(Complex Instruction Set Computer)。

本文将分别从RISC和CISC的定义、特点、应用和优缺点等方面进行探讨,以便对两种指令集结构有更深入的了解。

RISC,即精简指令集计算机,它的设计原则是将指令集中精简,指令的执行周期时间一致。

RISC指令集中的指令相对较少,每条指令的功能单一而简洁。

这种设计可以使得RISC指令的执行更加高效,因为每条指令的执行时间和资源消耗都得到了精确控制。

RISC指令集通常包含一些基本的算术和逻辑操作指令,以及一些数据传送指令和条件判断指令等。

CISC,即复杂指令集计算机,它的设计原则是将指令集中的指令设计得更加复杂、功能更加丰富。

CISC指令集中的指令相对较多,每条指令的功能可以比较复杂,包含多个操作步骤。

CISC指令集的设计初衷是为了减少编程的工作量,使得程序可以用更少的指令来完成更复杂的操作,提高编程的高效性。

RISC和CISC在应用上有所不同。

RISC指令集主要被应用在计算机的高性能领域,如超级计算机、网络服务器等。

RISC指令集由于指令精简、执行效率高的特点,可以更好地发挥计算机硬件的性能,提高系统的整体运算速度。

而CISC指令集主要被应用在个人计算机、嵌入式系统等领域。

CISC指令集由于指令功能丰富、编程简单的特点,可以使得编程的工作量减少,提高软件的开发效率。

虽然RISC和CISC各有优势,但也存在一些缺点。

在RISC指令集中,由于指令数量少,需要进行的操作可能需要多条指令的组合,因此整体的编程复杂度较高。

而在CISC指令集中,由于指令功能复杂,可能需要多个时钟周期来完成一条指令的执行,导致指令执行的效率稍低。

RISC和CISC比较

RISC和CISC比较

RISC和CISC比较RISC(精简指令集计算机)和CISC(复杂指令集计算机)是当前CPU的两种架构。

它们的区别在于不同的CPU设计理念和方法。

早期的CPU全部是CISC架构,它的设计目的是要用最少的机器语言指令来完成所需的计算任务。

比如对于乘法运算,在CISC架构的CPU上,您可能需要这样一条指令:MUL ADDRA, ADDRB就可以将ADDRA和ADDRB中的数相乘并将结果储存在ADDRA中。

将ADDRA, ADDRB中的数据读入寄存器,相乘和将结果写回内存的操作全部依赖于CPU中设计的逻辑来实现。

这种架构会增加CPU结构的复杂性和对CPU工艺的要求,但对于编译器的开发十分有利。

比如上面的例子,C程序中的a*=b就可以直接编译为一条乘法指令。

今天只有Intel及其兼容CPU还在使用CISC架构。

RISC架构要求软件来指定各个操作步骤。

上面的例子如果要在RISC架构上实现,将ADDRA, ADDRB中的数据读入寄存器,相乘和将结果写回内存的操作都必须由软件来实现,比如:MOV A, ADDRA; MOV B, ADDRB; MUL A, B; STR ADDRA, A。

这种架构可以降低CPU的复杂性以及允许在同样的工艺水平下生产出功能更强大的CPU,但对于编译器的设计有更高的要求。

另:CISC(复杂指令集)与RISC(精简指令集)的区别复杂指令集计算机(CISC)长期来,计算机性能的提高往往是通过增加硬件的复杂性来获得.随着集成电路技术.特别是VLSI(超大规模集成电路)技术的迅速发展,为了软件编程方便和提高程序的运行速度,硬件工程师采用的办法是不断增加可实现复杂功能的指令和多种灵活的编址方式.甚至某些指令可支持高级语言语句归类后的复杂操作.至使硬件越来越复杂,造价也相应提高.为实现复杂操作,微处理器除向程序员提供类似各种寄存器和机器指令功能外.还通过存于只读存贮器(ROM)中的微程序来实现其极强的功能,傲处理在分析每一条指令之后执行一系列初级指令运算来完成所需的功能,这种设计的型式被称为复杂指令集计算机(Complex Instruction Set Computer-CISC)结构.一般CISC计算机所含的指令数目至少300条以上,有的甚至超过500条.精简指令集计算机(RISC)采用复杂指令系统的计算机有着较强的处理高级语言的能力.这对提高计算机的性能是有益的.当计算机的设计沿着这条道路发展时.有些人没有随波逐流.他们回过头去看一看过去走过的道路,开始怀疑这种传统的做法:IBM公司没在纽约Yorktown的JhomasI.Wason研究中心于1975年组织力量研究指令系统的合理性问题.因为当时已感到,日趋庞杂的指令系统不但不易实现.而且还可能降低系统性能.1979年以帕特逊教授为首的一批科学家也开始在美国加册大学伯克莱分校开展这一研究.结果表明,CISC存在许多缺点.首先.在这种计算机中.各种指令的使用率相差悬殊:一个典型程序的运算过程所使用的80%指令.只占一个处理器指令系统的20%.事实上最频繁使用的指令是取、存和加这些最简单的指令.这样-来,长期致力于复杂指令系统的设计,实际上是在设计一种难得在实践中用得上的指令系统的处理器.同时.复杂的指令系统必然带来结构的复杂性.这不但增加了设计的时间与成本还容易造成设计失误.此外.尽管VLSI技术现在已达到很高的水平,但也很难把CISC的全部硬件做在一个芯片上,这也妨碍单片计算机的发展.在CISC中,许多复杂指令需要极复杂的操作,这类指令多数是某种高级语言的直接翻版,因而通用性差.由于采用二级的微码执行方式,它也降低那些被频繁调用的简单指令系统的运行速度.因而.针对CISC的这些弊病.帕特逊等人提出了精简指令的设想即指令系统应当只包含那些使用频率很高的少量指令.并提供一些必要的指令以支持操作系统和高级语言.按照这个原则发展而成的计算机被称为精简指令集计算机(Reduced Instruction Set Computer-RISC)结构.简称RISC.CISC与RISC的区别我们经常谈论有关"PC"与"Macintosh"的话题,但是又有多少人知道以Intel公司X86为核心的PC系列正是基于CISC体系结构,而 Apple公司的Macintosh则是基于RISC体系结构,CISC与RISC到底有何区别?从硬件角度来看CISC处理的是不等长指令集,它必须对不等长指令进行分割,因此在执行单一指令的时候需要进行较多的处理工作。

RISC和CISC的区别

RISC和CISC的区别

一、RISCRISC (reduced instruction set computer ,精简指令集计算机)是一种执行较少类型计算机指令的微处理器,起源于80年代的MIPS主机(即RISC机), RISC 机中采用的微处理器统称RISC处理器。

这样一来,它能够以更快的速度执行操作(每秒执行更多百万条指令,即MIPS )。

因为计算机执行每个指令类型都需要额外的晶体管和电路元件,计算机指令集越大就会使微处理器更复杂,执行操作也会更慢。

1 . RISC体系的指令特征精简指令集:包含了简单、基本的指令,透过这些简单、基本的指令,就可以组合成复杂指令。

同样长度的指令:每条指令的长度都是相同的,可以在一个单独操作里完成。

单机器周期指令:大多数的指令都可以在一个机器周期里完成,并且允许处理器在同一时间内执行一系列的指令。

2 . RISC体系的优缺点优点:在使用相同的晶片技术和相同运行时钟下,RISC系统的运行速度将是CISC的2〜4倍。

由于RISC处理器的指令集是精简的,它的记忆体管理单元、浮点单元等都能设计在同一块晶片上。

RISC处理器比相对应的CISC处理器设计更简单,所需要的时间将变得更短,并可以比CISC处理器应用更多先进的技术,开发更快的下一代处理器。

缺点:多指令的操作使得程式开发者必须小心地选用合适的编译器,而且编写的代码量会变得非常大。

另外就是RISC体系的处理器需要更快记忆体,这通常都集成于处理器内部,就是L1 Cache (一级缓存)。

二、CISCCISC是复杂指令系统计算机(Complex Instruction Set Computer )的简称,微处理器是台式计算机系统的基本处理部件,每个微处理器的核心是运行指令的电路。

指令由完成任务的多个步骤所组成,把数值传送进寄存器或进行相加运算。

1. CISC体系的指令特征使用微代码。

指令集可以直接在微代码记忆体(比主记忆体的速度快很多)里执行,新设计的处理器,只需增加较少的电晶体就可以执行同样的指令集,也可以很快地编写新的指令集程式。

RISC与CISC的区别

RISC与CISC的区别

RISC的英文全称为“Reduced Instruction Set Computer”,中文即“精简指令集计算机”。

RISC构架的指令格式和长度通常是固定的(如ARM是32位的指令)、且指令和寻址方式少而简单、大多数指令在一个周期内就可以执行完毕。

CISC(complex instruction set computer)即复杂指令集计算机,在20世纪90年代前被广泛的使用,其特点是通过存放在只读存储器中的微码(microcode)来控制整个处理器的运行。

一条指令往往可以完成一串运算的动作,但却需要多个时钟周期来执行。

随着需求的不断增加,设计的指令集越来越多,为支持这些新增的指令,计算机的体系结构会越来越复杂。

然而,在CISC指令集的各种指令中,其使用频率却相差悬殊,大约有20%的指令会被反复使用,占整个程序代码的80%。

而余下的80%的指令却不经常使用,在程序设计中只占20%,显然,这种结构是不太合理的。

为改变这种状况,1980年Patterson和Ditzel 两位学者完成了一篇题为《精简指令集计算机概述》的开创性论文,全面提出了精简指令集的设计思想,随后,柏克来大学的研究生依照此理论基础,设计出了第一颗精简指令集处理器RISC I,这颗处理器远比当时已经相当流行的CISC处理器简单的多,在设计上所花费的功夫也降低许多,但整体功能上的表现却与CISC处理器不相上下。

从此处理器设计方向便分别向着这两个大的方向发展。

实际上1980年以来,所有新的处理器体系结构都或多或少地采用了RISC的概念,甚至有些典型的CISC处理机中也采用了些RISC设计思想,比如Intel公司的80486、Pentium系列等。

而RISC思想最成功也是第一个商业化的实例就是ARM,当然,它也放弃了一些RISC特征而保留了一些CISC特征。

RISC和CISC在构架上有着几个不同的地方。

1)首先是指令集的设计上,RISC构架的指令格式和长度通常是固定的(如ARM是32位的指令)、且指令和寻址方式少而简单、大多数指令在一个周期内就可以执行完毕;CISC构架下的指令长度通常是可变的、指令类型也很多、一条指令通常要若干周期才可以执行完。

简述risc和cisc的区别

简述risc和cisc的区别

简述risc和cisc的区别在计算机技术的许多变革中,复杂指令集计算机(CISC)过渡到精简指令集计算机(RISC)体系结构的转变是很重要的一个方面。

正是RISC的出现发展大大推动了嵌入式系统性能的提高和功能的完善。

什么是CISC和RISC ?CISC的英文全称为Complex InstrucTIon Set Computer,即复杂指令系统计算机,从计算机诞生以来,人们一直沿用CISC指令集方式。

早期的桌面软件是按CISC设计的,并一直沿续到现在。

目前,桌面计算机流行的x86体系结构即使用CISC。

微处理器(CPU)厂商一直在走CISC的发展道路,包括Intel、AMD,还有其他一些现在已经更名的厂商,如TI(德州仪器)、IBM以及VIA(威盛)等。

在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。

顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。

CISC架构的服务器主要以IA-32架构(Intel Architecture,英特尔架构)为主,而且多数为中低档服务器所采用。

RISC的英文全称为Reduced InstrucTIon Set Computer,即精简指令集计算机,是一种执行较少类型计算机指令的微处理器,起源于80年代的MIPS主机(即RISC机),RISC机中采用的微处理器统称RISC处理器。

这样一来,它能够以更快的速度执行操作(每秒执行更多百万条指令,即MIPS)。

因为计算机执行每个指令类型都需要额外的晶体管和电路元件,计算机指令集越大就会使微处理器更复杂,执行操作也会更慢。

特点区别各方面如下:1、指令系统CISC计算机的指令系统比较丰富,有专用指令来完成特定的功能。

因此,处理特殊任务效率较高。

RISC设计者把主要精力放在那些经常使用的指令上,尽量使它们具有简单高效的特色。

对不常。

cisc risc vliw 通俗理解 指令系统划分

cisc risc vliw 通俗理解 指令系统划分

cisc risc vliw 通俗理解指令系统划分计算机指令系统是计算机硬件能够识别和执行的一组指令,它是计算机软件和硬件之间的接口。

指令系统的设计直接影响到计算机的性能、功能和成本。

根据指令系统的特点,可以将指令系统划分为CISC(Complex Instruction Set Computing,复杂指令集计算)、RISC(Reduced Instruction Set Computing,精简指令集计算)和VLIW(Very Long Instruction Word,超长指令字)三种类型。

1. CISC(复杂指令集计算)CISC是一种早期的指令系统设计方法,其主要特点是指令长度不固定,一条指令可以完成多个操作。

CISC指令系统中的指令通常包括数据操作、逻辑操作、控制转移等多种功能。

这种设计使得程序员可以用较少的指令完成复杂的任务,提高了编程的灵活性。

然而,CISC指令系统的复杂性也带来了一些问题:- 指令长度不固定导致硬件设计的复杂度增加,降低了处理器的运行速度;- 由于一条指令可以完成多个操作,需要更多的时钟周期来执行,降低了处理器的性能;- 程序中存在大量复杂的指令,使得编译器难以优化代码,降低了程序的执行效率。

2. RISC(精简指令集计算)为了解决CISC指令系统中存在的问题,研究人员提出了RISC指令系统设计方法。

RISC的主要特点是指令长度固定,一条指令只完成一个基本操作。

这使得硬件设计变得简单,提高了处理器的运行速度和性能。

RISC指令系统中的指令主要包括数据操作、逻辑操作和控制转移等基本操作。

与CISC相比,RISC具有以下优点:- 指令长度固定,简化了硬件设计,提高了处理器的运行速度;- 一条指令只完成一个基本操作,减少了时钟周期的数量,提高了处理器的性能;- 程序中的基本操作较为简单,便于编译器优化代码,提高了程序的执行效率。

然而,RISC指令系统的局限性在于其编程灵活性较低,程序员需要使用较多的指令来完成复杂的任务。

处理器知识-RISC和CISC架构分析对比

处理器知识-RISC和CISC架构分析对比

处理器知识: RISC和CISC架构分析对比CISC(复杂指令集计算机)和RISC(精简指令集计算机)是当前CPU的两种架构。

它们的区别在于不同的CPU设计理念和方法。

早期的CPU全部是CISC架构,它的设计目的是 CISC 要用最少的机器语言指令来完成所需的计算任务。

RISC和CISC是设计制造微处理器的两种典型技术,虽然它们都是试图在体系结构、操作运行、软件硬件、编译时间和运行时间等诸多因素中做出某种平衡,以求达到高效的目的,但采用的方法不同,因此,在很多方面差异很大。

x86架构采用CISC,而ARM采用RISC。

ARM成立于1991年,是一家出售IP(技术知识产权)的公司,所谓的技术知识产权,就有点像是卖房屋的结构设计图,至于要怎修改,哪边开窗户,以及要怎加盖其它的花园,就看买了设计图的厂商自己决定。

而ARM的架构是采用RISC架构,如同它的名称一样,Advanced RISC Machines,RISC 架构在当初的PC架构争霸战虽然败给Intel所主导的x86处理器架构,却默默在另外的领域成长壮大;小从硬盘转速控制、电信基地台的计算、汽车喷射引擎的控制、音响系统、相机引擎,大到电动机具的控制等等,都能够看见采用ARM授权架构处理器的身影。

而有了设计图,当然还要有把设计图实现的厂商,而这些就是ARM架构的授权客户群。

包括:高通、华为、联发科、TI、Freescale等。

X86是英特尔Intel首先开发制造的一种微处理器体系结构的泛称,包括Intel8086、80186、80286、80386以及80486以86结尾系列,英特尔统治整个CPU产业链长达数十年。

但是,Intel以增加处理器本身复杂度作为代价,去换取更高的性能,但集成的指令集数量越来越多,给硬件带来的负荷也就越来越大,无形中增加了功耗和设计难度。

ARM(Advanced RISC Machines)公司是苹果、Acorn、VLSI、Technology等公司的合资企业。

复杂指令集和精简指令集

复杂指令集和精简指令集

复杂指令集和精简指令集指令集是计算机体系结构的重要组成部分,它是计算机执行程序的指令集合,包括操作码和操作数等元素。

指令集的设计和选择对计算机的性能、成本和可移植性等方面有很大的影响。

主要有两种指令集架构:复杂指令集(Complex Instruction Set Architecture,CISC)和精简指令集(Reduced Instruction Set Architecture,RISC)。

下面我们将详细介绍这两种架构的特点以及各自的优缺点。

一、复杂指令集(CISC)复杂指令集计算机体系结构最早出现在20世纪70年代,其最初的设想是将多条简单的指令合并成一条复杂的指令,以提高指令集的设计效率和程序的执行速度。

复杂指令集计算机单条指令可以针对一个任务执行多个操作,包括算术运算、逻辑运算、存储等操作。

它具有以下特点:1. 指令集较为复杂:CISC体系结构中的指令集合较为庞大,涵盖了多种算术运算、逻辑运算、访问存储器等操作,每条指令执行的操作数目较多。

2. 可以降低程序员的工作量:它具有很强的程序兼容性,程序员可以使用语义丰富、操作多样的指令来编写程序,编程较为简便。

3. 数据传输能力较强:CISC指令集支持多种地址寻址方式,可以通过一条指令传输大块数据,节省了时间和空间。

4. 代码密度较高:CISC指令具有较长的字长和高代码密度,可以使程序占用的内存较小。

5. 对内存的使用相对较少:由于CISC指令集中包含了很多常用的命令,所以相对于RISC指令集,CISC指令可以使程序的执行速度更快,CPU可以少使用内存。

不过随着时间的推移,CISC体系结构逐渐暴露出了一些问题。

CISC指令集架构虽然功能强大,但每条指令的执行时间较长,开销很高,导致处理器需要消耗更多的内存和时间来执行指令。

精简指令集计算机体系结构是20世纪80年代提出的一种新型的计算机架构,它的设计思想是通过增加寄存器数量和减少指令集的复杂程度,减少单条指令的执行时间,从而提高处理器的性能和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RISC和CISC比较
RISC(精简指令集计算机)和CISC(复杂指令集计算机)是当前CPU的两种架构。

它们的区别在于不同的CPU设计理念和方法。

早期的CPU全部是CISC架构,它的设计目的是要用最少的机器语言指令来完成所需的计算任务。

比如对于乘法运算,在CISC架构的CPU上,您可能需要这
样一条指令:MUL ADDRA, ADDRB就可以将ADDRA和ADDRB中的数相乘并将结果
储存在ADDRA中。

将ADDRA, ADDRB中的数据读入寄存器,相乘和将结果写回内存的操作全部依赖于CPU中设计的逻辑来实现。

这种架构会增加CPU结构的复
杂性和对CPU工艺的要求,但对于编译器的开发十分有利。

比如上面的例子,
C程序中的a*=b就可以直接编译为一条乘法指令。

今天只有Intel及其兼容CPU还在使用CISC架构。

RISC架构要求软件来指定各个操作步骤。

上面的例子如果要在RISC架构上实现,将ADDRA, ADDRB中的数据读入寄存器,相乘和将结果写回内存的操作都必须由软件来实现,比如:MOV A, ADDRA; MOV B, ADDRB; MUL A, B; STR ADDRA, A。

这种架构可以降低CPU的复杂性以及允许在同样的工艺水平下生产出功能更强大的CPU,但对于编译器的设计有更高的要求。

另:
CISC(复杂指令集)与RISC(精简指令集)的区别
复杂指令集计算机(CISC)
长期来,计算机性能的提高往往是通过增加硬件的复杂性来获得.随着集成电路技术.特别是VLSI(超大规模集成电路)技术的迅速发展,为了软件编程方便和提高程序
的运行速度,硬件工程师采用的办法是不断增加可实现复杂功能的指令和多种灵活的编址
方式.甚至某些指令可支持高级语言语句归类后的复杂操作.至使硬件越来越复杂,造价
也相应提高.为实现复杂操作,微处理器除向程序员提供类似各种寄存器和机器指令功能外.还通过存于只读存贮器(ROM)中的微程序来实现其极强的功能,傲处理在分析每一条
指令之后执行一系列初级指令运算来完成所需的功能,这种设计的型式被称为复杂指令集
计算机(Complex Instruction Set Computer-CISC)结构.一般CISC计算机所含的指令数目至少300条
以上,有的甚至超过500条.
精简指令集计算机(RISC)
采用复杂指令系统的计算机有着较强的处理高级语言的能力.这对提高计算机的性能是有益的.当计算机的设计沿着这条道路发展时.有些人没有随波逐流.他们回过头去看一看过去走过的道路,开始怀疑这种传统的做法:IBM公司没在纽约Yorktown的JhomasI.Wason研究中心于1975年组织力量研究指令系统的合理性问题.因为当时已感到,日趋庞杂的指令系统不但不易实现.而且还可能降低系统性能.1979年以帕特逊教授为首的一批科学家也开始在美国加册大学伯克莱分校开展这一研究.结果表明,CISC存在许多缺点.首先.在这种计算机中.各种指令的使用率相差悬殊:一个典型程序的运算过程所使用的80%指令.只占一个处理器指令系统的20%.事实上最频繁使用的指令是取、存和加这些最简单的指令.这样-来,长期致力于复杂指令系统的设计,实际上是在设计一种难得在实践中用得上的指令系统的处理器.同时.复杂的指令系统必然带来结构的复杂性.这不但增加了设计的时间与成本还容易造成设计失误.此外.尽管VLSI技术现在已达到很高的水平,但也很难把CISC的全部硬件做在一个芯片上,这也妨碍单片计算机的发展.在CISC中,许多复杂指令需要极复杂的操作,这类指令多数是某种高级语言的直接翻版,因而通用性差.由于采用二级的微码执行方式,它也降低那些被频繁调用的简单指令系统的运行速度.因而.针对CISC的这些弊病.帕特逊等人提出了精简指令的设想即指令系统应当只包含那些使用频率很高的少量指令.并提供一些必要的指令以支持操作系统和高级语言.按照这个原则发展而成的计算机被称为精简指令集计算机(Reduced Instruction Set Computer-RISC)结构.简称RISC.
CISC与RISC的区别
我们经常谈论有关"PC"与"Macintosh"的话题,但是又有多少人知道以Intel公司X86为核心的PC系列正是基于CISC体系结构,而 Apple公司的Macintosh则是基于RISC体
系结构,CISC与RISC到底有何区别?
从硬件角度来看CISC处理的是不等长指令集,它必须对不等长指令进行分割,因此在执行单一指令的时候需要进行较多的处理工作。

而RISC执行的是等长精简指令集,CPU在执行指令的时候速度较快且性能稳定。

因此在并行处理方面RISC明显优于CISC,RISC可同时执行多条指令,它可将一条指令分割成若干个进程或线程,交由多个处理器同时执行。

由于RISC执行的是精简指令集,所以它的制造工艺简单且成本低廉。

从软件角度来看,CISC运行的则是我们所熟识的DOS、Windows操作系统。

而且它拥有大量的应用程序。

因为全世界有65%以上的软件厂商都理为基于CISC体系结构的PC及其兼容机服务的,象赫赫有名的Microsoft就是其中的一家。

而RISC在此方面却显得有些势单力薄。

虽然在RISC上也可运行DOS、Windows,但是需要一个翻译过程,所以运行速度要慢许多。

目前CISC与RISC正在逐步走向融合,Pentium Pro、Nx586、K5就是一个最明显的例子,它们的内核都是基于RISC体系结构的。

他们接受CISC指令后将其分解分类成RISC指令以便在遇一时间内能够执行多条指令。

由此可见,下一代的CPU将融合CISC与RISC两种技术,从软件与硬件方面看二者会取长补短。

相关文档
最新文档