2020新课改高考数学小题专项训练1

合集下载

2020届高考数学基础训练(一)

2020届高考数学基础训练(一)

2020届高考数学基础训练(一)一、选择题(本大题共8小题,共40.0分)1.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A. 1B.C.D. 22.设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=()A. B. C. D.3.执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B. 4C. 5D. 64.将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A. B.C. D.5.已知向量=(1,m),=(3,-2),且(+)⊥,则m=()A. B. C. 6 D. 86.设a∈R,则“a>1”是“a2>1”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A. B. C. D.8.已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A. B. C. D.二、填空题(本大题共3小题,共15.0分)9.△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=______.10.在[-1,1]上随机地取一个数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率为______.11.设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为______.三、解答题(本大题共4小题,共48.0分)12.在△ABC中,a2+c2=b2+ac.(Ⅰ)求∠B的大小;(Ⅱ)求cos A+cos C的最大值.13.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.14.20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.15.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.答案和解析1.【答案】B【解析】【分析】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选B.2.【答案】D【解析】【分析】解不等式求出集合A,B,结合交集的定义,可得答案.本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.【解答】解:∵集合A={x|x2-4x+3<0}=(1,3),B={x|2x-3>0}=(,+∞),∴A∩B=(,3),故选D.3.【答案】B【解析】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=-2,b=6,a=4,s=10,n=2 不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3 不满足条件s>16,执行循环体,a=-2,b=6,a=4,s=20,n=4 满足条件s>16,退出循环,输出n的值为4.故选:B.模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.4.【答案】D【解析】【分析】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题,求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x-)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x-)+],即有y=2sin(2x-).故选D.5.【答案】D【解析】解:∵向量=(1,m),=(3,-2),∴+=(4,m-2),又∵(+)⊥,∴12-2(m-2)=0,解得:m=8,故选:D.求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.6.【答案】A【解析】解:由a2>1得a>1或a<-1,即“a>1”是“a2>1”的充分不必要条件,故选:A.根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.7.【答案】A【解析】【分析】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选A.8.【答案】A 【解析】【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选A.9.【答案】【解析】解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.10.【答案】【解析】【分析】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键是弄清概率类型,同时考查了计算能力,属于基础题.【解析】解:圆(x-5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x-5)2+y2=9相交,则<3,解得-<k <.∴在区间[-1,1]上随机取一个数k,使直线y=kx与圆(x-5)2+y2=9相交的概率为=.故答案为.11.【答案】64【解析】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n-1)=8n •==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.求出数列的等比与首项,化简a1a2…a n,然后求解最值.本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.12.【答案】解:(Ⅰ)∵在△ABC中,a2+c2=b2+ac.∴a2+c2-b2=ac,∴cos B===,∴B=;(Ⅱ)由(I)得:C=-A,∴cos A+cos C=cos A+cos(-A)=cos A-cos A+sin A=cos A+sin A=sin(A+),∵A∈(0,),∴A+∈(,π),故当A+=时,sin(A+)取最大值1,即cos A+cos C的最大值为1.【解析】本题考查的知识点是余弦定理,和差角公式,正弦型函数的图象和性质,难度中档.(Ⅰ)根据已知和余弦定理,可得cosB=,进而得到答案;(Ⅱ)由(I)得:C=-A,结合正弦型函数的图象和性质,可得cosA+cosC的最大值.13.【答案】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC-A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)在ABC-A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【解析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.14.【答案】解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005;(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3;(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个,其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,故所求概率为P=.【解析】本题考查频率分布直方图的应用以及古典概型的概率的应用,属于中档题.(Ⅰ)根据频率分布直方图求出a的值;(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求;(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可.15.【答案】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x-1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5-1)2+3-1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.【解析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.。

2020年全国高考新课标1卷理科数学试题(word文档完整版小题也有详解)

2020年全国高考新课标1卷理科数学试题(word文档完整版小题也有详解)

2020年全国高考新课标1卷理科数学试题一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若z =1+i ,则|z 2–2z |=( )A .0B .1C 2D .22.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积 等于该四棱锥一个侧面三角形的面积,则其侧面三角形 底边上的高与底面正方形的边长的比值为( )A .514B .512C .514D .5124.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C)的关系,在20个不同的温度条件下 进行种子发芽实验,由实验数据 (x i . y i )(i =1,2,···,20)得到散点图:由此散点图,在10°C 至40°C 之 间,下面四个回归方程类型中最 适宜作为发芽率y 和温度x 的回 归方程类型的是( )D A .y=a+bx B .y=a+bx 2 C .y=a+be x D .y=a+b ln x 6.函数f (x )=x 4-2x 3的图像在点(1, f (1))处的切线方程为( )A .y=-2x -1B .y=-2x +1C .y=2x -3D .y=2x +17.设函数f (x )=cos(ωx +6π)在[-π,π]的图像大致如下图,则f (x )的最小正周期为( )A .109πB .76πC .43πD .32π8.25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .209.已知α∈(0,π),且3cos2α-8cos α=5,则sin α= ( )A .53B .23C .13D .5910.已知A,B,C为球O的球面上的三个点,⊙O1为∆ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为( )A.64πB.48πC.36πD.32π11.已知⊙M:x2+y2-2x-2y-2=0,直线l:2x+y+2=0,P为l上的动点,过点P作⊙M的切线P A,PB,切点为A,B,当|PM|·|AB|最小时,直线AB的方程为( ) A.2x-y-1=0 B.2x+y-1=0 C.2x-y+1=0 D.2x+y+1=012.若2a+log2a=4b+2log4b,则( )A.a>2b B.a<2b C.a>b2D.a<b2二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.若x,y满足约束条件220,10,10,x yx yy+-≤⎧⎪--≥⎨⎪+≥⎩则z=x+7y的最大值为.14.设为a b,单位向量,且|+a b|=1,则|-a b|= .15.已知F为双曲线C:22221x ya b-=(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴. 若AB的斜率为3,则C的离心率为. 16.如图,在三棱锥P–ABC的平面展开图中,AC=1,AB=AD=3 AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB= .三、解答题:解答应写出文字说明,证明过程或演算步骤。

新课改高考数学小题专项仿真训练(共40套)

新课改高考数学小题专项仿真训练(共40套)

新课改高考数学小题专项仿真训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21新课改高考数学小题专项仿真训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

2020年新高考全国卷Ⅰ高考数学试题(答案)

2020年新高考全国卷Ⅰ高考数学试题(答案)

2020年普通高等学校招生全国统一考试数 学一、选择题:本题共8小题,每小题5分,共40分。

1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B = A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4} 2.2i 12i -=+A .1B .−1C .iD .−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有 A .120种 B .90种 C .60种 D .30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为 A .20° B .40° C .50° D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46% D .42% 6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天 D .3.5天 7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范围是 A .()2,6- B .()6,2- C .()2,4- D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ D .1,0]3][[1,- 二、选择题:9.已知曲线22:1C mx ny +=.A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为m y x n=±- D .若m =0,n >0,则C 是两条直线10.下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)=A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -11.已知a >0,b >0,且a +b =1,则A .2212a b +≥B .122a b ->C .22log log 2a b +≥-D .2a b +≤12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.A .若n =1,则H (X )=0B .若n =2,则H (X )随着i p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )三、填空题:本题共4小题,每小题5分,共20分。

2020年高考新课标(全国卷1)理科数学模拟试题(附参考答案)

2020年高考新课标(全国卷1)理科数学模拟试题(附参考答案)

2020年高考新课标数学(理科)模拟试题(全国卷1)考试时间:120分钟 满分150分一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、以下判断正确的个数是( )①相关系数r r ,值越小,变量之间的相关性越强;②命题“存在01,2<-+∈x x R x ”的否定是“不存在01,2≥-+∈x x R x ”;③“q p ∨”为真是“p ”为假的必要不充分条件;④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是08.023.1ˆ+=x y. A .4 B .2 C.3 D .12、已知集合{}|12A x x =-<,12|log 1B x x ⎧⎫=>-⎨⎬⎩⎭,则AB =A .{}|04x x <<B .{}|22x x -<<C .{}|02x x <<D .{}|13x x << 3、设,a b 是非零向量,则“存在实数λ,使得=λa b ”是“||||||+=+a b a b ”的A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 4、 已知正三角形ABC 的顶点()()3,1,1,1B A ,顶点C 在第一象限,若点()y x ,在ABC ∆的内部,则y x z +-=的取值范围是 A.()2,31- B.()2,0 C.()2,13- D.()31,0+5、在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是A .sin xB .cos xC .sin x -D .cos x - 6、使函数)2cos()2sin(3)(θθ+++=x x x f 是偶函数,且在]4,0[π上是减函数的θ的一个值是 A .6π B .3π C .34π D .67π7、已知数列{}n a 的前n 项和为n S ,且满足121a a ==,21n n S a +=-,则下列命题错误的是( ) A.21n n n a a a ++=+B.13599100a a a a a ++++=…C.2469899a a a a a ++++=…D.12398100100S S S S S ++++=-… 8、如图阴影部分1C 是曲线x y =与x y =所围成的封闭图形,A 是两曲线在第一象限的交点,以原点O 为圆心,OA 为半径作圆,取圆的第一象限的扇形OCAB 部分图形为2C ,在2C 内随机选取m 个点,落在1C 内的点有n 个,则运用随机模拟的方法得到的π的近似值 A 、m n 23 B 、n m 3 C 、m n 3 D 、nm329、某三棱锥的三视图如图所示,则下列说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形,③ 3所有正确的说法 A 、① B 、①② C 、②③ D 、①③10、已知双曲线)0,(12222>b a by a x =-的左、右顶点分别为B A ,,右焦点为F ,过点F 且垂直于x 轴的直线l 交双曲线于N M ,两点,P 为直线l 上的一点,当APB ∆的外接圆面积达到最小值时,点P 恰好在M (或N )处,则双曲线的离心率为A.2B.3C.2D.511、将边长为5的菱形ABCD 沿对角线AC 折起,顶点B 移动至B 处,在以点B ',A ,C ,为顶点的四面体AB 'CD 中,棱AC 、B 'D 的中点分别为E 、F ,若AC =6,且四面体AB 'CD 的外接球球心落在四面体内部,则线段EF 长度的取值范围为( )A .14,232⎛⎫⎪ ⎪⎝⎭ B .14,42⎛⎫⎪ ⎪⎝⎭C .()3,23D .()3,412、已知函数()21ln (1)(0)2x ax a f a x x a =-+-+>的值域与函数()()f f x 的值域相同,则a 的取值范围为( ) A. (]0,1B. ()1,+∞C. 40,3⎛⎤ ⎥⎝⎦D. 4,3⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。

2020高考数学新题型多项选择题专项训练《01 集合与常用逻辑用语》(解析版)

2020高考数学新题型多项选择题专项训练《01 集合与常用逻辑用语》(解析版)

专题01 集合与常用逻辑用语多项选择题1.(2019秋•启东市期末)已知全集U R =,集合A ,B 满足A B Ü,则下列选项正确的有( ) A .A B B =IB .A B B =UC .()U A B =∅I ðD .()U A B =∅I ð【分析】利用A B Ü的关系即可判断.【解答】解:A B Q Ü,A B A ∴=I ,A B B =U ,()U C A B =≠∅I ,()U A C B =∅I , 故选:BD .2.(2019秋•宿迁期末)已知集合[2A =,5),(,)B a =+∞.若A B ⊆,则实数a 的值可能是( ) A .3-B .1C .2D .5【分析】利用A B ⊆,求出a 的范围,即可判断. 【解答】解:A B ⊆Q , 2a ∴<,故选:AB .3.(2019秋•临高县校级期末)已知{A =第一象限角},{B =锐角},{C =小于90︒的角},那么A 、B 、C 关系是( )A .B AC =I B .B C C =U C .B A B =ID .A B C ==【分析】可看出,“小于90︒的角“和”第一象限的角“都包含”锐角“,从而可判断出选项B ,C 都正确;而小于90︒的角里边有小于0︒的角,而小于0︒的角里边有第一象限角,从而可判断选项A 错误,而选项D 显然错误,从而可得出正确的选项.【解答】解:Q “小于90︒的角”和“第一象限角”都包含“锐角”,B C ∴⊆,B A ⊆B C C ∴=U ,B A B =I ;Q “小于90︒的角“里边有”第一象限角”,从而B A C ≠I .故选:BC .4.(2019秋•聊城期末)若“2340x x +-<”是“22(23)30x k x k k -+++>”的充分不必要条件,则实数k 可以是( ) A .8-B .5-C .1D .4【分析】分别解出” 2340x x +-<”,“ 22(23)30x k x k k -+++>”,根据2340x x +-<”是“22(23)30x k x k k -+++>”的充分不必要条件,即可得出. 【解答】解:“2340x x +-<” 43x ⇔-<<. “22(23)30x k x k k -+++>” x k ⇔<,或3x k >+.Q “2340x x +-<”是“22(23)30x k x k k -+++>”的充分不必要条件,3k ∴…,或43k -+…,解得:3k …,或7k -…,则实数k 可以是AD . 故选:AD .5.(2019秋•临沂期末)对于①sin 0θ>,②sin 0θ<,③cos 0θ>,④cos 0θ<,⑤tan 0θ>,⑥tan 0θ<,则θ为第二象限角的充要条件为( ) A .①③B .①④C .④⑥D .②⑤【分析】根据三角函数角的符号和象限之间的关系分别进行判断即可. 【解答】解:假设θ为象限角则①sin 0θ>,则θ为第一象限角或θ为第二象限角, ②sin 0θ<,则θ为第三象限角或θ为第四象限角 ③cos 0θ>,则θ为第一象限角或θ为第四象限角 ④cos 0θ<,则θ为第二象限角或θ为第三象限角 ⑤tan 0θ>,则θ为第一象限角或θ为第三象限角 ⑥tan 0θ<,则θ为第二象限角或θ为第四象限角, 若θ为第二象限角,则①④可以④⑥可以, 故选:BC .6.(2019秋•泰安期末)下列选项中,p 是q 的必要不充分条件的是( )A .:37p m <<;q :方程22173x y m m +=--的曲线是椭圆B .:8p a …;q :对[1x ∀∈,3]不等式20x a -…恒成立C .设{}n a 是首项为正数的等比数列,p :公比小于0;q :对任意的正整数n ,2120n n a a -+<D .已知空间向量(0a =r ,1,1)-,(b x =r ,0,1)-,:1p x =;q :向量a r与b r 的夹角是3π【分析】A ,根据椭圆的方程以及充分条件和必要条件的定义进行判断即可;B ,求出,[1x ∀∈,3]不等式20x a -…恒成立等价于2a x …恒成立,即等价于9a …,即可判断; C ,根据等比数列的性质以及充分条件和必要条件的定义进行判断即可;D ,根据空间两向量的夹角大小求出x 的值,再根据充分必要条件的定义即可判断; 【解答】解:A ,若方程22173x y m m +=--的曲线是椭圆,则703073m m m m ->⎧⎪->⎨⎪-≠-⎩,即37m <<且5m ≠, 即“37m <<”是“方程22173x y m m +=--的曲线是椭圆”的必要不充分条件;B ,[1x ∀∈,3]不等式20x a -…恒成立等价于2a x …恒成立,等价于9a …; ∴ “8a …”是“对[1x ∀∈,3]不等式20x a -…恒成立”必要不充分条件;:{}n C a Q 是首项为正数的等比数列,公比为q ,∴当11a =,12q =-时,满足0q <,但此时12111022a a +=-=>,则2120n n a a -+<不成立,即充分性不成立,反之若2120n n a a -+<,则2221110n n a q a q --+< 10a >Q ,22(1)0n q q -∴+<,即10q +<,则1q <-,即0q <成立,即必要性成立,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的必要不充分条件.D :空间向量(0a =r,1,1)-,(b x =r ,0,1)-, 则001a b =++r r g ,cos a ∴<r,1cos 32||||a b b a b π>====⨯r r r g r r, 解得1x =±,故“1x =”是“向量a r与b r 的夹角是3π”的充分不必要条件.故选:ABC .7.(2019秋•青岛期末)已知集合{(M x =,)|()}y y f x =,若对于1(x ∀,1)y M ∈,2(x ∃,2)y M ∈,使得12120x x y y +=成立,则称集合M 是“互垂点集”.给出下列四个集合:21{(,)|1}M x y y x ==+;{2(,)|M x y y =;3{(,)|}x M x y y e ==;4{(,)|sin 1}M x y y x ==+.其中是“互垂点集”集合的为( )A .1MB .2MC .3MD .4M【分析】根据题意即对于任意点1(P x ∀,1)y ,在M 中存在另一个点P ',使得OP OP ⊥'u u u r u u u r .,结合函数图象进行判断.【解答】解:由题意,对于1(x ∀,1)y M ∈,2(x ∃,2)y M ∈,使得12120x x y y +=成立 即对于任意点1(P x ∀,1)y ,在M 中存在另一个点P ',使得OP OP ⊥'u u u r u u u r .21y x =+中,当P 点坐标为(0,1)时,不存在对应的点P '. 所以所以1M 不是“互垂点集”集合,y = 所以在2M 中的任意点1(P x ∀,1)y ,在2M 中存在另一个点P ',使得OP OP ⊥'u u u r u u u r.所以2M 是“互垂点集”集合,x y e =中,当P 点坐标为(0,1)时,不存在对应的点P '. 所以3M 不是“互垂点集”集合,sin 1y x =+的图象中,将两坐标轴进行任意旋转,均与函数图象有交点,所以所以4M 是“互垂点集”集合, 故选:BD .8.(2019秋•淮安期末)已知函数2()43f x x x =-+,则()0f x …的充分不必要条件是( ) A .[1,3]B .{1,3}C .(-∞,1][3U ,)+∞D .(3,4)【分析】由()0f x …,得2430x x -+…,解得3x …或1x ….由此能求出()0f x …的充分不必要条件.【解答】解:函数2()43f x x x =-+, 由()0f x …,得2430x x -+…, 解得3x …或1x …. ()0f x ∴…的充分不必要条件是{1,3}和(3,4),故选:BD .9.(2019秋•镇江期末)使不等式110x+>成立的一个充分不必要条件是( ) A .2x > B .0x …C .1x <-或1x >D .10x -<<【分析】不等式110x +>,即10x x+>,(1)0x x +>,解得x 范围,即可判断出结论. 【解答】解:不等式110x +>,即10x x+>,(1)0x x ∴+>,解得0x >,或1x <-. 使不等式110x+>成立的一个充分不必要条件是:2x >.及1x <-,或1x >. 故选:AC .10.(2019秋•连云港期末)已知p ,q 都是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,则( ) A .p 是q 的既不充分也不必要条件 B .p 是s 的充分条件 C .r 是q 的必要不充分条件 D .s 是q 的充要条件【分析】由已知可得p r s q ⇒⇒⇒;q r s ⇒⇒,然后逐一分析四个选项得答案. 【解答】解:由已知得:p r s q ⇒⇒⇒;q r s ⇒⇒.p ∴是q 的充分条件;p 是s 的充分条件;r 是q 的充要条件;s 是q 的充要条件.∴正确的是B 、D .故选:BD .11.(2019秋•苏州期末)已知集合{|2}A x ax =…,{2B =,若B A ⊆,则实数a 的值可能是( ) A .1-B .1C .2-D .2【分析】通过集合的包含关系,判断元素的关系,通过选项的代入判断是否成立.【解答】解:因为集合{|2}A x ax =…,{2B =,B A ⊆, 若1a =-,[2A =-,)+∞,符合题意,A 对; 若1a =,(A =-∞,2],符合题意,B 对; 若2a =-,[1A =-,)+∞,符合题意,C 对; 若1a =,(A =-∞,1],不符合题意,D 错; 故选:ABC .12.(2019秋•济宁期末)下列命题中的真命题是( )A .x R ∀∈,120x ->B .*x N ∀∈,2(1)0x ->C .x R ∃∈,1lgx <D .x R ∃∈,tan 2x =【分析】根据指数函数的值域,得到A 项正确;根据一个自然数的平方大于或等于0,得到B 项不正确;根据对数的定义与运算,得到C 项正确;根据正弦函数tan y x =的值域,得D 项正确.由此可得本题的答案. 【解答】解:Q 指数函数2t y =的值域为(0,)+∞∴任意x R ∈,均可得到120x ->成立,故A 项正确;Q 当*x N ∈时,1x N -∈,可得2(1)0x -…,当且仅当1x =时等号 ∴存在*x N ∈,使2(1)0x ->不成立,故B 项不正确;Q 当1x =时,01lgx =<∴存在x R ∈,使得1lgx <成立,故C 项正确;Q 正切函数tan y x =的值域为R∴存在锐角x ,使得tan 2x =成立,故D 项正确故选:ACD .13.(2019秋•薛城区校级月考)已知集合{|1}A x ax ==,{0B =,1,2},若A B ⊆,则实数a 可以为( ) A .12B .1C .0D .以上选项都不对【分析】由子集定义得A =∅或{1}A =或{2}A =,从而1a 不存在,11a=,12a =,由此能求出实数a .【解答】解:Q 集合{|1}A x ax ==,{0B =,1,2},A B ⊆, A ∴=∅或{1}A =或{2}A =,∴1a 不存在,11a=,12a =,解得1a =,或1a =,或12a =. 故选:ABC .14.(2019秋•桥西区校级月考)设集合2{|0}A x x x =+=,则下列表述不正确的是( ) A .{0}A ∈B .1A ∉C .{1}A -∈D .0A ∈【分析】求出集合2{|0}{0A x x x =+==,1}-,利用元素与集合的关系能判断正确结果.【解答】解:集合2{|0}{0A x x x =+==,1}-, 0A ∴∈,1A -∈,{0}A ⊂,{1}A -⊂,1A ∉. AC ∴选项均不正确,BD 选项正确.故选:AC .15.(2019秋•葫芦岛月考)已知集合2{|20}A x x x =-=,则有( ) A .A ∅⊆B .2A -∈C .{0,2}A ⊆D .{|3}A y y ⊆<【分析】可以求出集合A ,根据子集的定义及元素与集合的关系即可判断每个选项的正误. 【解答】解:{0A =Q ,2},A ∴∅⊆,2A -∉,{0,2}A ⊆,{|3}A y y ⊆<.故选:ACD .16.(2019秋•临淄区校级月考)设全集U ,则下面四个命题中是“A B ⊆”的充要条件的命题是( ) A .A B A =IB .U UA B ⊇痧C .U B A =∅I ðD .U A B =∅I ð【分析】根据集合的补集,两个集合的交集、并集的定义,再由充要条件的定义判断哪些选项符合条件. 【解答】解:对于选项A ,由A B A =I ,可得A B ⊆.由A B ⊆ 可得A B A =I ,故选项A ,A B A =I 是命题A B ⊆的充要条件,故A 满足条件.对于选项B ,由S S A B ⊇痧 可得A B ⊆,由A B ⊆ 可得S S A B ⊇痧,故S S A B ⊇痧 是命题A B ⊆的充要条件,故B 满足条件.对于选项C ,由S B A φ=I ð,可得A B ⊆,由A B ⊆ 可得S B A φ=I ð,故S B A φ=I ð 是命题A B ⊆的充要条件,故C 满足条件.对于选项D ,由S A B φ=I ð,可得B A ⊆,不能退出A B ⊆,故选项D ,S A B φ=I ð不是命题A B ⊆的充要条件,故D 不满足条件. 故选:ABC .17.(2019秋•葫芦岛月考)已知集合{||4}A x Z x =∈<,B N ⊆,则( ) A .集合B N N =UB .集合A B I 可能是{1,2,3}C .集合A B I 可能是{1-,1}D .0可能属于B【分析】根据Z ,N 的定义,及集合元素的特点进行逐一判断即可.【解答】解:因为B N ⊆,所以B N N =U ,故A 正确.集合A 中一定包含元素1,2,3,集合B N ⊆,1,2,3都属于集合N ,所以集合A B I 可能是{1,2,3}正确.1-不是自然数,故C 错误.0是最小的自然数,故D 正确. 故选:ABD .18.(2019秋•市中区校级月考)给出下列关系,其中正确的选项是( ) A .{{}}∅∈∅B .{{}}∅∉∅C .{}∅∈∅D .{}∅⊆∅【分析】根据元素与集合的关系,集合并集的运算,空集是任何集合的子集即可判断每个选项的正误. 【解答】解:显然∅不是集合{{}}∅的元素,A ∴错误;∅不是集合{{}}∅的元素,∅是{}∅的元素,∅是任何集合的子集,从而得出选项B ,C ,D 都正确.故选:BCD .19.(2019秋•罗庄区期中)给出下列四个条件:①22xt yt >;②xt yt >;③22x y >;④110x y<<.其中能成为x y >的充分条件的是( ) A .①B .②C .③D .④【分析】首先分清条件与结论,条件是所选答案,结论是x y >,充分性即为所选答案推出x y >. 【解答】解:①.由22xt yt >可知,20t >,故x y >.故①是.②.由xt yt >可知,0t ≠,当0t <时,有x y <;当0t >时,有x y >.故②不是. ③由22x y >,则||||x y >,推不出x y >,故③不是; ④.由110x y <<.由函数1y x=在区间(0,)+∞上单调递减,可得0x y >>,故④是. 故选:AD .20.(2019秋•宁阳县校级期中)若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .4【分析】求解一元二次不等式,把若220x x --<是2x a -<<的充分不必要条件转化为(1-,2)(2-Ü,)a ,由此得到a 的范围,则答案可求.【解答】解:由220x x --<,解得12x -<<.又220x x --<是2x a -<<的充分不必要条件,(1∴-,2)(2-Ü,)a ,则2a …. ∴实数a 的值可以是2,3,4.故选:BCD .21.(2019秋•薛城区校级期中)若集合M N ⊆,则下列结论正确的是( ) A .M N M =IB .M N N =UC .M M N ⊆ID .M N N ⊆U【分析】利用子集、并集、交集的定义直接求解. 【解答】解:Q 集合M N ⊆,∴在A 中,M N M =I ,故A 正确;在B 中,M N N =U ,故B 正确; 在C 中,M M N ⊆I ,故C 正确; 在D 中,M N N ⊆U ,故D 正确. 故选:ABCD .22.(2019秋•凤城市校级月考)下列命题正确的有( ) A .A ∅=∅U B .()U UU A B A B =U U 痧?C .A B B A =I ID .()U U A A =痧【分析】利用集合的交、并、补运算法则直接求解. 【解答】解:在A 中,A A ∅=U ,故A 错误; 在B 中,()()()U U U A B A B =U I 痧?,故B 错误; 在C 中,A B B A =I I 同,故C 正确; 在D 中,()U U A A =痧,故D 正确. 故选:CD .23.(2019秋•北镇市校级月考)已知集合{2M =-,2334x x +-,24}x x +-,若2M ∈,则满足条件的实数x 可能为( ) A .2B .2-C .3-D .1【分析】根据集合元素的互异性2M ∈必有22334x x =+-或224x x =+-,解出后根据元素的互异性进行验证即可.【解答】解:由题意得,22334x x =+-或224x x =+-, 若22334x x =+-,即220x x +-=, 2x ∴=-或1x =,检验:当2x =-时,242x x +-=-,与元素互异性矛盾,舍去; 当1x =时,242x x +-=-,与元素互异性矛盾,舍去. 若224x x =+-,即260x x +-=, 2x ∴=或3x =-,经验证2x =或3x =-为满足条件的实数x . 故选:AC .24.已知集合{|32A x x a b ==+,a ,}b Z ∈,{|23B x x a b ==-,a ,}b Z ∈,则( ) A .A B ⊆B .B A ⊆C .A B =D .A B =∅I【分析】利用集合的基本关系可判断集合的关系.【解答】解:已知集合{|32A x x a b ==+,a ,}b Z ∈,{|23B x x a b ==-,a ,}b Z ∈, 若x 属于B ,则:233*(2)2*(2)x a b a b a =-=-+-; 2a b -、2a -均为整数,x 也属于A ,所以B 是A 的子集;若x 属于A ,则:322*(3)3*x a b a b =+=+-(a ); 3a b +、a 均为整数,x 也属于B ,所以A 是B 的子集;所以:A B =, 故选:ABC .25.已知集合2{|10}A x x =-=,则下列式子表示正确的有( ) A .{1}A ∈B .1A -⊆C .A ∅⊆D .{1,1}A -⊆【分析】利用集合与集合基本运算求出A 集合,再由集合与集合的关系,元素与集合的关系判断可得答案, 【解答】解:已知集合2{|10}{1A x x =-==-,1},由集合与集合的关系,元素与集合的关系判断可得:以上式子表示正确的有:A ∅⊆,{1,1}A -⊆. 故选:CD .26.已知集合{|13}A x x =-<…,集合{|||2}B x x =…,则下列关系式正确的是( )A .AB =∅IB .{|23}A B x x =-U 剟C .{|1R A B x x =-U …ð或2}x >D .{|23}R A B x x =<I …ð【分析】求解绝对值不等式化简集合B ,再利用交、并、补集的运算性质逐一分析四个选项得答案.【解答】解:{|13}A x x =-<Q …,{|||2}{|22}B x x x x ==-剟?,{|13}{|22}{|12}A B x x x x x x ∴=-<-=-<I I 剟剟,故A 不正确;{|13}{|22}{|23}A B x x x x x x =-<-=-U U 剟剟?,故B 正确;{|2R B x x =<-Q ð或2}x >,{|13}{|2R A B x x x x ∴=-<<-U U …ð或2}{|2x x x >=<-或1}x >-,故C 不正确;{|13}{|2R A B x x x x =-<<-I I …ð或2}{|23}x x x >=<…,故D 正确.∴正确的是B ,D .故选:BD .27.下列命题正确的是( )A .“26x <<”是“24120x x --<”的必要不充分条件B .函数()tan 2f x x =的对称中心是(2k π,0)()k Z ∈C .“x R ∀∈,3210x x -+…”的否定是“x R ∃∈,3210x x -+>”D .设常数a 使方程sin x x a =在闭区间[0,2]π上恰有三个解1x ,2x ,3x 则12373x x x π++=【分析】A 由24120x x --<,解得26x -<<,可得“26x <<”是“24120x x --<”的充分不必要条件; B 由tan20x =,解得2x k π=,即2k x π=,()k Z ∈,即可得出函数()tan 2f x x =的对称中心; C 取1x =-,则32110x x -+=-<,即可判断出;:sin D x x a =化为sin()32a x π+=,由于常数a 使方程sin x x a =在闭区间[0,2]π上恰有三个解1x ,2x ,3x ,则2a =,解得即可. 【解答】解:由24120x x --<,解得26x -<<,因此“26x <<”是“24120x x --<”的充分不必要条件,A 不正确;由tan20x =,解得2x k π=,即2k x π=,()k Z ∈因此函数()tan 2f x x =的对称中心是(2k π,0)()k Z ∈,B 正确;取1x =-,则32110x x -+=-<,因此“x R ∀∈,3210x x -+>” C 不正确;sin x x a =化为sin()32a x π+=,由于常数a 使方程sin x x a =在闭区间[0,2]π上恰有三个解1x ,2x ,3x ,则2a =33x ππ+=,3ππ-,23ππ+,12373x x x π∴++=,D 正确. 故选:BD .28.有限集合S 中元素的个数记做()card S ,设A ,B 都为有限集合,下列命题中真命题是( )A .AB =∅I 的充要条件是()card A B card =U (A )card +(B )B .A B ⊆的必要条件是card (A )card …(B )C .A B à的充要条件是card (A )card …(B )D .A B =的充要条件是card (A )card =(B )【分析】分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,比如第四个句子元素个数相等,元素不一定相同.【解答】解:?A B =∅I 集合A 与集合B 没有公共元素,A 正确 A B ⊆集合A 中的元素都是集合B 中的元素,B 正确A B à集合A 中至少有一个元素不是集合B 中的元素,因此A 中元素的个数有可能多于B 中元素的个数,C 错误A B =集合A 中的元素与集合B 中的元素完全相同,两个集合的元素个数相同,并不意味着它们的元素相同,D 错误故选:AB .29.使“a b <”成立的必要不充分条件是“( )”A .0x ∀>,a b x +…B .0x ∃…,a x b +< C .0x ∀…,a b x <+ D .0x ∃>,a x b +… 【分析】根据不等式的关系结合必要不充分条件分别进行判断即可.【解答】解:若a b <,0x ∀>,则a x b x +<+,a a x <+Q ,a a xb x ∴<+<+,即a b x <+,则a b x +…不一定成立;故A 错误,若a b <,当2a =,4b =,10x ∃=…,有a x b +<成立,反之不一定成立;故B 满足条件.0x ∀…,由a b <得a x b x +<+,0x Q …,a x a ∴+…,即a a x b x +<+…则a b x <+成立,故C 满足条件,若a b <,当2a =,3b =,10x ∃=>,有a x b +…成立,反之不一定成立;故D 满足条件. 故选:BCD .30.在下列结论中正确的是( )A .“p q ∧”为真是“p q ∨”为真的充分不必要条件B .“p q ∧”为假是“p q ∨”为真的充分不必要条件C .“p q ∧”为真是“p ⌝”为假的充分不必要条件D .“p ⌝”为真是“p q ∧”为假的充分不必要条件【分析】利用复合命题真假的判定方法即可判断出结论.【解答】解:“p q ∧”为真是“p q ∨”为真的充分不必要条件,A 正确;“p q ∧”为假是“p q ∨”为真的充分不必要条件,B 不正确;“p q ∧”为真是“p ⌝”为假的充分不必要条件,C 正确;“p ⌝”为真,p 为假⇒ “p q ∧”为假,反之不成立,可能q 为假,p 为真,因此“p ⌝”为真是“p q ∧”为假的充分不必要条件,D 正确.故选:ACD .。

新课改高三高考数学小题专项仿真模拟训练(共40套)含答案

新课改高三高考数学小题专项仿真模拟训练(共40套)含答案

新课改高三高考数学小题专项仿真模拟训练一(含答案)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数y =2x +1的图象是( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556 B.-6556 C.-6516 D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( )A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B 二、13.(21,1) 14.6 15. 21新课改高考数学小题专项仿真模拟训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量外,与向量共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2-312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203 B . 103C .201 D . 101EFDOC BA5.抛物线y2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)6.已知向量m=(a,b),向量n⊥m,且|n|=|m|,则n的坐标可以为()A.(a,-b)B.(-a,b)C.(b,-a)D.(-b,-a)7. 如果S={x|x=2n+1,n∈Z},T={x|x=4n±1,n∈Z},那么A.S TB.T SC.S=TD.S≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种 B.48种 C.72种 D.96种9.已知直线l、m,平面α、β,且l⊥α,m β.给出四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log2(x2-ax+3a)在区间[2,+∞)上递增,则实数a的取值范围是()A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)。

2020新课改高考数学小题专项训练12

2020新课改高考数学小题专项训练12

2020新课改高考数学小题专项训练12 1.设集合P ={3,4,5},Q ={4,5,6,7},定义P ★Q ={(则P ★Q 中 元素的个数为( ) A .3 B .7 C .10D .12 2.函数的部分图象大致是( ))A B C D3.在的展开式中,含项的系数是首项为-2,公差为3的等 差数列的 ( ) A .第13项 B .第18项 C .第11项 D .第20项'4.有一块直角三角板ABC ,∠A =30°,∠B =90°,BC 边在桌面上,当三角板所在平面与桌面成45°角时,AB 边与桌面所成的角等于 ( ) A . B . C . D . 5.若将函数的图象按向量平移,使图象上点P 的坐标由(1,0)变为(2,2),则平移后图象的解析式为 ( )A .B .C .D .6.直线的倾斜角为( ) *A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20,2;(20,30,3; (30,40,4;(40,50,5;(50,60,4;(60,70,2. 则样本在区间(10,50上的频率为( ) A . B . C . D .8.在抛物线上有点M ,它到直线的距离为4,如果点M 的坐标为(),},|),Q b P a b a ∈∈3221x e y -⋅=π765)1()1()1(x x x +++++4x 46arcsin 6π4π410arccos )(x f y =a 2)1(-+=x f y 2)1(--=x f y 2)1(+-=x f y 2)1(++=x f y 0140sin 140cos =+︒+︒y x ]]]]]]]x y 42=x y =2n m ,且的值为 ( ) A . B .1 C . D .29.已知双曲线,在两条渐近线所构成的角中, 】设以实轴为角平分线的角为,则的取值范围是 ( ) A . B . C . D . 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血型的O 型,则父母血型的所有可能情况有 ( ) A .12种 B .6种 C .10种 D .9种11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( )A .16(12-6B .18$ C .36 D .64(6-412.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的 规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P ()表示第秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错误..的是( )A .P (3)=3B .P (5)=5C .P (101)=21D .P (101)<P (104)13.在等比数列{,且公比是整数,则等于 .14.若,则目标函数的取值范围是 .15.已知那么 . 16.取棱长为的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为;⑤体积为. 以上结论正确的是 .(要求填上的有正确结论的序号)nm R n m 则,,+∈212]2,2[),(12222∈∈=-+e R b a by a x 的离心率θθ]2,6[ππ]2,3[ππ]32,2[ππ),32[πππ)3πππ)2n n 512,124,}7483-==+a a a a a n 中q 10a ⎪⎩⎪⎨⎧≤+≥≥622y x y x y x z 3+=,1sin 1cot 22=++θθ=++)cos 2)(sin 1(θθa 23a 365a答案:1.D 2.C 3.D 4.A 5.C 6.B 7.B 8.D 9.C 10.D 11.C 12.C 13.-1或512;14.[8,14];15.4;16.①②⑤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020新课改高考数学小题专项训练1
1.设p 、q 是两个命题,则“复合命题p 或q 为真,p 且q 为假”的充要条件是 ( )
A .p 、q 中至少有一个为真
B .p 、q 中至少有一个为假
C .p 、q 中中有且只有一个为真
D .p 为真,q 为假 2.已知复数
( )
A .
B .2
C .2
D .8
3.已知a 、b 、c 是三条互不重合的直线,α、β是两个不重合的平面,给出四个命题: ①
②a 、

④.其中正确命题的个数是
( )
A .1个
B .2个
C .3个
D .4个 4.已知等差数列
( )
A .
B .
C .
D .
5.定义在R 上的偶函数的x 的
集合为
( )
A .
B .
C .
D .
6.在如图所示的坐标平面的可行域内(阴影部分且
包括周界),若使目标函数z =ax +y (a >0)取最大值的最优解有无穷多个,则a 的值等于( ) A .
B .1
C .6
D .3
7.已知函数的值等于 ( )
A .
B .
C .4
D .-4
=-=||,13
z i z 则22;
//,//,//ααa b b a 则;
//,//,//,βαββα则b
a b ⊂;,//,βαβα⊥⊥则a a b a b a ⊥⊥则,//,αα==16
884,31
,}{S S S S S n a n n 那么且
项和为的前8
1
319
110
30)(log ,0)2
1(,),0[)(4
1<=+∞=x f f x f y 则满足且上递减在),2()21
,(+∞⋃-∞)2,1()1,2
1(⋃),2()1,2
1(+∞⋃),2()2
1,0(+∞⋃3
1
)41(,2),3(log ,2,43
)(116
2
-⎪⎩⎪⎨⎧≥+-<-=-f x x x x
x f 则21
16
2
5-
8.若半径为R 的球与正三棱柱的各个面都相切,则球与正三棱柱的体积比为 ( )
A .
B .
C .
D .
9.如果以原点为圆心的圆经过双曲线的焦点,而且被该双曲线
的右准线分成弧长为2:1的两段圆弧,那么该双曲线的离心率e 等于 ( )
A .
B .
C .
D .
10.如图,矩形ABCD 中,AB =3,BC =4,沿对角
线BD 将△ABD 折起,使A 点在平面BCD 内的射影落在BC 边上,若二面角C —AB —D 的平面角大小为θ,则sinθ的值等于( ) A .
B .
C .
D .
11.若函数的图象如右图所示,则
函数的图象大致为( )
A B C D
12.已知函数有以下四
个函数:①②③ ④
其中满足
f (x
)所有条件的函数序号为 ( )
A .①②
B .②③
C .②④
D .①④
π273
4π273
2π3
3π6
3)0,0(122
22>>=-b a b
y a x 52
5324
34
77
7
33
4)(x f y =)1(x f y -=,]1,0[)(),)(()1()(上是减函数在且满足x f R x x f x f x f y ∈-=+=x y πsin =x y πcos =Z k k x k k x y ∈+≤<---=,1212,)2(12
Z k k x k k x y ∈+≤<--+=,1212,)2(12
13.展开式中的常数项为 . 14.如图,一艘船上午9:30在A 处测得灯塔S 在
它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距8n mile .此船的航速是 n mile /h .
15.若不等式 .
16.如图,从点发出的光线沿平行于抛物线的轴的方向射向此抛物线上的点P ,反射后经焦点F 又射向抛物线上的点
Q ,再反射后沿平行于抛物线的轴的方向
射向直线再反射后又射回点M ,则
x 0= .
答案:
1.C 2.C 3.B 4.D 5.D 6.B 7.D 8.B 9.D 10.A 11.A 12.B 13. 14.32 15.16 16.6
10
23
)21(x
x -
2的值等于则实数的解集为a x a x x ],5,4[4|8|2
-≤+-)2,(0x M x
y 42
=,072:N y x l 上的点=--32
105。

相关文档
最新文档