高考数学复习小题训练15

合集下载

2024届高考一轮复习数学教案(新人教B版):直线与圆

2024届高考一轮复习数学教案(新人教B版):直线与圆

必刷小题15直线与圆一、单项选择题1.(2023·无锡模拟)设m ∈R ,直线l 1:(m +2)x +6y -2m -8=0,l 2:x +2my +m +1=0,则“m =1”是“l 1∥l 2”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析若l 1∥l 2m (m +2)=6,m +1)(m +2)≠-(2m +8),解得m =1或m =-3,因此,“m =1”是“l 1∥l 2”的充分不必要条件.2.直线ax -y -2a =0(a ∈R )与圆x 2+y 2=9的位置关系是()A .相离B .相交C .相切D .不确定答案B 解析直线ax -y -2a =0(a ∈R ),即a (x -2)-y =0,-2=0,=0,=2,=0,所以直线恒过定点(2,0),因为22+02<9,所以定点(2,0)在圆内,所以直线与圆相交.3.直线x +ay +b =0经过第一、二、四象限,则()A .a <0,b <0B .a <0,b >0C .a >0,b <0D .a >0,b >0答案C 解析因为直线x +ay +b =0经过第一、二、四象限,所以该直线的斜率-1a <0,直线在y 轴上的截距-b a>0,可得a >0,b <0.4.(2023·重庆模拟)已知过点P (3,1)的直线l 与圆C :(x -1)2+(y -2)2=5相切,且与直线x -my -1=0垂直,则m 等于()A .-12 B.12C .-2D .2答案C解析∵(3-1)2+(1-2)2=5,∴点P 在圆C 上,∴k CP =2-11-3=-12,∴切线l 的斜率为2,∵l 与直线x -my -1=0垂直,∴2×1m=-1,解得m =-2.5.(2022·呼和浩特模拟)已知圆x 2+2x +y 2=0关于直线ax +y +1-b =0(a ,b 为大于0的常数)对称,则ab 的最大值为()A.14 B.12C .1D .2答案A 解析因为圆x 2+2x +y 2=0的圆心为(-1,0),且圆x 2+2x +y 2=0关于直线ax +y +1-b =0(a ,b 为大于0的常数)对称,所以直线ax +y +1-b =0过圆心(-1,0),所以a +b =1,又a >0,b >0,所以ab =14,当且仅当a =b =12时等号成立,即当a =b =12时,ab 取最大值14.6.(2023·晋城模拟)已知圆C :x 2+y 2=1和直线l :x 0x +y 0y =1,则“点P (x 0,y 0)在圆C 上”是“直线l 与圆C 相切”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案C 解析若点P 在圆C 上,则x 20+y 20=1,圆心到直线l :x 0x +y 0y =1的距离d =1x 20+y 20=1,此时直线l 与圆C 相切;若直线l 与圆C 相切,则d =1x 20+y 20=1,即x 20+y 20=1,此时点P 在圆C 上.综上知,“点P (x 0,y 0)在圆C 上”是“直线l 与圆C 相切”的充要条件.7.(2022·兰州模拟)阿波罗尼斯是古希腊著名数学家,与阿基米德、欧几里得并称为亚历山大时期数学三巨匠,他研究发现:如果一个动点P 到两个定点的距离之比为常数λ(λ>0,且λ≠1),那么点P 的轨迹为圆,这就是著名的阿波罗尼斯圆.若点C 到点A (-1,0),B (1,0)的距离之比为3,则点C 到直线x -2y +8=0的距离的最小值为()A .25-3 B.5-3C .25 D.3答案A 解析设C (x ,y ),则|CA ||CB |=3,即(x +1)2+y 2(x -1)2+y2=3,化简得(x -2)2+y 2=3,所以点C 的轨迹是以(2,0)为圆心,r =3的圆,则圆心到直线x -2y +8=0的距离d =|2-2×0+8|12+(-2)2=25,所以点C 到直线x -2y +8=0的距离的最小值为25- 3.8.在平面直角坐标系中,已知点P (3,-1)在圆C :x 2+y 2-2mx -2y +m 2-15=0内,动直线AB 过点P 且交圆C 于A ,B 两点,若△ABC 的面积的最大值为8,则实数m 的取值范围是()A .(3-23,3+23)B .[1,5]C .(3-23,1]∪[5,3+23)D .(-∞,1]∪[5,+∞)答案C 解析圆C :x 2+y 2-2mx -2y +m 2-15=0,即圆C :(x -m )2+(y -1)2=16,即圆心为C (m ,1),r =4,所以△ABC 的面积为S △ABC =12r 2sin ∠ACB =8sin ∠ACB ≤8,当且仅当∠ACB =π2,即△ABC 为等腰直角三角形时等号成立,此时,|AB |=42,圆心C 到直线AB 22,因为点P (3,-1)在圆C :x 2+y 2-2mx -2y +m 2-15=0内,所以22≤|PC |<4,即22≤(m -3)2+22<4,所以8≤(m -3)2+4<16,解得3-23<m ≤1或5≤m <3+23,所以实数m 的取值范围是(3-23,1]∪[5,3+23).二、多项选择题9.已知点A (2,3),B (4,-5)到直线l :(m +3)x -(m +1)y +m -1=0的距离相等,则实数m 的值可以是()A .-75 B.75C .-95 D.95答案AC 解析因为点A (2,3),B (4,-5)到直线l :(m +3)x -(m +1)y +m -1=0的距离相等,所以|2(m+3)-3(m+1)+m-1|(m+3)2+(m+1)2=|4(m+3)+5(m+1)+m-1|(m+3)2+(m+1)2,化简得|5m+8|=1,解得m=-95或m=-75.10.(2023·深圳模拟)动点P在圆C1:x2+y2=1上,动点Q在圆C2:(x-3)2+(y+4)2=16上,则下列说法正确的是()A.两个圆心所在的直线斜率为-43B.两个圆公共弦所在直线的方程为3x-4y-5=0C.两圆公切线有两条D.|PQ|的最小值为0答案AD解析圆C1:x2+y2=1的圆心为C1(0,0),半径为r=1,圆C2:(x-3)2+(y+4)2=16的圆心为C2(3,-4),半径为R=4.两个圆心所在的直线斜率为-4-03-0=-43,所以选项A正确;因为|C1C2|=32+(-4)2=5,R+r=5,所以两圆相外切,故没有公共弦,两圆的公切线有三条,当点P,点Q运动到切点时,|PQ|的最小值为0,因此选项B,C不正确,选项D正确.11.以下四个命题表述正确的是()A.若点(1,2)在圆x2+y2+2x+(m-1)y-m+2=0外,则实数m的取值范围为(-7,+∞) B.圆x2+y2=2上有且仅有3个点到直线l:x-y+1=0的距离等于2C.圆C1:x2+y2-2x-4y-4=0和圆C2:x2+y2+2x+2y-2=0外切D.实数x,y满足x2+y2+2x=0,则yx-1的取值范围是-33,33答案AD解析点(1,2)在圆x2+y2+2x+(m-1)y-m+2=0外,则12+22+2+2(m-1)-m+2>0,得m>-7,A选项正确;圆x2+y2=2的圆心为(0,0),半径为2,因为圆心到直线l的距离为12=22,所以圆x2+y2=2上有且仅有3个点到直线l:x-y+1=0的距离等于22,B选项错误;C1的圆心为(1,2),半径为3;C2的圆心为(-1,-1),半径为2,所以圆心距为4+9=13≠3+2,C选项错误;圆x2+y2+2x=0的圆心为A(-1,0),半径为1,y x -1表示圆上的点B (x ,y )与点C (1,0)连线的斜率,当直线BC 与圆A 相切时,如图所示,AB =1,AC =2,所以∠BCA =π6,结合对称性可知y x -1的取值范围是-33,33,D 选项正确.12.已知点P (x ,y )是圆C :(x -1)2+y 2=4上的任意一点,直线l :(1+m )x +(3m -1)y +3-3m =0,则下列结论正确的是()A .直线l 与圆C 的位置关系只有相交和相切两种B .圆C 的圆心到直线l 距离的最大值为2C .点P 到直线4x +3y +16=0距离的最小值为2D .点P 可能在圆x 2+y 2=1上答案ACD 解析对于A 选项,因为直线l 的方程可化为x -y +3+m (x +3y -3)=0.-y =-3,+3y =3,=0,=3,所以直线l 过定点Q (0,3),直线l 是过点Q 的所有直线中除去直线x +3y -3=0外的所有直线,圆心C (1,0)到直线x +3y -3=0的距离为|1-3|1+3=1<2,即直线x +3y -3=0与圆C 相交,又点Q (0,3)在圆C :(x -1)2+y 2=4上,所以直线l 与C 至少有一个公共点,所以直线l 与圆C 的位置关系只有相交和相切两种,A 正确;对于B 选项,当直线l 为圆C 的切线时,点C 到直线l 的距离最大,且最大值为|QC |=2,B 错误;对于C 选项,因为圆心C 到直线4x +3y +16=0的距离d =|4+16|5=4,所以圆C 上的点P 到直线4x +3y +16=0距离的最小值为4-2=2,C 正确;对于D 选项,圆x 2+y 2=1的圆心为原点O ,半径为1,因为|OC |=1=2-1,所以圆C 与圆O 内切,故点P 可能在圆x 2+y 2=1上,D 正确.13.若直线l 1:3x +y +m =0与直线l 2:mx -y -7=0平行,则直线l 1与l 2之间的距离为________.答案10解析由题设得m +3=0,即m =-3,所以l 1:3x +y -3=0,l 2:3x +y +7=0,所以直线l 1与l 2之间的距离为|7-(-3)|10=10.14.过点P (2,2)的直线l 1与圆(x -1)2+y 2=1相切,则直线l 1的方程为________________.答案3x -4y +2=0或x =2解析当过点P (2,2)的直线l 1斜率不存在时,l 1的方程为x =2,与圆(x -1)2+y 2=1相切,满足题意;当过点P (2,2)的直线l 1斜率存在时,设l 1的方程为y -2=k (x -2),即kx -y -2k +2=0,∴圆(x -1)2+y 2=1的圆心到l 1的距离d =|k -0-2k +2|k 2+1=1,解得k =34,∴l 1:34x -y +12=0,即3x -4y +2=0,综上,直线l 1的方程为3x -4y +2=0或x =2.15.与直线x -y -4=0和圆(x +1)2+(y -1)2=2都相切的半径最小的圆的方程是________________.答案(x -1)2+(y +1)2=2解析圆(x +1)2+(y -1)2=2的圆心坐标为(-1,1),半径为2,过圆心(-1,1)与直线x -y -4=0垂直的直线方程为x +y =0,则所求圆的圆心在此直线上,又圆心(-1,1)到直线x -y -4=0的距离为62=32,则所求圆的半径为2,设所求圆的圆心为(a ,b ),且圆心在直线x +y =0上,所以|a -b -4|2=2,且a +b =0,解得a =1,b =-1(a =3,b =-3不符合题意,舍去),故所求圆的方程为(x -1)2+(y +1)2=2.16.(2023·大理模拟)设m ∈R ,直线l 1:mx -y -3m +1=0与直线l 2:x +my -3m -1=0相交于点P ,点Q 是圆C :(x +1)2+(y +1)2=2上的一个动点,则|PQ |的最小值为________.解析由题意得l 1:(x -3)m +(1-y )=0,l 2:(x -1)+(y -3)m =0,∴l 1恒过定点M (3,1),l 2恒过定点N (1,3),又l 1⊥l 2,∴P 点轨迹是以|MN |为直径的圆,即以点(2,2)为圆心,以12×(3-1)2+(1-3)2=2为半径的圆,∴P 点轨迹方程为(x -2)2+(y -2)2=2,∵圆(x -2)2+(y -2)2=2与圆C 的圆心距d =(1+2)2+(1+2)2=32>22,∴两圆外离,∴|PQ |的最小值是两圆圆心距d 减去两圆半径之和,即|PQ |min =32-22=2.。

新教材2023年高考数学总复习考案15阶段测试五数列课件

新教材2023年高考数学总复习考案15阶段测试五数列课件

+a11+a12的最小值为( C )
A.10
B.15
C.20
D.25
[解析] 由题意,可得 a9+a10+a11+a12=S12-S8,由 S8-2S4=5, 可得 S8-S4=S4+5.又由等比数列的性质,知 S4,S8-S4,S12-S8 成等比 数列,则 S4(S12-S8)=(S8-S4)2.于是 a9+a10+a11+a12=S12-S8=S4+S4 52 =S4+2S54+10≥2 S4×2S54+10=20,当且仅当 S4=5 时等号成立.所以 a9+a10+a11+a12 的最小值为 20.故选 C.
15.记Sn为数列{an}的前n项和,Sn=1-an,记Tn=a1a3+a3a5+… +a2n-1a2n+1,则Tn= 1151-116n .
[解析] 由题意有 a1=1-a1,得 a1=12.由 Sn=1-an 知当 n≥2 时有 Sn-1=1-an-1,两式作差得aan-n 1=12(n≥2),故数列{an}是以12为首项,12为 公比的等比数列,可得数列{an}的通项公式为 an=21n,Tn=a22+a24+…+ a22n=11611--111616n=1151-116n.
a1+a3=a1+a1q2=54a1=10,解得 a1=8,∴a1a2a3…an=an1·q1+2+3+…+(n-1)
=8n· 1 =23n-nn2-1=2-12n2+72n.∵n∈N*,∴当 nn-1
n=3

4
时,-12n2+72n
22
取最大值,为 6,∴(a1a2a3…an)max=26=64.
+2(n≥2),则数列an-1 12的前 2 022 项和为( B )
2 022 A.2 023
B.42

2023高考数学复习专项训练《等比数列》(含答案)

2023高考数学复习专项训练《等比数列》(含答案)

2023高考数学复习专项训练《等比数列》一、单选题(本大题共12小题,共60分)1.(5分)等比数列{a n}满足a1+a2+a3=13,a2+a3+a4=133,则a5=()A. 1B. 13C. 427D. 192.(5分)给出以下命题:①存在两个不等实数α,β,使得等式sin(α+β)=sinα+sinβ成立;②若数列{a n}是等差数列,且a m+a n=a s+a t(m、n、s、t∈N∗),则m+n=s+t;③若S n是等比数列{a n}的前n项和,则S6,S12−S6,S18−S12成等比数列;④若S n是等比数列{a n}的前n项和,且S n=Aq n+B;(其中A、B是非零常数,n∈N∗),则A+B为零;⑤已知ΔABC的三个内角A,B,C所对的边分别为a,b,c,若a2+b2>c2,则ΔABC一定是锐角三角形.其中正确的命题的个数是()A. 1个B. 2个C. 3个D. 4个3.(5分)设T n为等比数列{a n}的前n项之积,且a1=−6,a4=−34,则当T n最大时,n的值为()A. 4B. 6C. 8D. 104.(5分)等比数列{a n},满足a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52= 15,则a1−a2+a3−a4+a5的值是()A. 3B. √5C. −√5D. 55.(5分)已知在等比数列{a n}中,公比q是整数,a1+a4=18,a2+a3=12,则此数列的前8项和为()A. 514B. 513C. 512D. 5106.(5分)已知正项数列{a n},{b n}分别为等差、等比数列,公差、公比分别为d,q(d,q∈N∗),且d=q,a1+b1=1,a3+b3=3.若a n+b n=2013(n>3),则n= ()A. 2013B. 2012C. 100D. 997.(5分)若a,b,c成等比数列,则关于x的方程a x2+bx+c=0( )A. 必有两个不等实根B. 必有两个相等实根C. 必无实根D. 以上三种情况均有可能8.(5分)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则log2a10=()9.(5分)记Sn为等比数列{a n}的前n项和,已知S2=2,S3=−6.则{a n}的通项公式为()A. a n=(−2)nB. a n=−2nC. a n=(−3)nD. a n=−3n10.(5分)正项等比数列{a n}中,a3=2,a4.a6=64,则a5+a6a1+a2的值是()A. 4B. 8C. 16D. 6411.(5分)在等比数列{a n}中,a7,a11是方程x2+5x+2=0的二根,则a3.a9.a15a5.a13的值为()A. −2+√22B. −√2C. √2D. −√2或√212.(5分)已知等比数列{a n}的前n项和为S n,9S3=S6=63,则S10=A. 255B. 511C.1023 D. 2047二、填空题(本大题共5小题,共25分)13.(5分)已知等差数列{a n}的公差d≠0,且a3+a9=a10−a8.若a n=0,则n=__________14.(5分)若等比数列{an}的前n项和Sn满足:an+1=a1Sn+1(n∈N*),则a1=____.15.(5分)在等比数列{an}中,已知前n项和Sn=5n+1+a,则a的值为____________.16.(5分)若等比数列{a n}的首项为23,且a4=∫41(1+2x)dx,则公比q等于______.17.(5分)如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第1群,第2群,……,第n群,……,第n群恰好有n个数,则第n群中n个数的和是____________.123465812107162420149324840281811…三、解答题(本大题共6小题,共72分)18.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3−x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.19.(12分)如果等比数列{a n}中公比q>1,那么{a n}一定是递增数列吗?为什么?20.(12分)数列{a n}满足a1=1,a n=2a n−1-3n+6(n≥2,n∈N+).(1)设b n=a n-3n,求证:数列{b n}是等比数列;(2)求数列{a n}的通项公式.21.(12分)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a n+12−4n−1,n∈N∗,且a2,a5,a14构成等比数列.(1)证明:a2=√4a1+5;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1a2+1a2a3+…+1a n a n+1<12.22.(12分)已知数列{a n}是等差数列,其首项为2,且公差为2,若b n=2a n(n∈N∗).(Ⅰ)求证:数列{b n}是等比数列;(Ⅱ)设c n=a n+b n,求数列{c n right}的前n项和A n.23.(12分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+⋯+b2n−1.四、多选题(本大题共5小题,共25分)24.(5分)已知等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,则下列说法正确的是()A. a1+a5+a9a2+a3的值为3 B. a1+a5+a9a2+a3的值为2C. 数列{a n}的公差和首项相等D. 数列{a n}的公差和首项不相等25.(5分)设数列{a n},{b n}的前n项和分别为S n,T n,则下列命题正确的是()A. 若a n+1-a n=2(n∈N∗),则数列{a n}为等差数列B. 若b n+1=2b n(n∈N∗),则数列{b n}为等比数列C. 若数列{a n}是等差数列,则S n,S2n-S n,S3n-S2n⋯⋯(n∈N∗)成等差数列D. 若数列{b n}是等比数列,则T n,T2n-T n,T3n-T2n⋯⋯(n∈N∗)成等比数列26.(5分)在公比q为整数的等比数列{a n}中,S n是数列{a n}的前n项,若a1+a4= 18,a2+a3=12,则下列说法正确的是()A. q=2B. 数列{S n+2}是等比数列C. S8=510D. 数列\left{ lg a n}是公差为2的等差数列27.(5分)已知等差数列{a n}的首项为1,公差d=4,前n项和为S n,则下列结论成立的有()A. 数列{S nn}的前10项和为100B. 若a1,a3,a m成等比数列,则m=21C. 若∑n i=11a i a i+1>625,则n的最小值为6D. 若a m+a n=a2+a10,则1m +16n的最小值为251228.(5分)已知数列{a n}为等差数列,{b n}为等比数列,{a n}的前n项和为S n,若a1+ a6+a11=3π,b1b5b9=8,则()A. S11=11πB. sin a2+a10b4b6=12C. a3+a7+a8=3πD. b3+b7⩾4答案和解析1.【答案】D;【解析】解:设等比数列{a n }的公比为q ,由a 2+a 3+a 4=(a 1+a 2+a 3)q ,得133=13q ,解得q =13, 又a 1+a 2+a 3=a 1+13a 1+19a 1=139a 1=13,解得a 1=9,所以a 5=a 1q 4=9×(13)4=19, 故选:D.设等比数列{a n }的公比为q ,通过a 2+a 3+a 4=(a 1+a 2+a 3)q 可求出q 值,进一步根据a 1+a 2+a 3=a 1+a 1q +a 1q 2=13可求出a 1,最后利用a 5=a 1q 4进行求解即可. 此题主要考查等比数列的通项公式,考查学生逻辑推理和运算求解的能力,属于基础题.2.【答案】B; 【解析】该题考查命题真假的判断,考查学生灵活运用等差、等比数列的性质,三角函数以及三角形的判断,是一道综合题,属于中档题.利用特殊值判断①的正误;利用特殊数列即可推出命题②的正误;根据等比数列的性质,判断③的正误;根据等比数列的前n 项的和推出A ,B 判断④的正误.利用特殊三角形判断⑤的正误;解:对于①,实数α=0,β≠0,则sin (α+β)=sinβ,sinα+sinβ=sinβ,所以等式成立;故①正确;对于②,当公差d =0时,命题显然不正确,例如a 1+a 2=a 3+a 4,1+2≠3+4,故②不正确;对于③,设a n =(−1)n ,则S 6=0,S 12−S 6=0,S 18−S 12=0,∴此数列不是等比数列,故③不正确;对于④,S n 是等比数列{a n }的前n 项和,且S n =Aq n +B ;(其中A 、B 是非零常数,n ∈N ∗),所以此数列为首项是a 1,公比为q ≠1的等比数列, 则S n =a 1(1−q n )1−q ,所以A =−a11−q ,B =a11−q ,∴A +B =0,故④正确;对于⑤,如果三角形是直角三角形,a =5,b =3,c =4,满足a 2+b 2>c 2,故⑤不正确;故选:B .3.【答案】A;【解析】解:因为等比数列{a n }中,a 1=−6,a 4=−34,则由a 4=a 1q 3可得q =12. ∵T n 为等比数列{a n }的前n 项之积,∴T n =(−6)n .(12)n(n−1)2,因为求最大值,故只需考虑n 为偶数的情况, ∵T 2n +2T 2n =36×(12)4n +1,由T 2n +2T 2n⩾1可得n =1,∴T 2<T 4>T 6>T 8>⋯.则公比q =12,当T n 最大时,n 的值为4.故选:A .由已知可得q =12.只需考虑n 为偶数的情况,由T 2n +2T 2n⩾1可得n =1,即可求解.该题考查了等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.4.【答案】D;【解析】解:设数列{a n }的公比为q ,且q ≠1,则 a 1+a 2+a 3+a 4+a 5=a 1(1−q 5)1−q =3①, a 12+a 22+a 32+a 42+a 52=a 12(1−q 10)1−q 2=15②∴②÷①得a 12(1−q 10)1−q 2÷a 1(1−q 5)1−q=a 1(1+q 5)1+q=5,∴a 1−a 2+a 3−a 4+a 5=a 1(1+q 5)1+q=5.故选:D.先设等比数列{a n }公比为q ,分别用a 1和q 表示出a 12+a 22+a 32+a 42+a 52,a 1+a 2+a 3+a 4+a 5和a 1−a 2+a 3−a 4+a 5,发现a 12+a 22+a 32+a 42+a 52除以a 1+a 2+a 3+a 4+a 5正好与a 1−a 2+a 3−a 4+a 5相等,进而得到答案.此题主要考查了等比数列的性质.属基础题.解题时要认真审题,注意等比数列的性质的灵活运用.5.【答案】D;【解析】由已知得{a 1+a 1q 3=18a 1q +a 1q 2=12,解得:q =2或q =12.∵q 为整数,∴q =2.∴a 1=2.∴S 8=2(1−28)1−2=29−2=510.6.【答案】A;【解析】此题主要考查等差数列和等比数列的通项公式和性质的应用.计算时要认真仔细.解:∵{_1+b1=1a3+b3=3,∴{_1+b1=1a1+2d+b1q2=3,∵d=q,所以{_1+b1=1a1+2q+b1q2=3,解得d=q=1,∴a n+b n=a1+(n−1)d+b1q n−1=a1+n−1+b1=2013,∴n=2013.故选A.7.【答案】C;【解析】若a,b,c成等比数列,则b²=ac由题意得△=b²-4ac=b²-4b²=-3b²等比数列中没有为0的项,∴-3b²<0∴△小于0,即方程a x2+bx+c=0必无实根故选C。

2014高考数学小题限时训练15

2014高考数学小题限时训练15

2014高考数学(理科)小题限时训练1515小题共75分,时量:45分钟,考试时间:晚21:40—22:10 姓名 一、选择题:本大题共8小题,每小题5分,共40分. 1.设i 是虚数单位,则复数1ii -+的虚部是 ( )A .2i B .12- C .12D .12-2.设数列{}n a 的前n 项和,21,n n S a n =-+且 则数列{}nS n的前11项之和为( ) A .—45 B .—50 C .—55 D .—663.设平面向量(1,2),(2,)y ==-a b ,若a b ∥,则y 等于 ( ) A .-4 B .-2 C .2D .4 4.下列函数中,在其定义域内既是奇函数又是减函数的是 ( )A .R x x y ∈-=,3B .R x x y ∈=,sinC .R x x y ∈=,D .R x x y ∈=,)21(5.已知3(,),sin ,25παπα∈=则tan()4πα+等于 ( )A .17 B .7C .17-D .7-6.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是 ( )A .sin()6y x π=+B .sin()6y x π=-C .sin(2)3y x π=+D .sin(2)3y x π=-7.已知函数y =2sinx 的定义域为[a ,b ],值域为[-2,1],则b -a 的值不可能是 ( )A .65π B .πC .67π D .π28.若A ,B ,C 是直线l 上不同的三个点,点O 不在l 上,存在实数x 使得20x OA x OB BC ++= ,实数x 为( )A .-1B .0C .D .二、填空题:本大题共7小题,每小题5分,共35分.9.已知向量(2,3)=a ,(2,1)=-b ,则a 在b 方向上的投影等于 .10.已知点)43cos ,43(sin ππP 落在角θ的终边上,且[)πθ2,0∈,则θ的值为 。

高考数学经典常考题型第15专题求函数的单调区间

高考数学经典常考题型第15专题求函数的单调区间

第15专题训练 函数的单调区间单调性是函数的一个重要性质单调性是函数的一个重要性质,,对函数作图起到决定性的作用对函数作图起到决定性的作用,,而导数是分析函数单调区间的一个便利工具。

求一个已知函数的单调区间是每一个学生的必备本领间的一个便利工具。

求一个已知函数的单调区间是每一个学生的必备本领,,在求解的过程中也要学会一些方法和技巧。

要学会一些方法和技巧。

一、基础知识一、基础知识: :1、函数的单调性、函数的单调性::设()f x 的定义域为D ,区间I D Í,若对于1212,,x x I x x "Î<,有()()12f x f x <,则称()f x 在I 上单调递增上单调递增,,I 称为单调递增区间。

若对于1212,,x x I x x "Î<,有()()12f x f x >,则称()f x 在I 上单调递减上单调递减,,I 称为单调递减区间。

称为单调递减区间。

2、导数与单调区间的联系、导数与单调区间的联系(1)(1)函数函数()f x 在(),a b 可导可导,,那么()f x 在(),a b 上单调递增()',()0x a b f x Þ"γ,此结论可以这样理解此结论可以这样理解::对于递增的函数对于递增的函数,,其图像有三种类型其图像有三种类型: ,: ,: ,无无论是哪种图形论是哪种图形,,其上面任意一点的切线斜率均大于零。

等号成立的情况等号成立的情况::一是单调区间分界点导数有可能为零一是单调区间分界点导数有可能为零,,例如例如::()2f x x =的单调递增区间为[)0+¥,,而()'00f =,另一种是位于单调区间内但导数值等于零的点另一种是位于单调区间内但导数值等于零的点,,典型的一个例子为()3f x x =在0x =处的导数为0,0,但是但是()0,0位于单调区间内。

2023年高考数学重点专题三轮冲刺演练专题15解析几何小题压轴练(解析版)

2023年高考数学重点专题三轮冲刺演练专题15解析几何小题压轴练(解析版)

解析几何小题压轴练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·辽宁盘锦·盘锦市高级中学校考一模)已知双曲线x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,点P 在双曲线上,且∠F 1PF 2=60°,PF 2的延长线交双曲线于点Q ,若双曲线的离心率为e =72,则PQ F 1Q=()A.23B.813C.815D.12【答案】B【分析】利用双曲线的定义得到PF 2 ,F 2Q ,PF 1 ,F 1Q 关于k ,m ,n 的表达式,在△PF 1F 2与△PF 1Q 中利用余弦定理求得m =2k 与n =65k ,从而求得PQ ,F 1Q 关于k 的表达式,由此得解.【详解】因为双曲线的离心率为e =72,即c a =72,令a =2k k >0 ,则c =7k ,所以F 1F 2 =2c =27k ,2a =4k ,不妨设点P 在双曲线的右支上时,如图,记PF 2 =m ,F 2Q =n ,则由双曲线的定义得PF 1 -PF 2 =2a ,F 1Q -F 2Q =2a ,所以PF 1 =4k +m ,F 1Q =4k +n ,在△PF 1F 2中,∠F 1PF 2=60°,则F 1F 2 2=PF 1 2+PF 2 2-2PF 1 PF 2 cos60°,即28k 2=4k +m 2+m 2-24k +m m ×12,整理得12k 2-4km -m 2=0,解得m =2k 或m =-6k (舍去),故PF 1 =4k +m =6k ,PQ =m +n =2k +n ,在△PF 1Q 中,∠F 1PF 2=60°,则F 1Q 2=PF 1 2+PQ 2-2PF 1 PQ cos60°,即4k +n 2=36k 2+2k +n 2-2×6k 2k +n ×12,整理得12k 2-10kn =0,解得n =65k ,则PQ =2k +n =2k +65k =165k ,F 1Q =4k +n =265k ,所以PQ F 1Q=165k 265k =813;故选:B .2.(2023·山东潍坊·统考模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,点F 2与抛物线C 2:y 2=2px p >0 的焦点重合,点P 为C 1与C 2的一个交点,若△PF 1F 2的内切圆圆心的横坐标为4,C 2的准线与C 1交于A ,B 两点,且AB =92,则C 1的离心率为()A.94B.54C.95D.74【答案】B【分析】令F 1(-c ,0),F 2(c ,0),由题设知c=p 2>0且AB =2b 2a 求得4b 2=9a ,再由内切圆中切线长性质及双曲线定义、性质确定与F 1F 2的切点C 的位置,进而求离心率.【详解】由题设F 1(-c ,0),F 2(c ,0),又点F 2与抛物线的焦点重合,即c =p2>0,由-c2a 2-y 2b 2=1a 2+b 2=c2,则y =±b 2a ,故AB =2b 2a =92,即4b 2=9a ,如下图示,内切圆与△PF 1F 2各边的切点为D ,E ,K ,所以PD =PE ,DF 1= KF 1, EF 2= KF 2 ,又|PF 1|-|PF 2|=2a ,则PD +DF 1)-PE + EF 2)= DF 1- EF 2= KF 1- KF 2 =2a , 所以K 为双曲线右顶点,又△PF 1F 2的内切圆圆心的横坐标为4,即a =4,故b 2=9,则c =5,所以离心率为e =c a =54.故选:B3.(2023·江苏南通·海安高级中学校考一模)双曲线C :x 2-y 2=4的左,右焦点分别为F 1,F 2,过F 2作垂直于x 轴的直线交双曲线于A ,B 两点,△AF 1F 2,△BF 1F 2,△F 1AB 的内切圆圆心分别为O 1,O 2,O 3,则△O 1O 2O 3的面积是()A.62-8B.62-4C.8-42D.6-42【答案】A【分析】由题意画出图,由已知求出c 的值,找出A ,B 的坐标,由△AF 1F 2,△BF 1F 2,△F 1AB 的内切圆圆心分别为O 1,O 2,O 3,进行分析,由等面积法求出内切圆的半径,从而求出△O 1O 2O 3的底和高,利用三角形的面积公式计算即可.【详解】由题意如图所示:由双曲线C:x2-y2=4,知a2=b2=4,所以c2=a2+b2=8,所以F2(22,0),F1F2=2c=42所以过F2作垂直于x轴的直线为x=22,代入C中,解出A22,2,B22,-2,由题知△AF1F2,△BF1F2的内切圆的半径相等,且AF1=BF1,△AF1F2,△BF1F2的内切圆圆心O1,O2的连线垂直于x轴于点P,设为r,在△AF1F2中,由等面积法得:1 2AF1+AF2+F1F2⋅r=12F1F2⋅AF2由双曲线的定义可知:AF1-AF2=2a=4由AF2=2,所以AF1=6,所以126+2+42⋅r=12×42×2,解得:r=222+2=22×2-22=22-2,因为F1F2为△F1AB的∠AF1B的角平分线,所以O3一定在F1F2上,即x轴上,令圆O3半径为R,在△AF1B中,由等面积法得:1 2AF1+BF1+AB⋅R=12F1F2⋅AB,又AF1=BF1=F1F22+AF12=422+22=6所以12×6+6+4⋅R=12×42×4,所以R=2,所以PF 2 =r =22-2,O 3P =O 3F 2 -PF 2 =R -r =2-22-2 =2-2,所以S △O 1O 2O 3=12O 1O 2 O 3P =12×2r ×O 3P =r ×O 3P =22-2 ×2-2 =62-8,故选:A .4.(2023·湖南永州·统考二模)如图,F 1,F 2为双曲线的左右焦点,过F 2的直线交双曲线于B ,D 两点,且F 2D =3F 2B ,E 为线段DF 1的中点,若对于线段DF 1上的任意点P ,都有PF 1 ⋅PB ≥EF 1 ⋅EB 成立,则双曲线的离心率是()A.2B.3C.2D.5【答案】D【分析】取F 1B 中点Q ,根据向量数量积的运算律和向量线性运算可将已知数量积不等式化为PQ 2≥EQ 2,由此可确定EQ ⊥DF 1,由三角形中位线性质知DF 1⊥BD ;设BF 2 =m ,结合双曲线定义可表示出DF 1 ,BF 1 ,在Rt △BDF 1和Rt △DF 1F 2中,利用勾股定理可求得离心率.【详解】取F 1B 中点Q ,连接PQ ,EQ ,DQ ,∵PF 1 ⋅PB =14PF 1 +PB 2-PF 1 -PB 2 =144PQ2-BF 1 2 =PQ 2-14BF 1 2,EF 1 ⋅EB =14EF 1 +EB 2-EF 1 -EB 2 =144EQ2-BF 1 2 =EQ 2-14BF 1 2,∴PQ 2-14BF 1 2≥EQ 2-14BF 1 2,则PQ 2≥EQ 2,∴PQ ≥EQ 恒成立,∴EQ ⊥DF 1,又EQ ⎳BD ,∴BD ⊥DF 1,设BF 2 =m ,由F 2D =3F 2B得:BD =2m ,根据双曲线定义可知:DF 1 =DF 2 -2a =3m -2a ,BF 1 =BF 2 +2a =m +2a ,∵BD 2+DF 1 2=BF 1 2,即4m 2+3m -2a 2=m +2a 2,∴m =43a ,∴DF 1 =2a ,DF 2 =4a ,又DF 2 2+DF 1 2=F 1F 2 2,∴20a 2=4c 2,∴e 2=c 2a2=5,则离心率e =5.故选:D .5.(2023·河北·河北衡水中学校考模拟预测)已知椭圆x 2a 2+y 2b2=1a >b >0 的两焦点为F 1,F 2,x 轴上方两点A ,B 在椭圆上,AF 1与BF 2平行,AF 2交BF 1于P .过P 且倾斜角为αα≠0 的直线从上到下依次交椭圆于S ,T .若PS =βPT ,则“α为定值”是“β为定值”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不必要也不充分条件【答案】D【分析】先求出P 的轨迹,其轨迹方程为x 2a 2+c 22a2+y 2a 2-c 22a2=1,取α=π4,结合特殊情形可得“当α取定值,β是定值”是错误的;再由β是定值可得α=π2,从而可判断当β取定值,α是定值”是错误的,从而可得正确的选项.【详解】设M x ,y 为椭圆x 2a 2+y 2b 2=1a >b >0 上的动点,c 为椭圆的半焦距,故F 1-c ,0 ,故MF 1 =x +c2+y 2=x +c 2+b 21-x2a2=x +c 2+b 21-x2a2=c 2x 2a 2+2cx +a 2=a +c a x ,设直线l :x =-a 2c ,则M 到该直线的距离为d =x +a 2c,故MF 1 d=ca =e ,如图,设直线MF 1的倾斜角为γ,过M 作l 的垂线,垂足为S ,则MF 1MF 1 cos γ+a 2c-c=e ,故MF 1 =e ×b 2c1-e cos γ,设p =b 2c ,故MF1=ep1-e cosγ,同理MF2=ep1+e cosγ.设AF1的倾斜角为θ,则MF1=ep1-e cosθ,MF2=ep1+e cosθ,因为AF1⎳BF2,故BF2AF1=F2PAP,所以BF2AF1+BF2=F2PAP+F2P=F2PAF2=F2P2a-AF1,所以F2P=BF22a-AF1AF1+BF2,同理F1P=AF12a-BF2AF1+BF2,故F2P+F1P=2a-2BF2×AF1AF1+BF2=2a-ep,故P的轨迹为以F1,F2为焦点的椭圆,其长半轴长为a-ep2=a2+c22a,短半轴长为a2+c224a2-c2=a2-c22a,故P的轨迹方程为:x2 a2+c2 2a2+y2a2-c22a2=1,其中y>0.取α=π2,PS2PT2=y S-y P2y S+y P2=y Sy P-12y Sy P+12,而a2≠a4+2a2c2+c44a2,故PS2PT2不是定值即β不是定值.故“当α取定值,β是定值”是错误的.又直线ST的参数方程为:x=x0+t cosαy=y0+t sinα,设S x0+t1cosα,y0+t1sinα,T x0+t2cosα,y0+t2sinα,由x0+t cosα2a2+y0+t sinα2b2=1整理得到:cos2αa2+sin2αb2t2+2x0cosαa2+y0sinαb2t+x20a2+y20b2-1=0,故t1+t2=-2x0cosαa2+y0sinαb2cos2αa2+sin2αb2t1t2=x20a2+y20b2-1cos2αa2+sin2αb2,而PS=βPT,故1-βt2=-2x0cosαa2+y0sinαb2cos2αa2+sin2αb2-βt22=x20a2+y20b2-1cos2αa2+sin2αb2,所以1-β2-4β=x0cosαa2+y0sinαb22cos2αa2+sin2αb2x20a2+y20b2-1,若β为定值,则1-β2-4β为定值,而1-β2-4βcos2αa2+sin2αb2=x0cosαa2+y0sinαb22x20a2+y20b2-1,故当P x0,y0变化时,x0cosαa2+y0sinαb22x20 a2+y20b2-1始终为定值,又x0cosαa2+y0sinαb22x20a2+y20b2-1=x20cos2αa4+2x0y0cosαsinαa2b2+y20sin2αb2x20a2+y20b2-1=x20cos2αa4+2x0y0cosαsinαa2b2+b22a21-x20a2+c224a2sin2αb2x20a2+b22a21-x20a2+c224a2b2-1=x20cos2αa4-b2sin2αa2+c22+2x0y0cosαsinαa2b2+b2sin2α4a2x201a2-b2a2+c22+b24a2-1故cos2αa4-b2sin2αa2+c221a2-b2a2+c22=b2sin2α4a2b24a2-1且cosαsinαa2b2=0,但α≠0,α∈0,π,故α=π2,所以1-β2-4β=y0b221b2x20a2+y20b2-1=y20b2x20a2+y20-1=y20b2×a2+c224a21-y20b24a2a2+y20-1=y20b2×a2+c224a2a2-1+1-a2+c22a2y20,但此时1-β2-4β随y 20的变化而变化,不是定值,故“当β取定值,α是定值”是错误的.故选:D .【点睛】思路点睛:对于圆锥曲线中的动态问题,注意利用圆锥曲线的几何性质去研究动点的轨迹,对于是否为定值的问题,注意构建不同变量之间的关系,结合特例来处理是否为定值的问题.6.(2023·江苏南通·二模)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 在双曲线上,PF 1⊥PF 2,圆O :x 2+y 2=94(a 2+b 2),直线PF 1与圆O 相交于A ,B 两点,直线PF 2与圆O 相交于M ,N 两点.若四边形AMBN 的面积为9b 2,则C 的离心率为()A.54B.85C.52D.2105【答案】D【分析】设PF 1 =n ,PF 2 =m ,有n -m =2a ,n 2+m 2=4c 2,mn =2b 2,由弦长公式可得MN =23c 2 2-n 2 2,AB=23c 2 2-m 2 2,四边形AMBN 的面积为12AB ⋅MN ,解得c 2=83b 2,可求双曲线的离心率.【详解】根据对称性不妨设点P 在第一象限,如图所示,圆O :x 2+y 2=94(a 2+b 2),圆心为O 0,0 ,半径为3c2,设PF 1 =n ,PF 2 =m ,点P 在双曲线上,PF 1⊥PF 2,则有n -m =2a ,n 2+m 2=4c 2,可得mn =2b 2,过O 作MN 的垂线,垂足为D ,O 为F 1F 2的中点,则OD =12PF 1 =n2,MN =23c 2 2-n 22,同理,AB =23c 2 2-m 2 2,由AB ⊥MN ,四边形AMBN 的面积为12AB ⋅MN =12×23c 2 2-m 22×23c 2 2-n 22=9b 2,481c 416-m 2+n 24 9c 24+m 2n 216 =481c 416-9c 44+b 44=81b 4,化简得c 2=83b 2,则有a 2=c 2-b 2=53b 2,则C 的离心率e =c a =85=2105.故选:D7.(2023·浙江金华·浙江金华第一中学校考模拟预测)如图,已知椭圆C 1和双曲线C 2具有相同的焦点F 1-c ,0 ,F 2c ,0 ,A 、B 、C 、D 是它们的公共点,且都在圆x 2+y 2=c 2上,直线AB 与x 轴交于点P ,直线CP 与双曲线C 2交于点Q ,记直线AC 、AQ 的斜率分别为k 1、k 2,若椭圆C 1的离心率为155,则k 1⋅k 2的值为()A.2B.52C.3D.4【答案】D【分析】设椭圆方程为x 2a 2+y 2b 2=1,双曲线方程为x 2s 2-y 2t 2=1,根据椭圆离心率得到b 2=25a 2,故椭圆方程为2x 2+5y 2=2a 2,联立x 2+y 2=c 2求出A 点坐标,从而由对称性得到B ,C ,P 点坐标,表达出CP :y =55x -306b,将A 点代入双曲线方程,结合s 2+t 2=a 2-b 2=32b 2得到s 2=b 22,t 2=b 2,得到双曲线方程2x 2b 2-y 2b 2=1,联立CP :y =55x -306b,得到两根之和,两根之积,表达出Q 73054b ,-6b27,从而求出k 1,k 2,得到乘积.【详解】设椭圆方程为x 2a 2+y 2b 2=1,双曲线方程为x 2s 2-y 2t 2=1,则a 2-b 2=s 2+t 2=c 2,由c a =155可得3a 2=5c 2,因为c 2=a 2-b 2,所以b 2=25a 2,故椭圆方程为2x 2+5y 2=2a 2,联立x 2+y 2=c 2可得:x 2=c 2-23b 2=32b 2-23b 2=56b 2,y 2=2b 23,则A 306b ,63b,由对称性可知A 、C 两点关于原点对称,A 、B 两点关于x 轴对称,则B 306b ,-63b,C -306b ,-63b ,所以P 306b ,0,故k CP =0+63b 306b +306b =55,直线CP :y =55x -306b,A 306b ,63b 代入x 2s 2-y 2t 2=1中得,5b 26s 2-2b 23t2=1①,又s 2+t 2=a 2-b 2=52b 2-b 2=32b 2②,②①结合得到s 2=5b 22或s 2=b 22,因为a 2=52b 2,显然s <a ,故s 2=b 22,所以t 2=32b 2-b 22=b 2,故双曲线方程为2x 2b 2-y 2b 2=1,联立CP :y =55x -306b 与2x 2b 2-y 2b2=1得:95x 2+3015bx -76b 2=0,设Q x 1,y 1 ,则-306bx 1=-76b 2⋅59,解得:x 1=73054b ,故y 1=5535930b -306b=-6b 27,所以Q 73054b ,-6b27,所以k 2=63b +6b27306b -73054b =25,其中k 1=63b +63b 306b +306b =255,故k 1k 2=25×255=4.故选:D【点睛】椭圆和双曲线共焦点时,焦距成为联系两个曲线的桥梁,要根据题目条件列出方程,寻找到椭圆中长半轴,短半轴,和双曲线中实半轴,虚半轴的关系,再求解离心率或其他相关问题,共焦点的椭圆和双曲线的重要结论:①具有公共焦点的椭圆和双曲线离心率分别为e 1,e 2,P 为它们的一个交点,且∠F 1PF 2=2θ,则sin θe 12+cos θe 22=1;②若点P x 0,y 0 是椭圆C 1:x 2a 2+y 2b 2=1a >b >0 与双曲线C 2:x 2m 2-y 2n 2=1m >0,n >0 的一个公共点,且它们在P x 0,y 0 处的切线互相垂直,则椭圆C 1与双曲线C 2有公共焦点.二、多选题1.(2023·广东·统考一模)已知拋物线E :y 2=8x 的焦点为F ,点F 与点C 关于原点对称,过点C 的直线l 与抛物线E 交于A ,B 两点(点A 和点C 在点B 的两侧),则下列命题正确的是()A.若BF 为△ACF 的中线,则AF =2BFB.若BF 为∠AFC 的角平分线,则AF =6C.存在直线l ,使得AC =2AFD.对于任意直线l ,都有AF +BF >2CF【答案】AD【分析】设l :x =ky -2,不妨令A (x 1,y 1),B (x 2,y 2)都在第一象限,C (-2,0),F (2,0),联立抛物线,根据已知及韦达定理得k 2>1、y 1+y 2=8k ,y 1y 2=16,则x 1+x 2=8k 2-4,x 1x 2=4,再根据各项描述、抛物线定义判断它们的正误.【详解】由题意,设l :x =ky -2,不妨令A (x 1,y 1),B (x 2,y 2)都在第一象限,C (-2,0),F (2,0),联立E :y 2=8x ,则y 2-8ky +16=0,且Δ=64(k 2-1)>0,即k 2>1,所以y 1+y 2=8k ,y 1y 2=16,则x 1+x 2=8k 2-4,x 1x 2=4,如上图所示.A :若BF 为△ACF 的中线,则y 2=y 12,所以y 1=42,所以x 1=4,故A (4,42),所以B (1,22),则AF =2BF =6,故A 正确;B :若BF 为∠AFC 的角平分线,则BC AB=CF AF,作AD ,BE 垂直准线x =-2于D ,E ,则|AF |=|AD |且BC AB=CE DE,所以CF AD=CE DE,即CF AD +CF=CE CD=BE AD,则4x 1+6=x 2+2x 1+2,将x 2=4x 1>0代入整理,得x 21-4x 1-12=(x 1-6)(x 1+2)=0,则x 1=6,所以AF =x 1+2=8,故B 错误;C :若AC =2AF ,即AC =2AD ,即△ACD 为等腰直角三角形,此时CD =AD ,即A (y 1-2,y 1),所以y 21=8y 1-16,所以y 21-8y 1+16=0,所以y 1=4,所以y 2=4,则此时A ,B 为同一点,不合题设,故C 错误;D :AF +BF =AD +BE =x 1+x 2+4=8k 2,而2CF =8,结合k 2>1,可得8k 2>8,即AF +BF >2CF 恒成立,故D 正确.故选:AD .2.(2023·广东深圳·深圳中学校联考模拟预测)已知P x 1,y 1 ,Q x 2,y 2 是椭圆x 24+9y 24=1上两个不同点,且满足x 1x 2+9y 1y 2=-2,则下列说法正确的是()A.2x 1+3y 1-3 +2x 2+3y 2-3 的最大值为6+25B.2x 1+3y 1-3 +2x 2+3y 2-3 的最小值为3-5C.x 1-3y 1+5 +x 2-3y 2+5 的最大值为25+2105D.x 1-3y 1+5 +x 2-3y 2+5 的最小值为10-22【答案】AD【分析】设x =m ,3y =n ,设C (m 1,n 1),D (m 2,n 2),可得OC =(m 1,n 1),OD =(m 2,n 2),可得C 、D 两点均在圆m 2+n 2=4的圆上,且∠COD =2π3,根据点到直线的距离公式及圆的性质可得2x 1+3y 1-3 5+2x 2+3y 2-35及x 1-3y 1+52+x 2-3y 2+52的最值,可得答案.【详解】由x 24+9y 24=1,可得x 2+9y 2=4,又P x 1,y 1 ,Q x 2,y 2 是椭圆x 2+9y 2=4上两个不同点,可得x 12+9y 12=4,x 22+9y 22=4,设x =m ,3y =n ,则m 2+n 2=4,设C (m 1,n 1),D (m 2,n 2),O 为坐标原点,可得OC =(m 1,n 1),OD=(m 2,n 2),可得m 12+n 12=4,m 22+n 22=4,且m 1m 2+n 1n 2=-2,所以OC ⋅OD =-2,cos OC ,OD =OC ⋅ODOC ⋅OD=-12,又OC ,OD ∈0,π ,可得C 、D 两点均在圆m 2+n 2=4的圆上,且∠COD =2π3,设CD 的中点为E ,则OE =2cosπ3=1,根据点到直线的距离公式可知:2x 1+3y 1-35+2x 2+3y 2-35=2m 1+n 1-35+2m 2+n 2-35为点C 、D两点到直线2x+y-3=0的距离d1、d2之和,设E到直线2x+y-3=0的距离d3,由题可知圆心到直线2x+y-3=0的距离为-322+1=35,则d1+d2=2d3≤2EO+3 5=21+35=2+65,d1+d2=2d3≥235-EO=235-1=65-2可得d1+d2的最大值为2+65,d1+d2的最小值为65-2;可得2x1+3y1-3+2x2+3y2-3=5(d1+d2),可得2x1+3y1-3+2x2+3y2-3的最大值为5×2+65=25+6,最小值为6-25,故A正确,B错误;同理,x1-3y1+52+x2-3y2+52=m1-n1+52+m2-n2+52为点C、D两点到直线x-y+5=0的距离d4、d5之和,设E到直线x-y+5=0的距离d6,由题可知圆心到直线x-y+5=0的距离为512+1=52,则d4+d5=2d6≤252+1=52+2,d4+d5=2d6≥252-1=52-2,可得x1-3y1+5+x2-3y2+5=2(d4+d5),可得2x1+3y1-3+2x2+3y2-3的最大值为10+22,最小值为10-22,故C错误,D正确.故选:AD.【点睛】关键点睛:本题的关键是把问题转化为圆上点到直线的距离问题,结合到直线的距离公式及圆的性质即得.3.(2023·浙江金华·浙江金华第一中学校考模拟预测)设F1,F2为椭圆x24+y23=1的左,右焦点,直线l过F1交椭圆于A,B两点,则以下说法正确的是()A.△ABF2的周长为定值8B.△ABF2的面积最大值为23C.AF12+AF22的最小值为8 D.存在直线l使得△ABF2的重心为16,14【答案】ACD【分析】利用椭圆的定义可判断A,根据基本不等式结合椭圆的定义可判断C,设直线l的方程为x= my-1,联立椭圆方程利用韦达定理法,可表示出△ABF2的面积,△ABF2的重心进而判断BD.【详解】由椭圆x24+y23=1,可得a=2,b=3,c=1,所以△ABF2为AF1+AF2+BF1+BF2=4a=8,故A正确;因为AF1+AF2=4,所以AF12+AF22≥AF1+AF222=8,当且仅当AF1=AF2取等号,故C正确;由题可设直线l 的方程为x =my -1,由x =my -1x24+y 23=1 ,可得3m 2+4 y 2-6my -9=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,所以y 1-y 2 =y 1+y 22-4y 1y 2=6m3m 2+42-4-93m 2+4=12m 2+13m 2+4,所以△ABF 2的面积为S =12F 1F 2 y 1-y 2 =12m 2+13m 2+4,令t =m 2+1,则t ≥1,m 2=t 2-1,所以S =12m 2+13m 2+4=12t 3t 2+1=123t +1t,因为t ≥1,由对勾函数的性质可知3t +1t≥4,所以S =12m 2+13m 2+4=12t 3t 2+1=123t +1t≤3,当t =1,即m =0取等号,故B 错误;由上可知y 1+y 2=6m3m 2+4所以x 1+x 2=m y 1+y 2 -2=6m 23m 2+4-2=-83m 2+4,又F 21,0 ,所以△ABF 2的重心为131-83m 2+4,2m 3m 2+4,令131-83m 2+4 =162m 3m 2+4=14,解得m =2,所以当直线l 的方程为x =2y -1时△ABF 2的重心为16,14,故D 正确.故选:ACD .4.(2023·江苏连云港·统考模拟预测)已知抛物线C :y 2=2px p >0 的焦点为F ,直线l 与C 交于A x 1,y 1 ,B x 2,y 2 两点,其中点A 在第一象限,点M 是AB 的中点,作MN 垂直于准线,垂足为N ,则下列结论正确的是()A.若直线l 经过焦点F ,且OA ⋅OB=-12,则p =2B.若AF =3FB ,则直线l 的倾斜角为π3C.若以AB 为直径的圆M 经过焦点F ,则ABMN的最小值为2D.若以AB 为直径作圆M ,则圆M 与准线相切【答案】BC【分析】A 选项,考虑直线斜率为0和不为0两种情况,设出直线方程,联立抛物线方程,得到两根之和,两根之积,由OA ⋅OB=-12列出方程,求出p =4,A 错误;B 选项,先得到直线l 经过抛物线焦点,与A 一样,设出直线方程,联立抛物线方程,得到两根之和,两根之积,结合y 1=-3y 2求出直线l 的斜率,得到倾斜角;C 选项,设AF =m ,BF =n ,由抛物线定义结合基本不等式得到AB MN的最小值;D选项,与C 一样,考虑直线l 不经过焦点时,得到圆M 与准线相离,D 错误.【详解】A 选项,由题意得:F p 2,0,准线方程为x =-p2,当直线l 的斜率为0时,此时,直线l 与C 只有1个交点,不合题意,故设直线l :x =p2+my ,与y 2=2px 联立得:y 2-2pmy -p 2=0,故y 1+y 2=2pm ,y 1y 2=-p 2,则x 1x 2=y 1y 224p 2=p 24,所以OA ⋅OB =x 1x 2+y 1y 2=p 24-p 2=-12,解得:p =4,A 错误;B 选项,因为AF =3FB,所以A ,F ,B 三点共线,即直线l 经过抛物线焦点,当直线l 的斜率为0时,此时,直线l 与C 只有1个交点,不合题意,故设直线l :x =p2+my ,与y 2=2px 联立得:y 2-2pmy -p 2=0,故y 1+y 2=2pm ,y 1y 2=-p 2,因为AF =3FB ,所以y 1=-3y 2,代入y 1+y 2=2pm ,y 1y 2=-p 2中,得到y 2=-pm ,-3y 22=-p 2,即m 2=13,因为点A 在第一象限,所以y 1>0,故y 2<0,即-pm <0,m >0,解得:m =33故直线l 的斜率为1m=3,设直线l 的倾斜角为θ0≤θ<π ,则tan θ=3,解得:θ=π3,B 正确;C 选项,设AF =m ,BF =n ,过点A 作AQ ⊥准线于点Q ,过点B 作BP ⊥准线于点P ,因为以AB 为直径的圆M 经过焦点F ,所以AF ⊥BF ,则AB =m 2+n 2,由抛物线定义可知:MN =AQ +BP2=AF +BF2=m +n2,由基本不等式得:m 2+n 2≥2mn ,则2m 2+n 2 ≥2mn +m 2+n 2=m +n 2,当且仅当m =n 时,等号成立,故m 2+n 2≥m +n 2,即AB MN=m 2+n 2m +n2=2m 2+n 2m +n≥2,C 正确;D 选项,当直线l 不经过焦点F p2,0时,设AF =m ,BF =n ,由三角形三边关系可知:AF +BF >AB ,由抛物线定义可知结合C 选项可知:AF +BF =2MN >AB ,即MN >AB2,若以AB 为直径作圆M ,则圆M 与准线相离,D 错误.故选:BC【点睛】圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.5.(2023·辽宁·辽宁实验中学校考模拟预测)已知抛物线C :x 2=2py (p >0)的焦点为F ,斜率为34的直线l 1过点F 交C 于A ,B 两点,且点B 的横坐标为4,直线l 2过点B 交C 于另一点M (异于点A ),交C 的准线于点D ,直线AM 交准线于点E ,准线交y 轴于点N ,则()A.C 的方程为x 2=4yB.AB =254C.BD <AED.ND ⋅NE =4【答案】ABD【分析】对于A ,根据题意设得F ,B 的坐标,再由直线l 1的斜率求得p ,从而求得抛物线C 的方程,由此判断即可;对于B ,联立直线l 1与抛物线C 的方程,求得A ,B 的坐标,进而求得AB ,由此即可判断;对于D ,设M m ,m 24 ,从而利用直接法求得E ,D 的坐标关于m 的表达式,从而证得ND ⋅NE =4,由此判断即可;对于C ,举反例排除即可.【详解】对于A ,由题意得F 0,p 2 ,B 4,8p,所以k AB =8p-p 24=34,整理得p 2+6p -16=0,又p >0,解得p =2,所以C 的方程为x 2=4y ,故A 正确;对于B ,由选项A 知双曲线C 的准线方程为y =-1,B (4,4),F (0,1),直线l 1的方程为y =34x +1,联立x 2=4y y =34x +1 ,解得x =-1或x =4,所以A -1,14 ,则AB =4+12+4-142=254,故B 正确;对于D ,设点M m ,m 24 ,由题意知m ≠±1且m ≠±4,所以直线MA :y -14=m -14x +1 ,令y =-1,得x =-m +4m -1,即E -m +4m -1,-1 ,故NE =m +4m -1,同理可得D 4m -4m +4,-1,故ND =4m -4m +4,所以ND ⋅NE =4m -4m +4 ⋅m +4m -1 =4,故D 正确;对于C ,当m =2时,E (-6,-1),D 23,-1 ,则AE =5174,BD =5133,则BD >AE ,故C 错误.故选:ABD .【点睛】关键点睛:本题解决的关键是设M m ,m 24 ,从而利用熟练的运算能力将E ,D 的坐标表示为关于m 的表达式,从而得解.6.(2023·山东青岛·统考一模)已知A 、B 是平面直角坐标系xOy 中的两点,若OA =λOB λ∈R ,OA ⋅OB=r 2r >0 ,则称B 是A 关于圆x 2+y 2=r 2的对称点.下面说法正确的是()A.点1,1 关于圆x 2+y 2=4的对称点是-2,-2B.圆x 2+y 2=4上的任意一点A 关于圆x 2+y 2=4的对称点就是A 自身C.圆x 2+y -b 2=b 2b >0 上不同于原点O 的点M 关于圆x 2+y 2=1的对称点N 的轨迹方程是y =12bD.若定点E 不在圆C :x 2+y 2=4上,其关于圆C 的对称点为D ,A 为圆C 上任意一点,则AD AE为定值【答案】BCD【分析】利用题中定义可判断AB 选项;设点M x 0,y 0 ,其中x 0≠0,设点N x ,y ,可得出x 20+y 20=2by 0,根据题中定义并结合已知条件求出点N 的轨迹方程,可判断C 选项;证明出△AOD ∽△EOA ,可得出AD AE=OA OE,可判断D 选项.【详解】对于A 选项,取点A 1,1 ,设点A 关于圆x 2+y 2=4的对称点为B ,则存在e 使得,OB =e OA ,可得OA ⋅OB =e OA 2=2e =4,则e =2,所以,OB =2OA =2,2 ,因此,点1,1 关于圆x 2+y 2=4的对称点是2,2 ,A 错;对于B 选项,由题意可知OA=2,设点A 关于圆x 2+y 2=4的对称点为点B ,则存在实数k ,使得OB =kOA ,所以,OA ⋅OB =kOA 2=4k =4,可得k =1,即OB =OA ,因此,圆x 2+y 2=4上的任意一点A 关于圆x 2+y 2=4的对称点就是A 自身,B 对;对于C 选项,设点M x 0,y 0 ,其中x 0≠0,设点N x ,y ,因为点M 在圆x 2+y -b 2=b 2b >0 上,则x 20+y 0-b 2=b 2,可得x 20+y 20=2by 0,由题意可知,存在实数m ,使得ON =mOM ,即x =mx 0y =my 0 ,所以,OM ⋅ON =mOM 2=m x 20+y 20 =2bmy 0=2by =1,可得y =12b,因此,点N 的轨迹方程为y =12b,C 对;对于D 选项,设点E x 1,y 1 ,则x 21+y 21≠4,设点D x 2,y 2 ,由题意可知,存在实数t ,使得OD =tOE ,且OD ⋅OE =tOE 2=4,则t >0,所以,OD 、OE 同向,且OD ⋅OE =OD ⋅OE =4=OA 2,所以,OD OA =OA OE ,又因为∠AOD =∠EOA ,所以,△AOD ∽△EOA ,所以,AD AE=OA OE为定值,D 对.故选:BCD .【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标x 0、y 0,然后代入点P 的坐标x 0,y 0 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.7.(2023·山东济宁·统考一模)已知F 1,F 2是椭圆C 1:x 2a 12+y 2a 22=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2a 22=1(a 2>0,b 2>0)的公共焦点,e 1,e 2分别是C 1与C 2的离心率,且P 是C 1与C 2的一个公共点,满足PF 1⋅PF 2=0,则下列结论中正确的是()A.a 12+b 12=a 22-b 22 B.1e 21+1e 22=2C.1e 1+3e 2的最大值为22 D.3e 1+1e 2的最大值为22【答案】BD【分析】根据共焦点得到a 12-b 12=a 22+b 22,A 错误,计算PF 1 =a 1+a 2,PF 2 =a 1-a 2,得到a 12+a 22=2c 2,B 正确,设1e 1=2sin θ,1e 2=2cos θ,代入计算得到C 错误,D 正确,得到答案.【详解】对选项A :椭圆和双曲线共焦点,故a 12-b 12=a 22+b 22,错误;对选项B :PF 1 ⋅PF 2 =0,即∠F 1PF 2=π2,PF 1 +PF 2 =2a 1,PF 1 -PF 2 =2a 2,故PF 1 =a 1+a 2,PF 2 =a 1-a 2,故a 1+a 2 2+a 1-a 2 2=4c 2,即a 12+a 22=2c 2,即1e 12+1e 22=2,正确;对选项C :设1e 1=2sin θ,1e 2=2cos θ,1e 1+3e 2=2sin θ+6cos θ=22sin θ+π3 ,若最大值为22,则θ+π3=π2+2k π,k ∈Z ,θ=π6+2k π,k ∈Z ,1e 1=22,即e 1=2>1,不成立,错误;对选项D :设1e 1=2sin θ,1e 2=2cos θ,3e 1+1e 2=6sin θ+2cos θ,=22sin θ+π6 ,若最大值为22,则θ+π6=π2+2k π,k ∈Z ,θ=π3+2k π,k ∈Z ,1e 1=62,即e 1=63,1e 2=22,e 2=2,成立,正确;故选:BD【点睛】关键点睛:本题考查了椭圆和双曲线的离心率相关问题,意在考查学生的计算能力,转化能力和综合应用能力,其中利用三角换元求最值可以简化运算,是解题的关键.8.(2023·山东济南·一模)在平面直角坐标系xOy 中,由直线x =-4上任一点P 向椭圆x 24+y 23=1作切线,切点分别为A ,B ,点A 在x 轴的上方,则()A.∠APB 恒为锐角B.当AB 垂直于x 轴时,直线AP 的斜率为12C.|AP |的最小值为4D.存在点P ,使得(PA +PO )⋅OA=0【答案】ABD【分析】对于A 项,利用椭圆的切点弦方程可得l AB 过椭圆左焦点,再判定以AB 为直径的圆与直线x =-4的位置关系即可;对于B 项,当AB 垂直于x 轴时,可直接解得切线方程判定即可;对于C 项,特殊值法判定即可;对于D 项,取OA 中点M ,易知PM ⊥OA ,建立方程计算即可.【详解】对于A 项,设切线方程为l :y =kx +m ,P -4,t 、A x 1,y 1 、B x 2,y 2 联立y =kx +m3x 2+4y 2-12=0得:4k 2+3 x 2+8km +4m 2-12=0,∵直线与椭圆相切,故Δ=0,则x 1=-4km 4k 2+3,y 1=3m 4k 2+3∴k =-3x 14y 1,m =3y 1,∴切线PA 的方程为l PA :x 1x 4+y 1y 3=1,同理切线PB 的方程为l :x 2x4+y 2y 3=1而P 点在l PA 、l PB 上,故-4x 14+y 1t 3=1-4x 24+y 2t 3=1,又A x 1,y 1 、B x 2,y 2 满足该方程组,故l AB :-4x 4+ty 3=1,显然l AB 过定点-1,0 即椭圆左焦点.以AB 为直径的圆半径最大无限接近a ,但该圆与x =-4一直相离,即∠APB 始终为锐角,A 正确;对于B 项,由A 得l AB :-4x 4+ty 3=1,AB ⊥x 轴时,t =0,易得A -1,32、P -4,0 ,∴k PA =32-0-1--4=12,故B 正确;对于C 项,由B 知AB ⊥x 轴时,A -1,32 、P -4,0 此时PA =352<4,故C 错误;对于D 项,取AO 中点M ,若(PA +PO )⋅OA =0则2PM ⋅AO=0,∴PM ⊥AO ,即△PAO 为等腰三角形,PA 2=x 1+4 2+y 1-t 2=PO 2=16+t 2,化简得x 12+y 12+8x 1-2ty 1=0,由A 知:ty 1=3x 1+3,y 12=31-x 124,整理得:x 12+8x 1-12=0,∴x 1=27-4,显然存在P 满足题意,故D 正确;故选:ABD【点睛】本题考查圆锥曲线的综合应用,属于压轴题.对于小题,提高效率可以用特殊值法,极端位置猜测,这里也需要积累一些比较常用的二级结论:(1)过椭圆x 2a 2+y 2b 2=1上一点x 0,y 0 的切线方程x 0x a 2+y 0y b2=1,(2)椭圆x 2a 2+y 2b 2=1外一点x 0,y 0 引两条切线,切点连线方程为x 0x a 2+y 0y b2=1;(3)椭圆x 2a 2+y 2b 2=1的准线方程:x =±a 2c ,过准线引椭圆的两条切线,切点连线过对应焦点.9.(2023·山东·沂水县第一中学校联考模拟预测)已知AB ,CD 是经过抛物线y 2=2x 焦点F 的互相垂直的两条弦,若AB 的倾斜角为锐角,C ,A 两点在x 轴上方,则下列结论中一定成立的是()A.AB 2+CD 2最小值为32B.设P x ,y 为抛物线上任意一点,则x +x -322+y -22的最小值为5C.若直线CD 的斜率为-3,则AF ⋅BF =4D.OA ⋅OB +OC ⋅OD =-32【答案】AD【分析】选项AC :数形结合推导出|AF |=p 1-cos α,|BF |=p1+cos α,应用公式求解和判断;选项B :根据抛物线定义和性质转化求解;选项D :联立方程,应用韦达定理证得:OA ⋅OB =OC ⋅OD =-34p 2即可判断;【详解】设直线AB 的倾斜角为α.AF =AA 1 =p +FH =p +AF cos α,则AF 1-cos α =p ,即AF =p 1-cos α,同理可得BF =p1+cos α.y 2=2x ,根据定义得:p =1,焦点坐标12,0;选项A :AB 2+CD 2=2p sin θ 2 2+2p sin θ+π2 22=4p 2sin θ 4+4p 2cos θ 4≥8sin θ 2cos θ 2(当且仅当θ=π4时等号成立)8sin θ 2cos θ 2=812sin2θ2=32sin 22θ≥32,因为sin2θ∈-1,1 ,所以AB 2+CD 2=32sin 22θ≥32,故A 正确;选项B :令Q 32,2 ,x +x -32 2+y -2 2=x +p2+x -322+y -2 2-p2转换成抛物线上的点到焦点的距离,x +x -322+y -2 2=PF +PQ -12≥FQ -12=32-122+2-0 2-12=5-12,故B 错误;选项C :tan θ=-3,根据三角函数间关系得:cos θ=-12,AF ⋅BF =p 1-cos α⋅p 1+cos α=43,故C 错误;选项D :因为AB 的斜率为k ,AB ⊥CD ,所以k CD =-1k ,设A (x 1,y 1),B (x 2,y 2),AB 的方程为y =k x -p2 ,由y =k x -p2y 2=2px可得,k 2x 2-p (k 2+2)x +14k 2p 2=0,x 1+x 2=p (k 2+2)k 2x 1x 2=14p2,OA ⋅OB =x 1x 2+y 1y 2=14p 2+k 2x 1-p 2 x 2-p 2=14p 2+k 2x 1x 2-p 2x 1+x 2 +14p 2 =14p 2+12k 2p 2-p 2(k 2+2)2=-34p 2与k 无关,同理OC ⋅OD =-34p 2,故OA ⋅OB +OC ⋅OD =-32p 2=-32,即OA ⋅OB +OC ⋅OD =-32故D 正确;故选:AD ;10.(2023·湖南·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,C 的一条渐近线l 的方程为y =3x ,且F 1到l 的距离为33,点P 为C 在第一象限上的点,点Q 的坐标为2,0 ,PQ 为∠F 1PF 2的平分线.则下列正确的是()A.双曲线的方程为x 29-y 227=1B.PF 1=3 PF 2C.OP =36D.点P 到x 轴的距离为3152【答案】ACD【分析】由F 1到l 的距离为33以及渐近线方程为y =3x 可求得a =3,b =33,c =6,即可得出方程,判断A ;由PF 1PF 2 =QF 1QF 2 可求出判断B ;结合双曲线定义可求得PF 1 =12,PF 2 =6,求出cos ∠F 1PF 2,即可求出PF 1 +PF 2,判断C ;利用等面积法可求得点P 到x 轴的距离,判断D .【详解】F 1-c ,0 到y =3x 的距离为33,3c2=33,解得c =6,又渐近线方程为y =3x ,则ba=3,结合a 2+b 2=c 2可解得a =3,b =33,则双曲线的方程为x 29-y 227=1,故A 正确;PQ 为∠F 1PF 2的平分线,PF 1 PF 2=QF 1 QF 2=84=2,故B 错误;由双曲线定义可得PF 1- PF 2 =6,则可得PF 1 =12,PF 2 =6,则在△PF 1F 2中,cos ∠F 1PF 2=122+62-1222×12×6=14,则|PF 1 +PF 2 |2=PF 1 2+2PF 1 ⋅PF 2 +PF 2 2=122+2×12×6×14+62=216,则PF 1 +PF 2 =2PO=66,即OP =36,故C 正确;在△PF 1F 2中,sin ∠F 1PF 2=1-cos 2∠F 1PF 2=154,设点P 到x 轴的距离为d ,则S △PF 1F 2=12×F 1F 2×d =12PF 1× PF 2 ×sin ∠F 1PF 2,即12×12×d =12×12×6×154,解得d =3152,故D 正确.故选:ACD .【点睛】关键点点睛:是根据已知求出双曲线方程,结合双曲线的定义求得焦点三角形的各边长.11.(2023·湖南·模拟预测)已知椭圆:Γ:x 2a2+y 23=1(a >3)的左、右焦点分别为F 1、F 2,右顶点为A ,点M 为椭圆Γ上一点,点I 是△MF 1F 2的内心,延长MI 交线段F 1F 2于N ,抛物线y 2=158(a +c )x (其中c为椭圆下的半焦距)与椭圆Γ交于B ,C 两点,若四边形ABF 1C 是菱形,则下列结论正确的是()A.|BC |=352 B.椭圆Γ的离心率是32C.1MF 1 +4MF 2的最小值为94 D.|IN ||MI |的值为12【答案】ACD【分析】对于A ,利用椭圆与抛物线的对称性得到m =12a -c ,从而将B m ,n 代入抛物线方程得到n =354,进而得以判断;对于B ,将B m ,n 代入椭圆Γ的方程得到a =2c ,由此得以判断;对于C ,利用椭圆的定义与基本不等式“1”的妙用即可判断;对于D ,利用三角形内心的性质与三角形角平分线的性质,结合比例的性质即可判断.【详解】对于A ,因为椭圆Γ:x 2a 2+y 23=1(a >3)的左、右焦点分别为F 1、F 2,右顶点为A ,则A a ,0 ,F 1-c ,0 ,F 2-c ,0 ,b 2=3,因为抛物线y 2=158(a +c )x (其中c 为椭圆下的半焦距)与椭圆Γ交于B ,C 两点,所以由椭圆与抛物线的对称性可得,B ,C 两点关于x 轴对称,不妨设B m ,n ,C m ,-n ,n >0,因为四边形ABF 1C 是菱形,所以BC 的中点是AF 1的中点,所以由中点坐标公式得2m =a -c ,则m =12a -c ,将B m ,n 代入抛物线方程y 2=158(a +c )x 得,n 2=158a +c m =1516a +c a -c =1516a 2-c 2,所以n 2=1516b 2=4516,则n =354,所以|BC |=2n =352,故A 正确;对于B ,由选项A 得B 12a -c ,354 ,再代入椭圆方程得14⋅a -c 2a2+4516×3=1,化简得a -c2a2=14,则a -c a =12,故a =2c ,所以e =c a =12,故B 错误;对于C ,由选项B 得a =2c ,所以b 2=a 2-c 2=3c 2=3,则c =1,a =2,所以MF 1 +MF 2 =2a =4,不妨设MF 1 =s ,MF 2 =t ,则s +t =4,且s >0,t >0,所以1MF 1 +4MF 2=1s +4t =14s +t 1s +4t =145+t s +4s t ≥145+2t s ⋅4s t =94,当且仅当t s =4s t 且s +t =4,即s =43,t =83,即MF 1 =43,MF 2 =83时,等号成立,所以1MF 1 +4MF 2 的最小值为94,故C 正确;对于D ,连接IF 1和IF 2,如图,因为△MF 1F 2的内心为I ,所以IF 1为∠MF 1F 2的平分线,则有MF 1 F 1N=MI IN,同理:MF 2 F 2N=MI IN,所以MF 1 F 1N=MF 2 F 2N=MI IN,所以MI IN=MF 1 +MF 2 F 1N +F 2N=2a 2c =2,所以|IN ||MI |=12,故D 正确.故选:ACD .【点睛】关键点睛:本题的关键点是利用椭圆与抛物线的对称性,可设B ,C 的坐标,再由菱形的性质与中点坐标公式推得m =12a -c ,从而求得a ,c 的值,由此得解.三、填空题1.(2023·广东揭阳·校考模拟预测)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点为F 1,F 2,P 是双曲线上一点,且∠F 1PF 2=π3.若ΔF 1PF 2的外接圆和内切圆的半径分别为R ,r ,且R =4r ,则双曲线的离心率为.【答案】2721.【分析】在△F 1PF 2中,利用正弦定理:2R =F 1F 2sin ∠F 1PF 2,求得R =233c ,r =14R =36c ,设PF 1 =m ,PF 2 =n ,再利用余弦定理求得mn ,然后由S △F 1PF 2=12mn sin π3=12m +n +2c r 求解.【详解】双曲线的焦点为F 1-c ,0 ,F 2c ,0 ,F 1F 2 =2c ,在△F 1PF 2中,由正弦定理得:2R =F 1F 2sin ∠F 1PF 2=2c sin π3=433c ,解得R =233c ,r =14R =36c ,设PF 1 =m ,PF 2 =n ,在△F 1PF 2中,由余弦定理得:4c 2=m 2+n 2-2mn cos π3=m -n 2+mn ,解得mn =4c 2-a 2 ,所以S △F 1PF 2=12mn sin π3=3c 2-a 2 ,因为m +n 2=m -n 2+4mn =4a 2+16c 2-a 2 =16c 2-12a 2又S △F 1PF 2=12m +n +2c r =3c m +n +2c12,所以3c 2-a 2=3c m +n +2c 12,则m +n =10c 2-12a 2c所以m +n 2=10c 2-12a 2c2=16c 2-12a 2整理得21c 4+36a 4-57a 2c 2=0,则c 2-a 2 21c 2-36a 2 =0解得e =c a =2217或e =1(舍去)故答案为:2217.【点睛】关键点点睛:本题的关键在于结合正余定理以及S △F 1PF 2=12mn sin π3=12m +n +2c r 化简求解.2.(2023·浙江·校联考三模)已知椭圆E :x 24+y 2=1,椭圆的左右焦点分别为F 1,F 2,点A (m ,n )为椭圆上一点且m >0,n >0,过A 作椭圆E 的切线l ,并分别交x =2、x =-2于C 、D 点.连接CF 1、DF 2,CF 1与DF 2交于点E ,并连接AE .若直线l ,AE 的斜率之和为32,则点A 坐标为.【答案】2,22 ##2,122 【分析】设直线l 的程y =kx +b ,利用直线与椭圆相切,联立方程,则Δ=0,即4k 2=b 2-1,最后得到切线方程为mx4+ny =1,再求出C ,D 坐标,写出直线直线DF 2,CF 1的方程,联立解出E 点坐标,最后得到m =2n ,再联立m 24+n 2=1,解出即可.【详解】由椭圆E :x 24+y 2=1可得F 1(-3,0),F 2(3,0),。

高考考前数学小题强化训练十五

高考考前数学小题强化训练十五

高考考前数学小题强化训练十五时量:45分钟满分:70分一、选择题(本大题共10个小题,每小题5分,共50分,每小题给出的选项中,只有一项符合题目要求的)1.设集合P = {1, 3, 5,…, 2n– 1…} (n∈N*),若a ∈P,b∈P,则a○+b∈P,则运算a○+b可能是( C )A.加法B.减法C.乘法D.除法2.在(x2 + 3x + 2)5展开式中x的系数为(B )A.160 B.240 C.360 D.800【解析】∵(x2 + 3x + 2)5 = (x + 1)5 (x + 2)5,∴含x的一次项系数为45C×25 +45C·24 = 240. 3.曲线y = 4x–x3在点(–1, –3)处的切线的斜率和纵截距分别是( D )A.7, 4 B.7, 2 C.1, – 4 D.1, –2【解析】由于k = y′|x = –1 = 1,切线方程为y = x–2,故选D.4.设α、β、γ为平面,m、n、l为直线,则m⊥β的一个充分条件是( D )A.α⊥γ,β⊥γ,α∩γ= mB.α⊥β,m⊥l,α∩β= lC.α⊥γ,β⊥γ,m⊥αD.n⊥α,n⊥β,m⊥α【解析】由n⊥α,n⊥β,得α∥β,又m⊥α,∴m⊥β,故选D.5.正三棱锥P—ABC的三条侧棱两两互相垂直,则该正三棱锥的内切球与外接球的半径之比为( D )A.1:3 B.1:)33(+C.3:)13(+D.3:)13(-【解析】设棱长为1,则外接球半径R=23,内切线半径r =6333-=表SV.6.若0<x<2π,则2x与3sin x的大小关系( D )A.2x<3sim x B.2x<3sim xC.2x = 3sim x D.与x的取值有关【解析】(sin x)′|x = 0 = 1>32,利用数形结合可得结论,或赋值法.7.已知非零向量AB与AC满足·BC = 0,且||||2ACABACAB⋅=⋅,则△ABC的形状是( B )A.直角三角形B.等边三角形C.等腰非等边三角形D.三边不等的三角形【解析】由)·BC=0,知AD⊥BC,∴□ABDC为菱形,又||||2ACABACAB⋅=⋅,∴∠BAC =3π,故△ABC为等边三角形.8.等差数列{a n}的前n项和为S n,若S3 = –6,S18–S15 = 18,则S18 = (C )A.9 B.18 C.36 D.72【解析】由于S3,S6–S3,S9–S6,…,S18–S15仍是等差数列,∴S18 = S3 + (S6–S3) + (S9–S6)+…+(S 18 – S 15) =26)186(⨯+-= 36.9.在1,2,3,4,5的排列a 1a 2a 3a 4a 5中,满足a 1<a 2,a 2>a 3,a 3<a 4,a 4>a 5的排列的个数是( D )A .10B .12C .14D .16 【解析】先排a 2a 4,a 2a 4只能是4、5两数完成3、5两数字,当a 2a 4是4,5时,有332A 种,当a 2a 4是3,5时,共有222A ×2种,故共有16种.10.如图椭圆中心在原点,A 是右顶点,B 是上顶点,右焦点F 到y 轴距离等于到直线AB 的距离,则椭圆离心率e 在下列哪个范围中( C ) A .)51,0(B .)52,51(C .)12,52(- D .)53,12(-【解析】由已知得cbac a b =+-22)(,故2e 3– 2e 2– 2e + 1 = 0. 设f (x ) = 2x 3– 2x 2– 2x + 1,∵1251)52(=f >0,17212)12(-=-f <0,且f (x )在[0, 1]递减且连续,故选C. 二、填空题(本大题共5个小题,每小题4分,共20分,将最后结果填在题中的横线上) 11.某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为12581.【解析】由于击中目标次服从二项分布,所以所求为P = P 3(2) + P 3(3) =125811252712554=+.12.已知方程|x | = ax + 1恰有一个负根,而没有正根,则a 的取值范围是),1[+∞.【解析】转化为y = |x |与y = ax = 1的图象只有一个横坐标为负的交点,故a ≥1. 13.若sin 21)(=+βα,sin 31)(=-βα,则βαc o t t a n= 5 .【解析】由已知, 得21sin cos cos sin =+βαβα①31sin cos cos sin =-βαβα ②,①+②得125cos sin =βα③,①–②得121cos sin =βα④,③÷④得βαcot tan = 5.14.把半径都为1的四个钢球完全装入形状为球的容器里,则这个球半径的最大值为126+.【解析】四个小球两两外切,四球心构成一个棱长为2的正四面体,其外接球半径为2643236=⨯⨯,故此球半径的最小值为126+.15.分段函数f (x ) =⎩⎨⎧≤->0,0,x x x x 可表示为f (x ) = |x |,同样分段函数f (x ) =⎩⎨⎧<≥3,33,x x x ,可表示为f (x )=|)3|3(21-++x x ,仿此,分段函数f (x )=⎩⎨⎧≤>3,3,3x x x 可表示为f (x ) =|)3|3(21--+x x .分段函数f (x )=⎪⎩⎪⎨⎧≥<<≤b x b b x a x ax a ,,,可表示为f (x )=|)|||(21b x a x b a ---++.【解析】分段折线函数可表示为一次函数的绝对值的线性组合.。

2023高考数学复习专项训练《空间中直线与平面的位置关系》(含解析)

2023高考数学复习专项训练《空间中直线与平面的位置关系》(含解析)

2023高考数学复习专项训练《空间中直线与平面的位置关系》一、单选题(本大题共12小题,共60分)1.(5分)设m,n为两条不同的直线,α,β为两个不同的平面,给出下列命题:①若m⊥α,m⊥β,则α//β②若m//α,m//β,则α//β③若m//α,n//α,则m//n④若m⊥α.n⊥α,则m//n上述命题中,所有真命题的序号是()A. ①④B. ②③C. ①③D. ②④2.(5分)直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,下列命题正确的是:A. l与l1,l2都不相交B. l与l1,l2都相交C. l至多与l1,l2中的一条相交D. l至少与l1,l2中的一条相交3.(5分)已知α、β是不同的平面,m、n是不同的直线,则下列命题不正确的是()A. 若m⊥α,m//n,n⊂β,则α⊥βB. 若m//α,α∩β=n,,则m//nC. 若m//n,m⊥α,则n⊥αD. 若m⊥α,m⊥β,则α//β4.(5分)已知两条直线m、n,两个平面α、β,给出下面四个命题:①m//n,m⊥α⇒n⊥α①α//β,m⊂α,n⊂β⇒m//n①m//n,m//α⇒n//α①α//β,m//n,m⊥α,⇒m⊥β其中正确命题的序号是()A. ①①B. ①①C. ①①D. ①①5.(5分)已知α,β是两个不同的平面,下列四个条件中能推出α//β的是()①存在一条直线m,m⊥α,m⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线m,n,m⊂α,n⊂β,m//β,n//α;④存在两条异面直线m,n,m⊂α,n⊂β,m//β,n//α.A. ①①B. ①①C. ①①D. ①①6.(5分)棱柱的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A. 平行B. 相交C. 平行或相交D. 不相交7.(5分)若α,β是两个不同的平面,m,n,l是三条不同的直线,则下列命题错误的是()A. 若m⊂α,l∩α=A,且A∉m,则l与m不共面B. 若m,l是异面直线,l//α,m//α,且n⊥l,n⊥m,则n⊥αC. 若l⊂α,m⊂α,l∩m=A,l//β,m//β,则α//βD. 若l//α,m//β,α//β,则l//m8.(5分)已知平面α⊥平面β,α∩β=n,直线l⊂α,直线m⊂β,则下列说法正确的个数是()①若l⊥n,l⊥m,则l⊥β;②若l//n,则l//β;③若m⊥n,l⊥m,则m⊥α.A. 0B. 1C. 2D. 39.(5分)已知a,b为两条不同直线,α、β为两个不同平面.下列命题中正确的是()A. 若a//α,b//α,则a与b共面B. 若a⊥α,α//β,则a⊥βC. 若a⊥α,α⊥β,则a//βD. 若α//b,β//b,则α//β10.(5分)若直线l平行于平面α,则()A. α内所有直线与l平行B. 在α内不存在直线与l垂直C. α内存在唯一的直线与l平行D. α内存在无数条直线与l成60°角11.(5分)在空间中,设l是一条直线,α,β是两个不同的平面.下列结论正确的是()A. 若l//α,l//β,则α//βB. 若l⊥α,l⊥β,则α//βC. 若l//α,α//β,则l//βD. 若l//α,α⊥β,则l⊥β12.(5分)直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”的逆命题、否命题、逆否命题中真命题的个数为()A. 0B. 1C. 2D. 3二、填空题(本大题共5小题,共25分)13.(5分)设l,m,n是空间三条不同的直线,α,β是空间两个不重合的平面,给出下列四个命题:①若l与m异面,m//n,则l与n异面;②若l//α,α//β,则l//β;③若α⊥β,l⊥α,m⊥β,则l⊥m;④若m//α,m//n,则n//α.其中正确命题的序号有 ______ .(请将你认为正确命题的序号都填上)14.(5分)作直线a、b和平面α,则下列小组内两个事件互为对立事件的有 ______组(请填写个数).A组:“a//b”和“a⊥b”;B组:“a、b为异面直线”和“a⊥b”;C组:“a//α或a⊂α”和“a与α相交”.15.(5分)已知关于空间两条不同直线m,n,两个不同平面α,β,有下列四个命题:①若m//α且n//α,则m//n;②若m⊥β且m⊥n,则n//β;③若m⊥α且m//β,则α⊥β;④若n⊂α且m不垂直于α,则m不垂直于n.其中正确命题的序号为______.16.(5分)若α、β是两个相交平面,则在下列命题中,真命题的序号为______.(写出所有真命题的序号)①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线.②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直.③若直线m⊂α,则在平面β内,不一定存在与直线m垂直的直线.④若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线.17.(5分)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为√3,那么P到平面ABC的距离为________.三、解答题(本大题共6小题,共72分)18.(12分)如图,四棱锥P−ABCD中,AD//BC,AB=BC=1AD,E,F,H分别为线段AD,PC,CD的中点,AC2与BE交于O点,G是线段OF上一点.(1)求证:AP//平面BEF;(2)求证:GH//平面PAD.19.(12分)用符号语表示图中点、直线、平面的位置关系.20.(12分)如图,在正三棱柱ABC−A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为√29,设这条最短路线与CC1的交点为N,求:(I)该三棱柱的侧面展开图的对角线长(II)PC和NC的长(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)21.(12分)如图,正方体ABCD−A1B1C1D1中,M,N分别是AB,A1D1的中点.判断直线MN与平面BB1D1D的位置关系,并说明理由.22.(12分)如图,在棱长为a的正方体ABCD−A1B1C1D1中,点E是棱D1D的中点,点F在棱B1B上,且满足B1F=2BF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学复习小题训练15
高考数学复习小题训练(15)
一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题意要求的。

1.设集合{}2,1=A ,则满足{}3,2,1=B A 的集合B 的个数是 A .1 B .3 C .4 D .8
2.“1=a ”是“函数a x x f -=)(在区间[)1,+∞上为增函数”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.设π20<≤x ,且x
2sin 1-=,cos sin x x -则
A .0≤x ≤
B .4π≤x ≤45π
C .4π≤x ≤47π
D .2
π≤x ≤23π
4.函数)11
2lg(-+=x y 的图象关于( )对称; ....A y x B x C y D =直线轴轴原点
5.在正方体ABCD -A 1BC 1D 1中,点P 在线段AD 1上运动,
则异面直线CP 与BA 1所成的角的取值范围是
A.02πθ<<
B.02πθ<≤
C.
30πθ≤≤ D.03πθ<≤ 6.已知数列{}n
a 的通项公式)(,2
1
log 2
*∈++=N n n n a
n
,设{}n
a 的前n 项
的和为n
S ,则使5
-<n
S
成立的自然数n ( )
.63.63.31 .31
A B C D 有最大值有最小值有最大值有最小值
7. 世界杯足球赛共有24个球队参加比赛,第一轮分成六个组进行单循环赛(在同一组的每两个队都要比
赛),决出每个组的一、二名,然后又在剩下的12个队中按积分取4个队(不比赛),共计16个队进行
淘汰赛来确定冠亚军,则一共需比赛( )场次 A.53 B.52 C.51 D.50
8.若将))((b x a x --逐项展开得ab bx ax x +--2
,则2
x 出现的频率
为14,x 出现的频率为1
2
,如此将))()()()((e x d x c x b x a x -----逐项展开后,3
x 出现的频率是( ) 32
5
.51.61.165.D C B A 9.若m 是一个给定的正整数,如果两个整数b a ,用m 除所
得的余数相同,则称a 与b 对模m 同余,记作[mod()]a b m ≡,例如:513[mod(4)]≡.若:2008
2[mod(7)]r ≡,则r 可以为( ) .1.2.3.4A B C D
10.如图,过抛物线)(022
>=p px y 的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若
BF BC 2=,且3=AF ,则此抛物线的方程为 ( )
A .x y 232=
B .x y 92=
C .x y 2
9
2
= D .x
y 32
=
二、填空题:本大题共6小题,每小题5分,共30分。

把答案填在答题卷相应位置。

11、设函数
2
(1)(1)()41
(1)
x x f x x x ⎧+<⎪=⎨
--≥⎪⎩, 则使得≥1的自变量的
取值范围是
12、设))((R x x f ∈是以3为周期的周期函数,且为奇函数,又
F x
y
A
B
C
O
,
)2(,1)1(a f f =>那么 a 的取值范围是 .
13、已知,,R y x ∈且满足不等式组⎪⎩

⎨⎧≤≤≥+756y x y x ,则2
2
y x
+的最大值
是 .
14、已知动点),(y x P 在椭圆116
25
2
2
=+y x 上,若A 点坐标为),
0,3(,1||=AM 且0=⋅AM PM ,则
|
|PM 的最小值是 .
15、定义运算a ※b 为
.如1※2=1,
则函数※
的值域为 ;
若a ※b 为,如1※2=2,则函


的值域为 .
16.对于不同的直线m , n 和不同的平面βα,,给出下列命题: ① m n m α⊥⎫
⇒⎬⊥⎭
n ∥α ② m n αα⊥⎫
⇒⎬⊥⎭
n ∥m

//m n αβαβ⊂⎫
⎪⊂⇒⎬⎪⎭
m 与n 异面 ④
n m n m
βααββ
⊥⎫

=⇒⊥⎬⎪⊥⎭
其中正确..的命题序号是 .
C A B
D D B C A B D
11、,12、13.1-<a13、
74
14、,15、,
16.②。

相关文档
最新文档