逃离x86架构-----CPU体系结构CISC与RISC之争

合集下载

CPU架构讲解 X86、ARM、RISC、MIPS

CPU架构讲解 X86、ARM、RISC、MIPS

CPU架构讲解X86、ARM、RISC、MIPS一、当前CPU的主流架构:1.X86架构采用CISC指令集(复杂指令集计算机),程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。

2.ARM架构是一个32位的精简指令集(RISC)架构。

3.RISC-V架构是基于精简指令集计算(RISC)原理建立的开放指令集架构。

4.MIPS架构是一种采取精简指令集(RISC)的处理器架构,可支持高级语言的优化执行。

CPU架构是CPU厂商给属于同一系列的CPU产品定的一个规范,是区分不同类型CPU的重要标示。

二、目前市面上的CPU分类主要分有两大阵营:1.intel、AMD为首的复杂指令集CPU;2.IBM、ARM为首的精简指令集CPU。

两个不同品牌的CPU,其产品的架构也不相同,例如,Intel、AMD的CPU是X86架构的,而IBM的CPU是PowerPC架构,ARM是ARM架构。

三、四大主流CPU架构详解(X86、ARM、RISC、MIPS)1.X86架构X86是微处理器执行的计算机语言指令集,指一个Intel通用计算机系列的标准编号缩写,也标识一套通用的计算机指令集合。

1978年6月8日,Intel 发布了新款16位微处理器8086,也同时开创了一个新时代:X86架构诞生了。

X86指令集是Intel为其第一块16位CPU(i8086)专门开发的,IBM 1981年推出的世界第一台PC机中的CPU–i8088(i8086简化版)使用的也是X86指令。

采用CISC(Complex Instruction Set Computer,复杂指令集计算机)架构。

与采用RISC不同的是,在CISC处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。

顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。

随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到今天的Pentium 4系列,但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel所生产的所有CPU仍然继续使用X86指令集。

x86和MIPS体系结构的比较

x86和MIPS体系结构的比较

x86与MIPS体系结构的比较计算机科学与技术杜立明 200926100406一、x86x86或80x86是英特尔Intel首先开发制造的一种微处理器体系结构的泛称。

x86架构于1978年推出的Intel 8086中央处理器中首度出现,它是从Intel 8008处理器中发展而来的,而8008则是发展自Intel 4004的。

8086在三年后为IBM PC所选用,之后x86便成为了个人计算机的标准平台,成为了历来最成功的CPU架构。

x86架构是重要的可变指令长度的CISC(复杂指令集计算机,Complex Instruction Set Computer)。

字组(word, 4字节)长度的存储器访问允许不对齐存储器地址,字组是以低位字节在前的顺序储存在存储器中。

x86架构在设计过程中着重考虑了向前兼容性,保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源。

但在较新的微架构中,x86处理器会把x86指令转换为更像RISC的微指令再予执行,从而获得可与RISC比拟的超标量性能,而仍然保持向前兼容。

x86架构的处理器一共有四种执行模式,分别是真实模式,保护模式,系统管理模式以及虚拟V86模式。

80x86指令系统,指令按功能可分为以下七个部分:(1) 数据传送指令。

(2) 算术运算指令。

(3) 逻辑运算指令。

(4) 串操作指令。

(5) 控制转移指令。

(6) 处理器控制指令。

(7) 保护方式指令。

在此基础上,又发展加入了一些专用的扩展指令集:(1)MMX,增加57条特地为视频信号(Video Signal),音频信号(Audio Signal)以及图像处理(Graphical Manipulation)而设计指令(2)3D NOW!,1997年由AMD推出,增加21条指令,针对MMX指令集没有加强浮点处理能力的弱点,重点提高了CPU对3D图形的处理能力。

(3)EES,SSE兼容MMX指令,它可以通过SIMD(单指令多数据技术)和单时钟周期并行处理多个浮点来有效地提高浮点运算速度。

[Linux]CPU架构指令集:RISCCISCarmamdX86i386aarch64

[Linux]CPU架构指令集:RISCCISCarmamdX86i386aarch64

[Linux]CPU架构指令集:RISCCISCarmamdX86i386aarch641 前⾔本⽂是解决在软件开发、软件交付过程中,常常需要找寻与服务器硬件的CPU架构适配的软件包时,开发者和交付者⼜时常摸不着头脑、【迷迷糊糊】地就下载了某个所谓“适配”、“兼容”的各种软件包。

那么,我们真的get到了背后的关系(CPU指令集、CPU架构、CPU处理器/芯⽚、Soc(芯⽚上的系统)、x86_64架构、arm架构等等),这⼀层⾯了吗?正本清源,⽅能以更⾼de效率去理解、学习基于此的上层知识模块,降低开发风险、提⾼⼯作效率。

扯远啦~ 赶紧⼀把回来!那么,先从CPU架构所涉及的相关概念说起~2 基本概念2.0 CPU := 中央处理器Central Processing Unit,中央处理器。

CPU是计算机系统的核⼼和⼤脑,主要由控制器、运算器、存储器和连接总线构成。

其中,控制器和运算器组成CPU的内核,【内核】从存储器中提取数据,根据控制器中的指令集将数据解码,通过运算器中的微架构(电路)进⾏运算得到结果,以某种格式将执⾏结果写⼊存储器。

因此,内核的基础就是【指令集(指令集架构)】和【微架构】。

延申1:指令集(架构)指令集是所有指令的集合,它规定了CPU可执⾏的所有操作微架构是完成这些指令操作的电路设计。

相同的指令集可以有不同的微架构,如Intel 和AMD都是基于X86指令集但微架构不同。

指令集架构( Instruction Set Architecture ),⼜称指令集或指令集体系,是计算机体系结构中与程序设计有关的部分,包含了基本数据类型,指令集,寄存器,寻址模式,存储体系,中断,异常处理以及外部 I/O 。

指令集架构包含⼀系列的 opcode 即操作码(机器语⾔),以及由特定处理器执⾏的基本命令。

简单地来说,指令集⼀般被整合在操作系统内核最底层的硬件抽象层中,属于计算机中硬件与软件的接⼝,它向操作系统定义了CPU的基本功能。

cisc(复杂指令集)与risc(精简指令集)的区别

cisc(复杂指令集)与risc(精简指令集)的区别

CISC(复杂指令集)与RISC(精简指令集)的区别复杂指令集计算机(CISC)长期来,计算机性能的提高往往是通过增加硬件的复杂性来获得.随着集成电路技术.特别是VLSI(超大规模集成电路)技术的迅速发展,为了软件编程方便和提高程序的运行速度,硬件工程师采用的办法是不断增加可实现复杂功能的指令和多种灵活的编址方式.甚至某些指令可支持高级语言语句归类后的复杂操作.至使硬件越来越复杂,造价也相应提高.为实现复杂操作,微处理器除向程序员提供类似各种寄存器和机器指令功能外.还通过存于只读存贮器(ROM)中的微程序来实现其极强的功能,傲处理在分析每一条指令之后执行一系列初级指令运算来完成所需的功能,这种设计的型式被称为复杂指令集计算机(Complex Instruction Set Computer-CISC)结构.一般CISC计算机所含的指令数目至少300条以上,有的甚至超过500条.精简指令集计算机(RISC)采用复杂指令系统的计算机有着较强的处理高级语言的能力.这对提高计算机的性能是有益的.当计算机的设计沿着这条道路发展时.有些人没有随波逐流.他们回过头去看一看过去走过的道路,开始怀疑这种传统的做法:IBM公司没在纽约Yorktown的JhomasI.Wason 研究中心于1975年组织力量研究指令系统的合理性问题.因为当时已感到,日趋庞杂的指令系统不但不易实现.而且还可能降低系统性能.1979年以帕特逊教授为首的一批科学家也开始在美国加册大学伯克莱分校开展这一研究.结果表明,CISC存在许多缺点.首先.在这种计算机中.各种指令的使用率相差悬殊:一个典型程序的运算过程所使用的80%指令.只占一个处理器指令系统的20%.事实上最频繁使用的指令是取、存和加这些最简单的指令.这样-来,长期致力于复杂指令系统的设计,实际上是在设计一种难得在实践中用得上的指令系统的处理器.同时.复杂的指令系统必然带来结构的复杂性.这不但增加了设计的时间与成本还容易造成设计失误.此外.尽管VLSI技术现在已达到很高的水平,但也很难把CISC的全部硬件做在一个芯片上,这也妨碍单片计算机的发展.在CISC中,许多复杂指令需要极复杂的操作,这类指令多数是某种高级语言的直接翻版,因而通用性差.由于采用二级的微码执行方式,它也降低那些被频繁调用的简单指令系统的运行速度.因而.针对CISC的这些弊病.帕特逊等人提出了精简指令的设想即指令系统应当只包含那些使用频率很高的少量指令.并提供一些必要的指令以支持操作系统和高级语言.按照这个原则发展而成的计算机被称为精简指令集计算机(Reduced Instruction Set Computer-RISC)结构.简称RISC.CISC与RISC的区别我们经常谈论有关"PC"与"Macintosh"的话题,但是又有多少人知道以Intel公司X86为核心的PC系列正是基于CISC体系结构,而 Apple公司的Macintosh则是基于RISC体系结构,CISC与RISC到底有何区别?从硬件角度来看CISC处理的是不等长指令集,它必须对不等长指令进行分割,因此在执行单一指令的时候需要进行较多的处理工作。

简述risc和cisc的区别

简述risc和cisc的区别

简述risc和cisc的区别在计算机技术的许多变革中,复杂指令集计算机(CISC)过渡到精简指令集计算机(RISC)体系结构的转变是很重要的一个方面。

正是RISC的出现发展大大推动了嵌入式系统性能的提高和功能的完善。

什么是CISC和RISC ?CISC的英文全称为Complex InstrucTIon Set Computer,即复杂指令系统计算机,从计算机诞生以来,人们一直沿用CISC指令集方式。

早期的桌面软件是按CISC设计的,并一直沿续到现在。

目前,桌面计算机流行的x86体系结构即使用CISC。

微处理器(CPU)厂商一直在走CISC的发展道路,包括Intel、AMD,还有其他一些现在已经更名的厂商,如TI(德州仪器)、IBM以及VIA(威盛)等。

在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。

顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。

CISC架构的服务器主要以IA-32架构(Intel Architecture,英特尔架构)为主,而且多数为中低档服务器所采用。

RISC的英文全称为Reduced InstrucTIon Set Computer,即精简指令集计算机,是一种执行较少类型计算机指令的微处理器,起源于80年代的MIPS主机(即RISC机),RISC机中采用的微处理器统称RISC处理器。

这样一来,它能够以更快的速度执行操作(每秒执行更多百万条指令,即MIPS)。

因为计算机执行每个指令类型都需要额外的晶体管和电路元件,计算机指令集越大就会使微处理器更复杂,执行操作也会更慢。

特点区别各方面如下:1、指令系统CISC计算机的指令系统比较丰富,有专用指令来完成特定的功能。

因此,处理特殊任务效率较高。

RISC设计者把主要精力放在那些经常使用的指令上,尽量使它们具有简单高效的特色。

对不常。

处理器知识-RISC和CISC架构分析对比

处理器知识-RISC和CISC架构分析对比

处理器知识: RISC和CISC架构分析对比CISC(复杂指令集计算机)和RISC(精简指令集计算机)是当前CPU的两种架构。

它们的区别在于不同的CPU设计理念和方法。

早期的CPU全部是CISC架构,它的设计目的是 CISC 要用最少的机器语言指令来完成所需的计算任务。

RISC和CISC是设计制造微处理器的两种典型技术,虽然它们都是试图在体系结构、操作运行、软件硬件、编译时间和运行时间等诸多因素中做出某种平衡,以求达到高效的目的,但采用的方法不同,因此,在很多方面差异很大。

x86架构采用CISC,而ARM采用RISC。

ARM成立于1991年,是一家出售IP(技术知识产权)的公司,所谓的技术知识产权,就有点像是卖房屋的结构设计图,至于要怎修改,哪边开窗户,以及要怎加盖其它的花园,就看买了设计图的厂商自己决定。

而ARM的架构是采用RISC架构,如同它的名称一样,Advanced RISC Machines,RISC 架构在当初的PC架构争霸战虽然败给Intel所主导的x86处理器架构,却默默在另外的领域成长壮大;小从硬盘转速控制、电信基地台的计算、汽车喷射引擎的控制、音响系统、相机引擎,大到电动机具的控制等等,都能够看见采用ARM授权架构处理器的身影。

而有了设计图,当然还要有把设计图实现的厂商,而这些就是ARM架构的授权客户群。

包括:高通、华为、联发科、TI、Freescale等。

X86是英特尔Intel首先开发制造的一种微处理器体系结构的泛称,包括Intel8086、80186、80286、80386以及80486以86结尾系列,英特尔统治整个CPU产业链长达数十年。

但是,Intel以增加处理器本身复杂度作为代价,去换取更高的性能,但集成的指令集数量越来越多,给硬件带来的负荷也就越来越大,无形中增加了功耗和设计难度。

ARM(Advanced RISC Machines)公司是苹果、Acorn、VLSI、Technology等公司的合资企业。

揭秘指令集:CISC、RISC与RISC-V的区别及应用

揭秘指令集:CISC、RISC与RISC-V的区别及应用
实现高性能。 3. 龙芯处理器已在多个领域得到应用,但生态可能是其发展的制约因素。 4. 龙芯处理器仍在不断优化和升级,提高性能和兼容性。 5. 龙芯处理器支持Linux操作系统和多种编程语言,如C、C++、Java、.NET
、Go等,并提供丰富的开发工具和库。
总结和展望
1. 本文介绍了计算机指令集的发展历程,从CISC到RISC,再到RISC-V等。 2. 深入分析了它们的优缺点及应用场景。 3. 探讨了如何将这些知识应用于实际芯片设计和开发中。 4. 为我国芯片产业的发展提供借鉴。 5. 文章最后展望了未来,期待计算机指令集技术在性能、效率和创新方面取得
2
RISC-V
RISC-V
1. RISC-V是开源的RISC,被誉为CPU界的Linux。 2. 得益于开源特性,RISC-V在全球范围内得到广泛应用。 3. RISC-V有望在未来成为主流的处理器架构。
RISC-V简介
1. RISC-V是开源的RISC架构 2. RISC-V被认为是CPU界的Linux 3. RISC-V的技术特点包括开放和自由、简单和高效、可扩展性 4. RISC-V正在全球范围内得到广泛应用 5. 许多知名科技公司如Google、阿里巴巴、华为等都在积极推动RISC-V的发
更大的突破。
感谢

3
龙芯
龙芯:我国自主研发的通用处理器
龙芯是我国自主研发的通用处理器品牌,最初由中科院计算所设计。其早期处理器采用MIPS指令 集,但后来因版权问题改用自主设计的龙芯指令集。如今很多信创项目都在使用龙芯处理器。
龙芯处理器的发展历程与特点
1. 龙芯处理器是我国自主研发的通用处理器品牌,最初由中科院计算所设计。 2. 龙芯处理器采用自主LoongISA指Leabharlann 系统,兼容MIPS指令,通过超标量技术

4大主流CPU处理器技术架构分析

4大主流CPU处理器技术架构分析

4大主流CPU处理器技术架构分析1.x86架构:x86架构是由英特尔和AMD共同推出的一种处理器架构。

它是32位和64位处理器的主流架构,广泛用于个人电脑和服务器。

x86架构采用复杂指令集计算机(CISC)的设计思想,通过提供大量的指令集,能够直接执行复杂的操作,从而提高性能。

不过,由于复杂的指令集和多级流水线设计,x86架构的处理器功耗较高,且难以优化。

2.ARM架构:ARM架构是一种低功耗架构,广泛用于移动设备和嵌入式系统。

它采用精简指令集计算机(RISC)的设计思想,通过简化指令集和流水线设计,减少了功耗和芯片面积。

ARM架构具有高效能和低功耗的优势,在移动设备上取得了巨大成功。

它还采用了模块化的设计,可以根据需求选择不同的组件来构建处理器。

3. Power架构:Power架构由IBM开发,广泛应用于大型服务器和超级计算机。

Power架构采用RISC设计思想,通过减少指令数量和复杂度,提高了性能和效率。

Power架构也支持多线程和多处理器技术,可以实现高度的并行计算。

Power架构的处理器主要被用于高性能计算场景,如大数据分析、科学计算等。

4.RISC-V架构:RISC-V架构是一个开源的指令集架构,于2024年由加州大学伯克利分校开发。

RISC-V架构采用RISC设计思想,通过精简指令集和模块化设计,提供了灵活性和可扩展性。

RISC-V架构的指令集规范是公开的,可以任意修改和扩展,使得硬件开发者可以根据需求进行定制。

RISC-V架构对于嵌入式系统和物联网设备具有较大的潜力,也得到了学术界和开源社区的广泛支持。

这四种主流的CPU处理器技术架构各有优势和应用场景,选择合适的架构需要根据具体需求和应用来决定。

无论是个人电脑、服务器还是移动设备,处理器架构的选择都直接影响着性能、功耗和功能扩展性。

随着技术的不断发展,未来的处理器架构可能会进行更多的创新和突破,满足日益增长的计算需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x86架构诞生早在1981年,IBM公司推出了基于Intel 8088处理器的个人电脑;和不久后的8086处理器相比,它是一台低价格,低性能的处理器。

尽管在当时Motorola MC69000处理器的性能也相当不错,但是IBM这样选择的理由是因为8088处理器已经能够对地址总线进行“复用”,并且总线宽度达到8位,和以往相比,大大减少了整个系统的开销。

由于当时没有芯片组这一概念,因此数据和指令的存储和读取都要依靠主板上的特殊门电路,这些部件也是8位的宽度。

如果使用Mort ola MC69000处理器的话,那么在相同功能的情况下,主板需要更多的此类部件,因此大大增加了主板的制造成本。

尽管有人建议,Morto la MC69000有助于系统性能的提高,但是IBM固守“简单就是美”的原则,毅然选择了8088处理器。

IBM的“生死抉择”却给软件开发者带来灾难性的影响(当时没有充分意识到)。

由于处理器采用了808X的架构,因此数据和代码只能在64KB的范围内进行访问。

如果某一个程序需要使用超过64KB的内存,那么程序不得不使用16位的段地址和16位的偏移地址组合,来达到20位的数据访问范围。

当时的程序员就为16位到20位的地址转化伤透了脑筋。

在程序的编译过程中,也引进了相应的内存使用模式(小型,中型,大型,巨型)。

系统集成的汇编语言在程序编写时,必须指明是近程调用(near call)还是远程调用(far call)。

如果要把8088处理器的程序移植到如MC68000机时,就必须把地址扩展成32位,这个过程非常繁琐。

尽管64KB的限制是IBM个人电脑的一个死穴,但是当时IBM P C的市场销售额非常不错。

8088处理器和DOS操作系统能够支持大部分的应用软件,因此IBM的个人电脑推出不久就受到各界的好评;而对于64KB的限制,人们似乎没有太多的关注。

随着PC的成功推出,I BM着手于X86系统架构标准的制定,并且希望成为全球最大的电脑制造商。

Intel和Microsft都参与了此标准的定制,并且携手进行个人电脑的开发。

第一个x86架构的“婴儿”便是于1985年推出的32位的80386处理器(386处理器)。

当时,大部分的操作系统(或者准操作系统)还是16位模式,因此程序员也必须进行地址的转化,这个令人厌烦的转化工作直到Microsoft公司发布了第一款32位的操作系统Windo ws 95时,才得以解决。

Windows 95是第一款使用32位地址的操作系统,它能够对32位空间的数据进行读写操作,并且80386处理器的内部有7个通用寄存器(GPRS)。

从19世纪80年代开始,X86架构快速的发展着。

同时,RISC(精简指令集)架构也受到人们的关注,并且有不少成功的产品,如SPARC ,PA-RISC,MIPS等。

从价格上而言,X86架构的PC机最便宜;而那些基于RISC处理器的大型机价格昂贵。

但是在架构上,PC机和大型机有非常多的相同点,它们都有着良好的软件支持,并且集成汇编语言。

它们之间第二个相似点就是PC和大型机的档次通常用以整体的性价比来决定,而不是只决定于CPU的处理能力。

可靠性,可用性,和功能性是用于衡量机器性能的主要标准。

PC机和大型机的定位也相当的明确,在1980年,一台PC机的价格只要几百美元,而大型机的架构至少要上千美元;在功能上,PC机定位于整数的运算,而大型机却是以浮点数的运算来衡量性能的高低。

尽管PC机和RISC大型机在价格和功能上定位不同,但是在199 0年初,Sun Microsystems公司推出了桌面的微型RISC系统“Mic roSPARC”。

为了能够稳固自身的地位,针对Sun公司这个行为,Int el公司不久后就推出了性能和MicroSPARC相当的Pentium Pro处理器,Pentium Pro处理器是X86架构发展过程中的一个里程碑。

Pentium Pro 处理器首先在x86体系中引入了“微指令”的概念,即一条指令能够完成原先几条指令的操作。

在256KB二级缓存的协助下,微指令使得系统的整体性能有了突破性的飞跃。

当时由0.35微米制成技术制造的Pentium Pro处理器可以和原先任何一款RISC处理器叫板。

在当时,Pentium Pro的惊人性能在PC的制造界产生了巨大的影响,那些原先RISC的支持者不得不重新审视起x86架构来。

尽管x 86架构存在GPRS数量过少,串行的通讯指令过于复杂,内存操作不便等缺点,但是RISC的开发者们不得不承认,当时的RISC架构达不到Pentium Pro的性能。

揭开X86的真像随着经济的不断发展,x86处理器的应用范围越来越广,但是人们似乎渐渐忘却x86架构的不足。

在x86架构的发展过程中,它微处理器(MPU)或多或少的占据着领先的地位。

为了保持领先,个人电脑的发展似乎脱离了IBM原先“简单就是美”的初衷。

CPU的制成技术快速的发展着,集成的晶体管数量也基本按照莫尔定律增加。

当CPU集成的晶体管数量超过1百万后,“制成工艺”和“晶体管集成度”成为衡量系统性能的另一个标准。

同时,基于RISC处理器的大型机也不懈的发展着,尽管在制成技术上不及X86架构,但是它的整数和浮点数性能要高于X86架构。

以下是1993年至今,x86性能和RISC的比值。

图 x86/RISC 性能比 vs制成工艺上图分为两个部分,上半部分是x86/RISC的性能比。

可以看出,在整体上,RISC的性能要高于x86(x86/RISC<1),但是它们之间的差距正在逐渐减少。

其中Pentium Pro ,P4/1.5 ,P4/3.06这几款CPU的性能已经超过了同期RISC处理器的性能。

图的下半部分是x 86和RISC制成工艺的对比。

Pentium Pro推出时,x86架构系统和RISC处理器系统的分工就相当的明确。

RISC系统针对高端的服务器市场,CPU和所有的部件都必须确保系统的“稳定性”,即使降低10%的性能也要尽可能的提高系统的稳定性。

因此RISC 处理器必须经过详细,严谨的设计,并且需要通过一系列严格的测试。

因此大型机的CPU非常昂贵,每一代的CP U一般只推出2~3种不同频率的产品,因为企业不可能在系统升级上不断的投入昂贵的费用。

相比之下x86架构系统主要针对个人用户和小型的商用系统。

和RISC相比,x86的价格要低1~2个数量级,它主要是确保系统的性能,或者尽可能的提高系统的性价比。

因此针对同一代的CPU,它会推出7~8种不同频率的产品。

例如Intel North wood Pentium 4的整个推出的过程中,一共发布了7种不同频率的产品。

图产品推出力度对比上图清楚的表明,在同一代产品中,RISC系统一般只会推出2-3种产品,而X86架构会有7-8种的产品。

因此后者的粒度要比前者细的多。

这也说明RISC系统的CPU一旦设计定型,就会进行制造和测试,在产品最后发布之前,尽可能的改正设计中的错误,因为RISC昂贵的价格决定一旦CPU的设计存在问题,那么这就是一款失败的产品,在市场上就不会有立足之地。

而x86的CPU价格较低,因此它不断推出的产品能够弥补以往设计中的不足,不同产品在于占领不同的市场。

X86=永恒?随着X86架构的不断成熟,人们逐步开始认识到其本身的限制和不足(例如32位的X86架构的寻址空间只有4GB),但是巨大的商业利益和强劲的软硬件的支持,使得x86的架构难以动摇。

尽管在x86的发展历程中,也有不少的体系设计用于代替x86架构,但是它们都因为得不到广泛的支持,最终以失败告终。

其中,影响较大的是以下3次“x86革命”。

第一次革命:MIPS/ACE 联盟1991年4月,Compaq, Microsoft, DEC, MIPS和一些小型的计算机公司成立了高级计算环境(ACE)小组,他们的目的在于使用基于RISC处理器的MIPS架构来取来现有的x86/IBM个人电脑。

但是由于MPU上市日期的延迟,ACE小组的内部竞争,以及利益分成的问题,使得ACE小组的发展举步为艰,最后以失败而告终。

第二次革命:Apple/IBM/Motorola (AIM) 联盟同样在1994年4月底,Apple Computer, IBM 和 Motoro la组成了AIM联盟,目的在于把RISC处理器用于个人电脑系统。

Motorola 和IBM联手对POWER架构进行重新设计,用于取代原先Mac intosh系统中逐渐衰落的680X0 CISC处理器。

POWER架构给Mac 系统带来了巨大的成功,它的性能要比原先的Mac大大提高。

但是x8 6架构的发展始终要快于PowerPC ,而且PowerPC没有任何的性价比优势,因此不多久,Mac机就在x86架构面前败下阵来。

在Intel 和Microsoft巨大的压力下,1994年8.3%的市场占有率也紧缩到目前的3%。

第三次革命:DEC/Samsung1996年年底, DEC的芯片制造部门(原先的Digital Semico nductor公司)发布布了21164PC。

它是原先高性能处理器21164A (EV56)的PC版,因此价格较低,并且使用了微软的Windows NT 操作系统。

由于缺少相应的软件支持,DEC开发了FX!32模拟器,它能够把原先X86的软件无缝的应用到21164PC平台。

尽管CPU的价格低廉,但是支持21164PC的主板却非常昂贵。

而且在当时,人们对NT操作系统并没有表现出多大的兴趣,因此21164PC慢慢的在X86架构发展中退出了历史舞台。

上述例子中的MPU制造商失败的主要原因就是跟不上Intel CPU 的发展速度。

Intel不断进行着新型的CPU设计,并且以价格来争取市场;上述的三种新型CPU架构都是被Intel强大的马力所拖垮。

其中,MIPS/ACE 联盟主要是资金的问题,而AIM联盟的失败归咎于CPU的设计跟不上Intel的发展速度。

Intel的自我革命目前的事实告诉我们,当今几乎不可能有其他的MPU制造商使用其他的系统结构,来挑战Intel 现下兼容的X86平台;其他的芯片制造商也没有雄厚的资金和实力来和Intel公司进行抗衡。

人们考虑:是否Intel公司自己会提出一种全新的架构;或者Intel是否会脱离IBM的x86标准来发展自身的Wintel体系架构(Wintel:Window s操作系统和Intel处理器)。

近几年,Intel致力研究的Itanium 处理器(IPF Itanium Processor Family)似乎有取代x86的趋势。

Intel也宣布,Itanium会首先使用在服务器上,然后过渡到P C平台,最终在移动平台上实现。

相关文档
最新文档