北海市2013-2014学年度第一学期期末教学质量测查高二数学参考答案及

合集下载

2013-2014学年八年级数学上学期期末考试试题 (新人教版 第12套)

2013-2014学年八年级数学上学期期末考试试题 (新人教版 第12套)

广西北海市合浦县教育局教研室2013-2014学年八年级上学期期末考试数学试题 新人教版第一卷 客观题一、选择题(每小题3分,共36分) 1.下列说法错误的是( )A. 三角形的中线、高、角平分线都是线段B. 任意三角形内角和都是180°C. 三角形按角可分为锐角三角形、直角三角形和等腰三角形D. 直角三角形两锐角互余 2.下列各式①πx 6、②x x 1-、③(2a-1)÷(2b-5)、④213+x 中,是分式的有: ( ) A. ②③ B. ②③④ C. ①②③ D. ③3.若两个直角三角形的两直角边对应相等,则这两个三角形全等的依据是( ) A. HL B. SSS C. AAS D. SAS4.小明在镜子里看到自己的像在用右手拿着梳子向左梳头,那么他实际是( ) A.用右手向左梳头 B.用左手向右梳头 C.用右手向右梳头 D.用左手向左梳头5.等腰三角形ABC 在直角坐标系中,底边的两点坐标是(-2,0)、(6,0),则可以确定其顶点的( )A.横坐标B.纵坐标C.横坐标及纵坐标D.横坐标或纵坐标 6.如图所示,四边形OABC 为正方形,边长为3, 点A ,C 分别在x 轴,y 轴的正半轴上,点D 在 OA 上,且D 的坐标为(1,0),P 是OB 上的一动点, 则“求PD+PA 和的最小值”要用到的数理依据是( ) A. “两点之间,线段最短” B. “轴对称的性质”C. “两点之间,线段最短”以及“轴对称的性质”D. 以上答案都不正确7.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:+-=---y x xy x y xy 22612)124.(3空格的地方被钢笔水弄污了,你认为空格内上应填写( )A. xy 3B. xy 3-C. -1D. 1 8.下列多项式乘法中,能用平方差公式计算的是( ) A. (x +1)(-1-x ) B. )21)(21(b a b a -+ C. (3b +2a)(2a -3b) D. (x 2-y )(x +y 2)9.已知)2311)(1713()1713)(3119(-----x x x x 可因式分解成(a x +b)(8x +c),其中a 、b 、c 均为整数,则a+b+c=( )A. 72B. 38C. -32D. -12第6题图10.93122--÷--y a a y a 化简结果为( ) A. a y 3- B. a y 3+ C. )3()3()1(22+--y y a a D. )3)(3()1(2-+-y y a a 11.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=25°,则∠E 的度数是( ) A.25° B.65° C.25°或55° D.25°或65°12.甲乙两工程队共同参与一项筑路工程,规定x 天内完成任务。

职高数学试卷答卷答案详解

职高数学试卷答卷答案详解

2013学年第一学期期中试卷高二职高数学本试题卷共4页,五大题17小题。

全卷满分100分。

考试用时100分钟注意事项:答题前,考生务必将自己的姓名、准考证号填写在试题卷一、选择题(本大题共l2小题.每小题4分,共48分在每小题给出的四个选项中,只有一项是满足题目要求的)1、已知 A (-5,2)B (0,-3)则直线AB 斜率为 ( ) A 、 -1 B 、1 C 、31D 、0 2、经过点(1,2)且倾斜角为450的直线方程为 ( ) A 、1+=x y B 、x y 2= C 、3+-=x y D 、x y 2-= 3、如图直线1l ,2l ,3l 的斜率分别为1k ,2k ,3k 则 ( ) A 、1k >2k >3k B 、2k >1k >3k C 、3k >2k >1k D 、2k >3k >1k4、直线06=+-y x 与直线0=+y x 的交点坐标为 ( ) A 、 (-3,3) B 、 (3,-3) C 、(4,2) D 、(3,3)5、直线1l 的倾斜角130α=o,直线12l l ⊥,则直线2l 的斜率为 ( )A 3-B 3C 33-D 336、经过点)4,1(-A 且与直线0532=++y x 平行的直线方程为 ( ) A 23100x y -+= B 01032=++y x C 23100x y +-= D 23100x y --=7、过点(2,1)A ,且与直线0102=-+y x 垂直的直线l 的方程为 ( ) A 20x y += B 20x y -= C 02=-y x D 20x y +=8、三条直线相交于一点,可以确定的平面个数是 ( )A 、1个B 、3个C 、4个D 、1个或3个9、下列选项中,能确定一个平面的是 ( ) A 、三个点 B 、一点和一条直线 C 、两条直线 D 、两条平行直线 10、若直线a 平行于平面α内的一条直线,则a 与平面α的位置关系是 ( ) A 、α//a B 、α⊂aC 、α//a 或α⊂aD 、α//a 或a 与α相交 11、用符合语言表示“点P 在直线l 上,l 在平面α内”,正确的是 ( ) A 、α∈∈l l P , B 、α⊂∈l l P , C 、α∈⊂l l P , D 、α⊂⊂l l P ,12、圆心为(-1,4),半径为5的圆的方程为 ( ) A 、25)4()1(22=++-y x B 、25)4()1(22=-++y x C 、5)4()1(22=++-y x D 、5)4()1(22=-++y x二、填空题(本大题共5小题,每小题4分,共20分.请将答案填在对应的位置上,其答案书写不清,模棱两可均不得分)13x+y+1=0的倾斜角为 ___ 14、原点到直线0834=+-y x 的距离为____________15、已知圆的方程为x 2+y 2-2x +4y =0,则圆心坐标为__________,半径为___________ 16、已知正方体1111ABCD A B C D -中,棱所在的直线总共有_______对是异面直线 17、已知c b a ,,是三条直线,给出下列命题:(1)若a 与b 垂直,c 与b 垂直,则a 与c 也垂直;(2)若a 与b 是异面直线,c 与b 是异面直线,则a 与c 也是异面直线;(3)若a 与b 是相交直线,c 与b 是相交直线,则a 与c 也是相交直线;(4)若a 与b 共面,c 与b 共面,则a 与c 也共面。

广东省部分学校2024-2025学年高二上学期第一次联考数学试卷(含答案解析)

广东省部分学校2024-2025学年高二上学期第一次联考数学试卷(含答案解析)

广东省部分学校2024-2025学年高二上学期第一次联考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知()()2,1,3,1,1,1a b =-=- ,若()a a b λ⊥-,则实数λ的值为()A .2-B .143-C .73D .22.P 是被长为1的正方体1111ABCD A B C D -的底面1111D C B A 上一点,则1PA PC ⋅的取值范围是()A .11,4⎡⎤--⎢⎥⎣⎦B .1,02⎡⎤-⎢⎥⎣⎦C .1,04⎡⎤-⎢⎥⎣⎦D .11,42⎡⎤--⎢⎥⎣⎦3.已知向量()4,3,2a =- ,()2,1,1b = ,则a 在向量b上的投影向量为()A .333,,22⎛⎫ ⎪⎝⎭B .333,,244⎛⎫ ⎪⎝⎭C .333,,422⎛⎫ ⎪⎝⎭D .()4,2,24.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102A G λλ=<<,则点G 到平面1D EF 的距离为()AB C .3D 5.已知四棱锥P ABCD -,底面ABCD 为平行四边形,,M N 分别为棱,BC PD 上的点,13CM CB =,PN ND =,设AB a =,AD b =,AP c = ,则向量MN 用{},,a b c 为基底表示为()A .1132a b c++B .1162a b c-++C .1132a b c -+D .1162a b c--+ 6.在四面体OABC 中,空间的一点M 满足1146OM OA OC λ=++ .若,,MA MB MC共面,则λ=()A .12B .13C .512D .7127.已知向量()()1,21,0,2,,a t t b t t =--=,则b a - 的最小值为()AB C D8.“长太息掩涕兮,哀民生之多艰”,端阳初夏,粽叶飘香,端午是一大中华传统节日.小玮同学在当天包了一个具有艺术感的肉粽作纪念,将粽子整体视为一个三棱锥,肉馅可近似看作它的内切球(与其四个面均相切的球,图中作为球O ).如图:已知粽子三棱锥P ABC -中,PA PB AB AC BC ====,H 、I 、J 分别为所在棱中点,D 、E 分别为所在棱靠近P 端的三等分点,小玮同学切开后发现,沿平面CDE 或平面HIJ 切开后,截面中均恰好看不见肉馅.则肉馅与整个粽子体积的比为().A .π9B .π18C .π27D .π54二、多选题9.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是()A .13DB =B .向量AE 与1AC uuu r 所成角的余弦值为5C .平面AEF 的一个法向量是()4,1,2-D .点D 到平面AEF 10.在正三棱柱111ABC A B C -中,1AB AA =,点P 满足][1([0,1,0,])1BP BC BB λμλμ=+∈∈,则下列说法正确的是()A .当1λ=时,点P 在棱1BB 上B .当1μ=时,点P 到平面ABC 的距离为定值C .当12λ=时,点P 在以11,BC B C 的中点为端点的线段上D .当11,2λμ==时,1A B ⊥平面1AB P 11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达・芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则()A .122CG AB AA =+ B .直线CQ 与平面1111D C B A 所成角的正弦值为23C .点1C 到直线CQ 的距离是3D .异面直线CQ 与BD 三、填空题12.正三棱柱111ABC A B C -的侧棱长为2,底面边长为1,M 是BC 的中点.在直线1CC 上求一点N ,当CN 的长为时,使1⊥MN AB .13.四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是正方形,且1PD =,3AB =,G 是ABC V 的重心,则PG 与平面PAD 所成角θ的正弦值为.14.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮那,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m AB =,10m BC =,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD 的夹角的正切值均为5,则该五面体的所有棱长之和为.四、解答题15.如图,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.16.如图所示,直三棱柱11ABC A B C -中,11,92,0,,CA CB BCA AA M N ︒==∠==分别是111,A B A A 的中点.(1)求BN 的长;(2)求11cos ,BA CB的值.(3)求证:BN ⊥平面1C MN .17.如图,在四棱维P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求直线PB 与平面PCD 所成角的正切值;(2)在PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.18.如图1,在边长为4的菱形ABCD 中,60DAB ∠=︒,点M ,N 分别是边BC ,CD 的中点,1AC BD O ⋂=,AC MN G ⋂=.沿MN 将CMN 翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P ABMND -.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)若平面PMN ⊥平面MNDB ,线段PA 上是否存在一点Q ,使得平面QDN 与平面PMN 所成Q 的位置;若不存在,请说明理由.19.如图,四棱锥P ABCD -中,四边形ABCD 是菱形,PA ⊥平面,60ABCD ABC ∠= ,11,,2PA AB E F ==分别是线段BD 和PC 上的动点,且()01BE PFBD PC λλ==<≤.(1)求证://EF 平面PAB ;(2)求直线DF 与平面PBC 所成角的正弦值的最大值;(3)若直线AE与线段BC交于M点,AH PM于点H,求线段CH长的最小值.参考答案:题号12345678910答案C BADDDCBBCDBCD题号11答案BC1.C【分析】利用两个向量垂直的性质,数量积公式即求得λ的值.【详解】 向量()()2,1,3,1,1,1a b =-=-若()a a b λ⊥-,则2()(419)(213)0a a b a a b λλλ⋅-=-⋅=++-++=,73λ∴=.故选:C .2.B【分析】建立空间直角坐标系,写出各点坐标,同时设点P 的坐标为(),,x y z ,用坐标运算计算出1PA PC ⋅,配方后可得其最大值和最小值,即得其取值范围.【详解】如图,以点D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,则1,0,0,()10,1,1C ,设(),,P x y z ,01x ≤≤,01y ≤≤,1z =,()1,,1PA x y ∴=--- ,()1,1,0PC x y =--,()()2222111111222PA PC x x y y x x y y x y ⎛⎫⎛⎫∴⋅=----=-+-=-+--⎪ ⎪⎝⎭⎝⎭,当12x y ==时,1PA PC ⋅ 取得最小值12-,当0x =或1,0y =或1时,1PA PC ⋅取得最大值0,所以1PA PC ⋅ 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.故选:B.3.A【分析】根据投影向量公式计算可得答案.【详解】向量a 在向量b上的投影向量为()()()2242312333cos ,2,1,12,1,13,,222b a b a a b b b b ⋅⨯+⨯-⎛⎫⋅⋅=⋅=⋅== ⎪⎝⎭r r rr r r r r r .故选:A.4.D【分析】建立空间直角坐标系,由点到平面的距离公式计算即可.【详解】以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴,建立如图所示的空间直角坐标系,则()2,,2G λ,()10,0,2D ,()2,0,1E ,()2,2,1F ,所以()12,0,1ED =- ,()0,2,0= EF ,()0,,1EG λ=.设平面1D EF 的法向量为(),,n x y z = ,则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩,取1x =,得()1,0,2n =r,所以点G 到平面1D EF的距离为EG n d n ⋅== ,故选:D .5.D【分析】利用空间向量的线性运算结合图形计算即可.【详解】由条件易知()11113232MN MC CD DN BC BA DP AD BA AP AD =++=++=++-()11113262b ac b a b c =-+-=--+.故选:D 6.D【分析】根据给定条件,利用空间向量的共面向量定理的推论列式计算即得.【详解】在四面体OABC 中,,,OA OB OC不共面,而1146OM OA OB OC λ=++ ,则由,,MA MB MC ,得11146λ++=,所以712λ=.故选:D 7.C【分析】计算出b a -=≥ .【详解】因为()()1,21,0,2,,a t t b t t =--=,所以b a -=当0t =时,等号成立,故ba -.故选:C.8.B【分析】设1PFCF ==,易知PA PB AB AC BC =====,且23FG =,设肉馅球半径为r ,CG x =,根据中点可知P 到CF 的距离4d r =,sin 4dPFC r PF∠==,根据三角形面积公式及内切圆半径公式可得1x =,结合余弦定理可得1cos 3PFC ∠=,进而可得3PC =,sin 3PFC ∠=,可得内切球半径且可知三棱锥为正三棱锥,再根据球的体积公式及三棱锥公式分别求体积及比值.【详解】如图所示,取AB 中点为F ,PF DE G ⋂=,为方便计算,不妨设1PF CF ==,由PA PB AB AC BC ====,可知3PA PB AB AC BC =====,又D 、E 分别为所在棱靠近P 端的三等分点,则2233FG PF ==,且AB PF ⊥,AB CF ⊥、PF CF F = ,PF ,CF ⊂平面PCF ,即AB ⊥平面PCF ,又AB ⊂平面ABC ,则平面PCF ⊥平面ABC ,设肉馅球半径为r ,CG x =,由于H 、I 、J 分别为所在棱中点,且沿平面HIJ 切开后,截面中均恰好看不见肉馅,则P 到CF 的距离4d r =,sin 4d PFC r PF∠==,12414233GFC r S r =⋅⋅⋅=△,又2132GFC rS x ⎛⎫=++⋅ ⎪⎝⎭ ,解得:1x =,故22241119cos 223213CF FG CG PFC CF FG +-+-∠===⋅⋅⋅⋅,又2222111cos 21132P PF CF PC PC F F C P F C +-+⋅-∠=⋅=⋅⋅,解得PC =,sin 3PFC ∠=,所以:4sin 31rPFC ∠==,解得6r =,343V r =π=球,由以上计算可知:P ABC -为正三棱锥,故111sin 4332ABC V S d AB AC BAC r =⋅⋅=⋅⋅⋅∠⋅粽11432332627=⋅⋅⋅⋅⋅⋅=,=.故选:B.9.BCD【分析】先写出需要的点的坐标,然后利用空间向量分别计算每个选项即可.【详解】由题可知,2,0,0,()0,0,0D,()2,2,1E,()1,0,2F,()12,2,2B,()10,2,2C,所以1DB==A错误;()0,2,1AE=,()12,2,2AC=-,所以111·cos,AE ACAE ACAE AC=B正确;()0,2,1AE=,()1,0,2AF=-,记()4,1,2n=-,则0,0AE AFn n==,故,AE AFn n⊥⊥,因为AE AF A⋂=,,AE AF⊂平面AEF,所以()4,1,2n=-垂直于平面AEF,故选项C正确;B =2,0,0,所以点D到平面AEF的距离·21DA ndn===,故选项D正确;故选:BCD10.BCD【分析】对于A,由1CP BP BC BBμ==-即可判断;对于B,由[]11,0,1B P BP BB BCλλ=-=∈和11//B C平面ABC即可判断;对于C,分别取BC和11B C的中点D和E,由BP BD=+1BBμ即1DP BBμ=即可判断;对于D,先求证1A E⊥平面11BB C C,接着即可求证1B P⊥平面1A EB,进而即可求证1A B⊥平面1AB P.【详解】对于A,当1λ=时,[]1,0,1CP BP BC BBμμ=-=∈,又11CC BB=,所以1CP CCμ=即1//CP CC,又1CP CC C=,所以1C C P、、三点共线,故点P在1CC上,故A错误;对于B ,当1μ=时,[]11,0,1B P BP BB BC λλ=-=∈,又11B C BC =,所以111B P B C λ= 即111//B P B C ,又1111B B C P B = ,所以11B C P 、、三点共线,故点P 在棱11B C 上,由三棱柱性质可得11//B C 平面ABC ,所以点P 到平面ABC 的距离为定值,故B 正确;对于C ,当12λ=时,取BC 的中点11,D B C 的中点E ,所以1//DE BB 且1DE BB =,BP BD =+[]1,0,1BB μμ∈ ,即1DP BB μ= ,所以DP E D μ= 即//DP DE,又DP DE D ⋂=,所以D E P 、、三点共线,故P 在线段DE 上,故C 正确;对于D ,当11,2λμ==时,点P 为1CC 的中点,连接1,A E BE ,由题111A B C △为正三角形,所以111A E B C ⊥,又由正三棱柱性质可知11A E BB ⊥,因为1111BB B C B = ,111BB B C ⊂、平面11BB C C ,所以1A E ⊥平面11BB C C ,又1B P ⊂平面11BB C C ,所以11A E B P ⊥,因为1111B C BB CC ==,所以11B E C P =,又111π2BB E B C P ∠=∠=,所以111BB E B C P ≌,所以111B EB C PB ∠=∠,所以1111111π2PB C B EB PB C C PB ∠+∠=∠+∠=,设BE 与1B P 相交于点O ,则1π2B OE ∠=,即1BE B P ⊥,又1A E BE E = ,1A E BE ⊂、平面1A EB ,所以1B P ⊥平面1A EB ,因为1A B ⊂平面1A EB ,所以11B P A B ⊥,由正方形性质可知11A B AB ⊥,又111AB B P B = ,11B P AB ⊂、平面1AB P ,所以1A B ⊥平面1AB P ,故D 正确.故选:BCD.【点睛】思路点睛:对于求证1A B ⊥平面1AB P ,可先由111A E B C ⊥和11A E BB ⊥得1A E ⊥平面11BB C C ,从而得11A E B P ⊥,接着求证1BE B P ⊥得1B P ⊥平面1A EB ,进而11B P A B ⊥,再结合11A B AB ⊥即可得证1A B ⊥平面1AB P .11.BC【分析】A 选项,建立空间直角坐标系,写出点的坐标,得到122AB AA CG +≠ ;B 选项,求出平面的法向量,利用线面角的夹角公式求出答案;C 选项,利用空间向量点到直线距离公式进行求解;D 选项,利用异面直线夹角公式进行求解.【详解】A 选项,以A 为坐标原点,1,,DA AB AA所在直线分别为,,x y z 轴,建立空间直角坐标系,则()()()()()()10,0,0,0,1,0,0,0,1,1,1,2,0,1,2,1,1,0A B A G Q C ----,()()()110,1,1,1,1,1,1,0,0B C D --,()()()10,2,2,0,1,0,0,0,1CG AB AA =-==,则()()()1220,2,00,0,20,2,2AB AA CG +=+=≠,A 错误;B 选项,平面1111D C B A 的法向量为()0,0,1m =,()()()0,1,21,1,01,2,2CQ =---=-,设直线CQ 与平面1111D C B A 所成角的大小为θ,则2sin cos ,3CQ m CQ m CQ m θ⋅===⋅,B 正确;C 选项,()10,0,1CC =,点1C 到直线CQ 的距离为3d ==,C 正确;D 选项,()()()1,0,00,1,01,1,0BD =--=--,设异面直线CQ 与BD 所成角大小为α,则cos cos ,6CQ BD CQ BD CQ BDα⋅=====⋅,D 错误.故选:BC 12.18/0.125【分析】根据正三柱性质建立空间直角坐标系,利用向量垂直的坐标表示可得结果.【详解】取11B C 的中点为1M ,连接1,MM AM ,由正三棱柱性质可得11,,AM MM BM MM AM BM ⊥⊥⊥,因此以M 为坐标原点,以1,,AMBM MM 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如下图所示:易知()11,0,0,0,,2,0,0,022A B M ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,设CN 的长为a ,且0a >,可得10,,2N a ⎛⎫- ⎪⎝⎭;易知1110,,,,,2222MN a AB ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭若1⊥MN AB ,则1112022MN AB a ⋅=-⨯+= ,解得18a =,所以当CN 的长为18时,使1⊥MN AB .故答案为:1813.23【分析】建立空间直角坐标系,求出平面PAD 的一个法向量m 及PG,由PG 与平面PAD 所成角θ,根据sin cos ,m PG m PG m PGθ⋅==⋅即可求解.【详解】因为PD ⊥底面ABCD ,底面ABCD 是正方形,所以,,DA DC DP 两两垂直,以D 为坐标原点,,,DA DC DP的方向分别为,,x y z 轴的正方向,建立如图所示空间直角坐标系,则()0,0,0D ,()0,0,1P ,()3,0,0A ,()3,3,0B ,()0,3,0C ,则重心()2,2,0G ,因而()2,2,1PG =- ,()3,0,0DA = ,()0,0,1DP =,设平面PAD 的一个法向量为(),,m x y z =,则300m DA x m DP z ⎧⋅==⎪⎨⋅==⎪⎩ ,令1y =则()0,1,0m = ,则22sin cos ,133m PG m PG m PG θ⋅====⨯⋅,故答案为:23.14.117m【分析】先根据线面角的定义求得5tan tan EMO EGO ∠=∠,从而依次求EO ,EG ,EB ,EF ,再把所有棱长相加即可得解.【详解】如图,过E 做EO ⊥平面ABCD ,垂足为O ,过E 分别做EG BC ⊥,EM AB ⊥,垂足分别为G ,M ,连接OG ,OM ,由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为EMO ∠和EGO ∠,所以5tan tan EMO EGO ∠=∠.因为EO ⊥平面ABCD ,⊂BC 平面ABCD ,所以EO BC ⊥,因为EG BC ⊥,EO ,EG ⊂平面EOG ,EO EG E = ,所以⊥BC 平面EOG ,因为OG ⊂平面EOG ,所以BC OG ⊥,同理,OM BM ⊥,又BM BG ⊥,故四边形OMBG 是矩形,所以由10BC =得5OM =,所以EO 5OG =,所以在直角三角形EOG 中,EG =在直角三角形EBG 中,5BG OM ==,8EB ==,又因为55255515EF AB =--=--=,所有棱长之和为2252101548117⨯+⨯++⨯=.故答案为:117m15.(2)当2AE =时,直线1A D 与平面1D EC 【分析】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立空间直角坐标系,求得平面1D EC 的一个法向量,平面1DCD 的一个法向量,利用向量法可求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)设AE m =,可求得平面1D EC 的一个法向量,直线的方向向量1DA,利用向量法可得sin θ=.【详解】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立如图所示的空间直角坐标系,当点E 在棱AB 的中点时,则1(0,0,1),(1,1,0),(0,2,0),(0,0,0),(1,0,0)E C D A D ,则1(1,1,1),(1,1,0),(1,0,0)ED EC DA =--=-=,设平面1D EC 的一个法向量为(,,)n x y z =,则1·0·0n ED x y z n EC x y ⎧=--+=⎪⎨=-+=⎪⎩ ,令1x =,则1,2y z ==,所以平面1D EC 的一个法向量为(1,1,2)n =,又平面1DCD 的一个法向量为(1,0,0)DA =,所以·cos ,·DA n DA n DA n=== 所以平面1D EC 与平面1DCD(2)设AE m =,则11(0,0,1),(1,,0),(0,2,0),(0,0,0),(1,0,1)E m C D A D ,则11(1,,1),(1,2,0),(02),(1,0,1)ED m EC m m DA =--=--≤≤=,设平面1D EC 的一个法向量为(,,)n x y z =,则1·0·(2)0n ED x my z n EC x m y ⎧=--+=⎪⎨=-+-=⎪⎩ ,令1y =,则2,2x m z =-=,所以平面1D EC 的一个法向量为(2,1,2)n m =-,设直线1A D 与平面1D EC 所成的角为θ,则11||sin ||||n DA n DA θ===令4[2,4]m t -=∈,则sin θ=当2t =时,sin θ取得最小值,最小值为5.16.(2)10(3)证明见解析【分析】(1)建立空间直角坐标系,求出相关点坐标,根据空间两点间距离公式,即得答案;(2)根据空间向量的夹角公式,即可求得答案;(3)求出1C M ,1C N,BN 的坐标,根据空间位置关系的向量证明方法,结合线面垂直的判定定理,即可证明结论.【详解】(1)如图,建立以点O 为坐标原点,CA 、CB 、1CC 所在直线分别为x 轴、y 轴、z轴的空间直角坐标系.依题意得(0,1,0),(1,0,1)B N ,∴BN == (2)依题意得,()()()()111,0,2,0,1,0,0,0,0,0,1,2A B C B ,∴1(1,1,2)BA =- ,1(0,1,2)CB =,113BA CB =⋅,1BA1CB所以11111cos ,BA CB BA CB BA CB ⋅=⋅(3)证明:()()()10,0,2,0,1,0,1,0,1C B N ,11,,222M ⎛⎫⎪⎝⎭.∴111,,022C M ⎛⎫= ⎪⎝⎭ ,()11,0,1C N =- ,()1,1,1BN =-,∴1111(1)10022C M BN ⋅=⨯+⨯-+⨯= ,1110(1)(1)10C N BN ⋅=⨯+⨯-+-⨯=,∴1C M BN ⊥ ,1C N BN ⊥,即11,C M BN C N BN ⊥⊥,又1C M ⊂平面1C MN ,1C N ⊂平面1C MN ,111= C M C N C ,∴BN ⊥平面1C MN .17.(2)存在点M ,使得//BM 平面PCD ,14AM AP =.【分析】(1)取AD 的中点为O ,连接,PO CO ,由面面垂直的性质定理证明⊥PO 平面ABCD ,建立空间直角坐标系求解直线PB 与平面PCD 所成角的正切值即可;(2)假设在PA 上存在点M ,使得()01PM PA λλ=≤≤,由线面平行,转化为平面的法向量与直线的方向向量垂直,求解参数即可.【详解】(1)取AD 的中点为O ,连接,PO CO ,因为PA PD =,所以PO AD ⊥,又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PO ⊂平面PAD ,所以⊥PO 平面ABCD ,又AC CD =,所以CO AD ⊥,PA PD ⊥,2AD =,所以1PO =,AC CD ==2CO =,所以以O 为坐标原点,分别以,,OC OA OP 所在的直线为,,x y z 轴建立空间直角坐标系,0,0,1,()2,0,0C ,()0,1,0A ,()1,1,0B ,()0,1,0D -,所以()2,0,1PC =- ,()0,1,1PD =--,()1,1,1PB =- ,设平面PCD 的一个法向量为 =s s ,则00PC m PD m ⎧⋅=⎪⎨⋅=⎪⎩,200x z y z -=⎧⎨--=⎩,令1,x =则2,2z y ==-,所以()1,2,2m =-,设直线PB 与平面PCD 所成角为θ,sin cos ,m PB m PB m PB θ⋅====,所以cos 3θ==,所以tan θ所以直线PB 与平面PCD所成角的正切值2.(2)在PA 上存在点M ,使得()01PM PA λλ=≤≤,所以()0,1,1PA =- ,所以()0,,PM PA λλλ==-,所以()0,,1M λλ-,所以()1,1,1BM λλ=---,因为//BM 平面PCD ,所以BM m ⊥ ,即()()121210λλ---+-=,解得34λ=,所以存在点M ,使得//BM 平面PCD ,此时14AM AP =.18.(1)总有平面PBD ⊥平面PAG ,证明详见解析(2)存在,Q 是PA 的靠近P 的三等分点,理由见解析.【分析】(1)通过证明BD ⊥平面PAG 来证得平面PBD ⊥平面PAG .(2)建立空间直角坐标系,利用平面QDN 与平面PMN 所成角的余弦值来列方程,从而求得Q 点的位置.【详解】(1)折叠前,因为四边形ABCD 是菱形,所以AC BD ⊥,由于,M N 分别是边BC ,CD 的中点,所以//MN BD ,所以MN AC ⊥,折叠过程中,,,,,MN GP MN GA GP GA G GP GA ⊥⊥⋂=⊂平面PAG ,所以MN ⊥平面PAG ,所以BD ⊥平面PAG ,由于BD ⊂平面PBD ,所以平面PBD ⊥平面PAG .(2)存在,理由如下:当平面PMN ⊥平面MNDB 时,由于平面PMN 平面MNDB MN =,GP ⊂平面PMN ,GP MN ⊥,所以GP ⊥平面MNDB ,由于AG ⊂平面MNDB ,所以GP AG ⊥,由此以G 为空间坐标原点建立如图所示空间直角坐标系,依题意可知())(),2,0,,0,1,0,P D B N PB --=- ()A,(PA = ,设()01PQ PA λλ=≤≤ ,则(()(),0,3,0,GQ GP PQ GP PA λ=+=+=+-= ,平面PMN 的法向量为()11,0,0n = ,()(),DQ DN ==,设平面QDN 的法向量为()2222,,n x y z = ,则()2222222200n DQ x y z n DN y ⎧⋅=-++=⎪⎨⎪⋅=+=⎩ ,故可设()21n λλ=--+ ,设平面QDN 与平面PMN 所成角为θ,由于平面QDN 与平面PMN所成角的余弦值为13,所以1212cos n n n n θ⋅==⋅解得13λ=,所以当Q 是PA 的靠近P 的三等分点时,平面QDN 与平面PMN 所成角的余弦值为13.19.(1)证明见解析(2)8(3)5【分析】(1)根据条件建立合适的空间直角坐标系,利用空间向量证明线面关系即可;(2)利用空间向量研究线面夹角,结合二次函数的性质计算最大值即可;(3)设BM tBC = ,利用空间向量基本定理及三点共线的充要条件得出AH ,利用向量模长公式及导数研究函数的单调性计算最值即可.【详解】(1)由于四边形ABCD 是菱形,且60ABC ∠= ,取CD 中点G ,则AG CD ⊥,又PA ⊥平面ABCD ,可以A 为中心建立如图所示的空间直角坐标系,则()()()()()2,0,0,,,0,0,1,B C D P G -,所以()()()1,,2,0,1PC BD BP =-=-=- ,由()01BE PF BD PCλλ==<≤,可知,,BE BD PF PC EF EB BP PF BD BP PC λλλλ==∴=++=-++ ()42,0,1λλ=--,易知()AG = 是平面PAB 的一个法向量,显然0EF AG ⋅= ,且EF ⊄平面PAB ,即//EF 平面PAB;(2)由上可知()()()1,,DP PF DF λλλλ+==+-=+- ,设平面PBC 的一个法向量为(),,n x y z =r,则200n BP x z n PC x z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1x =,则2,3z y ==,2n ⎛⎫= ⎪ ⎪⎝⎭,设直线DF 与平面PBC 所成角为α,则sin cos ,n DF n DF n DF α⋅==⋅ ,易知35λ=时,()2min 165655λλ-+=,即此时sin α取得最大值8;(3)设()(](),0,0,12,0BM t BC t t AM AB BM t ==-∈⇒=+=- ,由于,,H M P 共线,不妨设()1AH xAM x AP =+- ,易知AM AP ⊥,则有()()22010AH PM AH AM AP x AM x AP ⋅=⋅-=⇒--= ,所以22114451x t t AM ==-++ ,则()()2CH CA AH t x x =+=--- ,即()()2222454454655445t CH t t x t x t t --=-+-++=+-+ 记()(]()2450,1445t f t t t t --=∈-+,则()()()2228255445t t f t t t --+'=-+,易知22550t t -+>恒成立,所以()0f t '<,即()f t 单调递减,所以()()min 9155f t f CH ≥=-⇒==.。

2013-2014学年八年级上数学期末试题及答案

2013-2014学年八年级上数学期末试题及答案

2013-2014学年(上)期末教学质量测评试题八年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1.下列语句中,是命题的是A .延长线段AB 到C B .垂线段最短 C .过点O 作直线a ∥bD .锐角都相等吗2.下列关于5的说法中,错误..的是 A .5是无理数 B .2<5<3 C .5的平方根是5 D .2552-=-3.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这A .25.6,26B .26,25.5C .26,26D .25.5,25.54.如图所示,AB ⊥EF 于B ,CD ⊥EF 于D ,∠1=∠F =30°,则与∠FCD 相等的角有A .1个B .2个C .3个D .4个5.将平面直角坐标系内某图形上各个点的横坐标都乘以1-,纵坐标不变,所得图形与原图形的关系是 A. 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 沿x 轴向下平移1个单位长度6.若正整数a ,b ,c 是直角三角形三边,则下列各组数一定还是直角三角形三边的是 A .a+1,b+1,c+1 B .a 2,b 2,c 2 C .2a ,2b ,2cD .a -1,b -1,c -17.一次函数y =-2x +2的图象是A .BC .D .8.已知点A (-3,y 1)和B (-2,y 2)都在直线y = 121--x 上,则y 1,y 2的大小关系是 A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .大小不确定9.已知一个两位数,它的十位上的数字x 比个位上的数字y 大1.若颠倒个位与十位数字 的位置,得到的新数比原数小9,求这两个数所列的方程组正确的是A.1()()9x y x y y x -=⎧⎨+++=⎩, B.1109x y x y y x =+⎧⎨+=++⎩,C.110109x y x y y x =+⎧⎨+=+-⎩, D.110109x y x y y x =+⎧⎨+=++⎩10.一名考生步行前往考场,10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了A. 20分钟 B . 22分钟 C . 24分钟 D . 26分钟二、填空题(每小题3分,共l 5分) 11.已知32=x ,则x =_______.12.如图,数轴上的点A 所表示的数为x ,则x 2—10的立方根为______.13.如图,点O 是三角形两条角平分线的交点,若∠BOC =110°,则∠A = . 14.直线13+=x y 向左平移2个单位长度后所得到的直线的解析式是 .15.已知24x y =⎧⎨=⎩是方程组73228x y x y -=⎧⎨+=⎩的解,那么由这两个方程得到的一次函数y =_________和y =_________的图象的交点坐标是 .三、解答题(本大题共5个小题,共55分) 16.(每小题5分,共20分) (1)计算: 32-512+618(2))21(3)解方程组:⎩⎨⎧=-=+421y x y x ②① (4)解方程组:132(1)6x y x y ⎧+=⎪⎨⎪+-=⎩17.(本小题满分8分)如图所示,已知∠AED=∠C ,∠3=∠B ,请写出∠1与∠2的数量关系,并A对结论进行证明.18.(本小题满分8分)如图所示,在平面直角坐标系中,点A 、B 的坐标分别为A (3,1),B (2,4),△OAB 是直角三角形吗?借助于网格进行计算,证明你的结论.19.(本小题满分8分) 下表是某地2012年2月与2013年2月8天同期的每日最高气温,根据表(1)2012年2月气温的极差是 ,2013年2月气温的极差是 .由此可见, 年2月同期气温变化较大.(2)2012年2月的平均气温是,2013年2月的平均气温是. (3)2012年2月的气温方差是 , 2013年2月的气温方差是 ,由此可见, 年2月气温较稳. 20.(本小题满分11分)如图,在平面直角坐标系xOy 中,直线l 经过(0,4)A 和(2,0)B 两点. (1)求直线l 的解析式及原点到直线l 的距离; (2)C 、D 两点的坐标分别为(4,2)C 、(,0)D m ,且⊿ABO ≌⊿OCD 则m 的值为 ;(直接写出结论) (3)若直线l 向下平移n 个单位后经过(2)中的点D ,求n 的值.B 卷(共50分)一、填空题(每小题4分,共20分) 21.若32-=x ,则122+-x x = .22.三元一次方程组⎪⎩⎪⎨⎧===++4:5:2:3:111z y x y z y x 的解是 .23.在锐角三角形ABC 中,BC =23,∠ABC =45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM +MN 最小值是 . 24.一个一次函数图象与直线y=54x+954平行,•与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-20),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有 个. 25.如图,已知直线l :x y 3=,过点M (2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M 6的坐标为__________. 二、解答题(本大题共有3个小题,共30分)26.(本小题满分8分)为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费用为y 元,则y (元)和x (小时)之间的函数图象如图所示.(1)根据图象,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的? (2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?27.(本小题满分10分)如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 绕点B 逆时针旋转60°得到线段BO ′.(1)求点O 与O ′的距离; (2)证明:∠AOB =150°;(3)求四边形AOBO ′的面积. (4)直接写出△AOC 与△AOB 的面积和为________.28.(本小题满分12分)如图1所示,直线AB 交x 轴于点A (4,0),交y 轴于点B (0,-4),(1)如图,若C 的坐标为(-1,0),且AH ⊥BC 于点H ,AH 交OB 于点P ,试求点P 的坐标; (2)在(1)的条件下,如图2,连接OH ,求证:∠OHP =45°;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连结MD ,过点D 作DN ⊥DM交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子S △BDM -S △ADN 的值是否发生改变,如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.2013-2014学年(上)期末教学质量测评试题八年级数学参考答案及评分标准一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求。

广西壮族自治区北海市《幼教专业知识》教师教育招聘考试

广西壮族自治区北海市《幼教专业知识》教师教育招聘考试

广西壮族自治区北海市《幼教专业知识》教师教育招聘考试《说明:本卷为历年及近期公务员(国考)考试真题》本卷共150题,考试时间90分钟,满分100分一、单选题1. 我国“独立自主、自力更生”方针的理论依据是()。

A、矛盾统一性和斗争性辩证关系原理B、矛盾的普遍性和特殊性辩证关系原理C、内因和外因的辩证关系原理D、主要矛盾和非主要矛盾辩证关系原理【参考答案】C2. 人际关系是人与人之间在相互交往过程中所形成的比较稳定的心理关系或()。

A、感情关系B、心理距离C、友谊关系D、互助关系【参考答案】B3. “建国君民,教学为先”这句话反映了()。

A、教育与政治的关系B、教育与经济的关系C、教育与文化的关系D、教育与科技的关系【参考答案】A4. 我国对虾、扇贝、鲍鱼等海珍产品的产量和出口量居世界第一位的省是()。

A、山东B、江苏C、浙江D、海南【参考答案】B5. “怎样培养学生的创新意识”这样的问题属于()的问题。

A、有结构B、无结构C、一般性D、认知性【参考答案】B6. 有的学生学习就是为了获得一个好分数来取悦父母、老师或朋友,体现的是学习动机中的()。

A、内部学习动机B、外部学习动机C、认知内驱力D、自我提高内驱力【参考答案】B7. 第一个提出应以伦理学和心理学作为教育学的理论基础的是()。

A、赫尔巴特B、杜威C、夸美纽斯D、康德【参考答案】A8. “地理环境是人类社会赖以存在和发展的必要前提”,这个观点()。

A、是地理环境决定论的错误观点B、是旧唯物主义的错误观点C、是唯物史观的正确观点D、是机械决定论的错误观点【参考答案】9. 西欧最早出现的教育专著是()。

A、《大教学论》B、《论演说家的教育》C、《普通教育学》D、《我的教育信条》【参考答案】A10. 我国多数中小学的班级组织机构的建构属于()。

A、直线式B、职能式C、直线职能式D、以上都不是【参考答案】C11. 世界新军事革命加速发展,世界主要国家都在加紧推进(),这给我军提供了难得的历史机遇,同时也提出了严峻挑战。

2019-2020年高二上学期期末综合测试数学试题 含答案

2019-2020年高二上学期期末综合测试数学试题 含答案

2019-2020年高二上学期期末综合测试数学试题 含答案一、 选择题(12×5分=60分) 1、下列命题为真命题的是( )A. 平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C. 垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行。

2、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D. 如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ.3、已知、为实数,则是的 ( )A.必要非充分条件B.充分非必要条件C.充要条件D.既不充分也不必要条件4、已知命题[]2:"1,2,0"p x x a ∀∈-≥,命题2:",220"q x R x ax a ∃∈++-=,若命题“” 是真命题,则实数的取值范围是 ( ) A. B. C. D.5,如图ABCD -A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=A 1B 14,则BE 1与DF 1所成角的余弦值是( )A .1517B .12C .817D .326、设和为双曲线()的两个焦点, 若,是正三角形的三个顶点,则双曲线的离心率为( )A. B. C. D.37、设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ) A. B. C. D.8、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( ) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=09、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:( ) A.; B.; C.; D..10、已知一个铜质的五棱柱的底面积为16cm 2,高为4cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是( ) A. 2cm; B.; C.4cm; D.8cm 。

江苏省连云港市2024-2025学年高二上学期第一次阶段检测(9月)数学试题含答案

江苏省连云港市2024-2025学年高二上学期第一次阶段检测(9月)数学试题含答案

2024-2025学年第一学期高二年级第一次阶段检测数学试卷(答案在最后)一、单选题(每题5分,共40分)1.已知直线1l的斜率为0,且直线12l l ⊥,则直线2l 的倾斜角为A.0︒B.45︒C.90︒D.180︒【答案】C 【解析】【分析】由斜率定义可判断直线1l 与x 轴平行,再由直线12l l ⊥得解.【详解】因为直线1l 的斜率为0,所以直线1l 与x 轴平行,又直线12l l ⊥,故直线2l 的倾斜角为90 .【点睛】本题考查了直线斜率与倾斜角的定义.2.已知直线3230x y +-=和6410x y ++=之间的距离是()A.4B.13C.26D.26【答案】D 【解析】【分析】由平行线间距离公式即可求解.【详解】直线6410x y ++=可以转化为13202x y ++=,由两条平行直线间的距离公式可得7713226d ===.故选:D3.圆()2249x y -+=和圆()2234x y +-=的位置关系是()A.外离B.相交C.外切D.内含【答案】C 【解析】【分析】计算两圆的圆心之间的距离和半径比较,即得答案.【详解】圆()2249x y -+=的圆心为()4,0,半径为3,圆()2234x y +-=的圆心为0,3,半径为2,523==+,所以两圆外切.故选:C4.已知圆()22420x y mx my m m ++-+=∈R 与x 轴相切,则m =()A.1B.0或14C.0或1D.14【答案】D 【解析】【分析】根据一般式得圆的标准式方程,即可根据相切得r m ==求解.【详解】将()22420x y mx my m m ++-+=∈R 化为标准式为:()()22225x m y m m m ++-=-,故圆心为()2,m m -半径为r =15m >或0m <,由于()22420x y mx my m m ++-+=∈R 与x轴相切,故r m ==,解得14m =,或0m =(舍去),故选:D5.已知点()0,1P -关于直线10x y -+=对称的点Q 的坐标是()A.(2,1)B.(2,1)- C.(1,2)D.(2,1)--【答案】B 【解析】【分析】设(),Q a b ,根据,P Q 中点在对称直线上及PQ 与对称直线垂直列方程求解.【详解】设(),Q a b ,则110011022b a a b +⎧=-⎪⎪-⎨+-⎪-+=⎪⎩,解得2a =-,1b =.故选:B6.已知椭圆的方程为22194x y +=,过椭圆中心的直线交椭圆于A 、B 两点,2F 是椭圆的右焦点,则2ABF △的周长的最小值为()A.8B.6+C.10D.8+【答案】C【解析】【分析】根据题意结合椭圆定义可得2ABF △的周长为2a AB +,结合椭圆的性质分析求解.【详解】椭圆的方程为22194x y +=,则3a =,2b =,c ==,连接1AF ,1BF ,则由椭圆的中心对称性可知12OA OB OF OF ==,,可知12AF BF 为平行四边形,则21BF AF =,可得2ABF △的周长为22122AF BF AB AF AF AB a AB ++=++=+,当AB 位于短轴的端点时,A 取最小值,最小值为24b =,所以周长为26410a AB +≥+=.故选:C.7.已知点()2,3A -,()3,2B --,若过点()1,1的直线与线段AB 相交,则该直线斜率的取值范围是()A.[)3,4,4⎛⎤-∞-+∞ ⎥⎝⎦B.(]3,4,4⎡⎫+∞⎪⎢⎣--⋃⎭∞C.3,44⎡⎤-⎢⎥⎣⎦ D.34,4⎡⎤-⎢⎣⎦【答案】B 【解析】【分析】首先求出直线PA 、PB 的斜率,然后结合图象即可写出答案.【详解】解:记()1,1为点P ,直线PA 的斜率31421PA k --==--,直线PB 的斜率213314PB k --==--,因为直线l 过点()1,1P ,且与线段AB 相交,结合图象,可得直线l 的斜率k 的取值范围是(]3,4,4∞∞⎡⎫--⋃+⎪⎢⎣⎭.故选:B .8.已知直线(2)y k x =+与曲线21y x =-有公共点,则实数k 的取值范围是()A.33,33⎡-⎢⎣⎦B.30,3⎡⎢⎣⎦C.3,03⎡⎤-⎢⎥⎣⎦D.[3,3]-【答案】B 【解析】【分析】根据题意,得到直线(2)y k x =+过定点(2,0)P -,以及曲线221(0)x y y +=≥,画出直线与曲线的图象,结合直线与圆相切和图象,即可求解.【详解】由直线(2)y k x =+过定点(2,0)P -,又由曲线21y x =-221(0)x y y +=≥,作出曲线21y x =-(2)y k x =+的图象,如图所示,因为直线(2)y k x =+,可得20kx y k -+=,2221(1)kk =+-,解得33k =±,若直线(2)y k x =+与曲线21y x =-303k ≤≤,即实数k 的取值范围为30,3⎡⎢⎣⎦.故选:B.二、多选题(每小题6分,本题18分)9.以下四个命题叙述正确的是()A.直线210x y -+=在x 轴上的截距是1B.直线0x ky +=和2380x y ++=的交点为P ,且P 在直线10x y --=上,则k 的值是12-C.设点(,)M x y 是直线20x y +-=上的动点,O 为原点,则OM 的最小值是2D.直线()12:310:2110L ax y L x a y ++=+++=,,若12//L L ,则3a =-或2【答案】BC 【解析】【分析】求出直线的横截距判断A ;解方程组求出k 判断B ;求出点到直线的距离判断C ;验证判断D.【详解】对于A ,直线210x y -+=在x 轴上的截距是12-,A 错误;对于B ,由238010x y x y ++=⎧⎨--=⎩解得12x y =-⎧⎨=-⎩,即(1,2)P --,则120k --=,解得12k =-,B 正确;对于C ,依题意,min222211OM-==+C 正确;对于D ,当2a =时,直线12:2310,:2310L x y L x y ++=++=重合,D 错误.故选:BC10.已知M 是圆22:414450C x y x y +--+=上任一点,()2,3Q -,则下列说法正确的是()A.圆心C 的坐标为()2,7B.点Q 在圆C 内C.MQ 的最大值为62D.过()3,5P 的最短弦长是23【答案】ACD 【解析】【分析】由圆的标准方程可判断A ,由点和圆的位置关系可判断B ,由圆外一点到圆的距离的最值可判断C ,由圆的几何性质可判断D.【详解】将圆C 的方程化为标准方程()()22278x y -+-=,圆心()2,7,C r =对于A :圆心C 的坐标为()2,7,故A 正确;对于B :因为()()2222378--+->,所以点Q 在圆C 外,故B 错误;对于C :因为CQ ==,r =所以MQ ≤≤,即MQ ≤≤,故C 正确;对于D :因为()()22325758CP =-+-=<,所以点()3,5P 在圆内,当弦垂直于CP 时弦长最短,又CP =,最短弦长为=D 正确.故选:ACD.11.已知椭圆22:416C x y +=的左、右焦点分别为1F ,2F ,P 是C 上的任意一点,则()A.C 的离心率为12B.128PF PF +=C.1PF 的最大值为4+D.使12F PF ∠为直角的点P 有4个【答案】BCD 【解析】【分析】根据椭圆的标准方程求出,,a b c ,由离心率定义判断A ,由椭圆定义判断B ,由椭圆的几何性质判断C ,根据以线段12F F 为直径的圆与椭圆交点个数判断D.【详解】由原方程可得椭圆标准方程为221164x y +=,4,2a b c ∴==⇒=,2c e a ∴==,故A 错误;由椭圆定义可知1228PF PF a +==,故B 正确;由椭圆的性质知1max ||4PF a c =+=+C 正确;易知以线段12F F 为直径的圆(因为b c a <<)与C 有4个交点,故满足12F PF ∠为直角的点P 有4个,故D 正确.故选:BCD三、填空题(每小题5分,本题15分)12.已知三点A (1,1)-,B (,3)a ,C (4,5)在同一直线上,则实数a 的值是________.【答案】3【解析】【分析】利用三点共线与斜率的关系,斜率的计算公式.【详解】 三点A (1,1)-,B (,3)a ,C (4,5)在同一直线上,AB AC k k ∴=,∴4613a =-,解得3a =.故答案为:3.13.已知椭圆C 的左焦点为F ,右顶点为A ,上顶点为B ,若ABF △为等腰三角形,则C 的离心率为______.【答案】12-+【解析】【分析】利用椭圆的性质计算即可.【详解】不妨设椭圆的长轴、短轴、焦距分别为()2,2,20,0,0a b c a b c >>>,则222a b c =+,且根据椭圆的性质易知()()(),0,,0,0,F c A a B b -,所以,AB AF a c BF a ==+=,显然若ABF △为等腰三角形,则只能有AB AF =,即()22222220a b a c a ac c +=+⇒--=,则21312202c c c e a a a -+⎛⎫--=⇒== ⎪⎝⎭.故答案为:132-+14.如果实数,x y 满足等式224240x y x y --++=,那么22x y +的最大值是________;2x y -的最大值是________.【答案】①.1465+6514②.355##535-+【解析】【分析】画出图形,通过数形结合,以及直线与圆的位置关系、所求代数式的几何意义逐一求解即可.【详解】由224240x y x y --++=,得2222(2)(1)9,x y x y ++-=+的几何意义为圆22(2)(1)9x y ++-=上的动点到原点距离的平方.因为圆心()2,1-553+,则22x y +的最大值是253)1465=+令2x y t -=,则t -是直线2x y t -=在y 轴上的截距,当直线与圆相切时,直线2x y t -=在y 轴上的截距,一个是最大值,一个是最小值,此时,圆心()2,1-到直线2x y t -=的距离4135td ---==,解得535t =-±,所以2x y -的最大值为355-.故答案为:1465+;355.四、解答题15.已知点(2,1)P -和直线:250l x y +-=.(1)若直线1l 经过点P ,且1l l ⊥,求直线1l 的方程;(2)若直线2l 经过点P ,且在两坐标轴上的截距相等,求直线2l 的方程.【答案】(1)250x y --=(2)20x y +=和10x y +-=【解析】【分析】(1)根据直线垂直的斜率关系,即可由点斜式求解,(2)根据分类讨论,结合截距式即可代入点求解.【小问1详解】由直线l 的方程可知它的斜率为12-,因为1l l ⊥,所以直线1l 的斜率为2.又直线1l 经过点(2,1)P -,所以直线1l 的方程为:12(2)y x +=-,即250x y --=;【小问2详解】若直线2l 经过原点,设直线方程为y kx =,代入(2,1)P -可得20x y +=,若直线2l 不经过原点,设直线方程为1x ya a+=,代入(2,1)P -可得1a =,故直线2l 方程为10x y +-=.综上,直线2l 的方程为20x y +=和10x y +-=.16.(1)椭圆C 与椭圆C 1:2212x y +=有相同的焦点,且经过点M 31,2⎛⎫ ⎪⎝⎭,求椭圆C 的标准方程;(2)已知椭圆22126x y +=的焦点分别是1F ,2F ,点M 在椭圆上,且120F M F M ⋅= ,求点M 到x 轴的距离.【答案】(1)22143x y +=;(2【解析】【分析】(1)确定椭圆焦点坐标,根据椭圆定义求得,a b ,即得答案;(2)设(,)M x y ,可得1(,2)F M x y =+ ,2(,2)F M x y =-;由120F M F M ⋅= 得2240x y +-=,结合椭圆方程求出||y =,即得答案.【详解】(1)椭圆C 1:2212x y +=的焦点坐标为(1,0)±,所以椭圆C 的焦点坐标也为(1,0)±,即得焦距为22c =,∵椭圆C 过点M 3(1,2,∴24a =+=,∴2,a b ==,∴椭圆的标准方程为22143x y +=.(2)由椭圆方程得,1(0,2)-F ,2(0,2)F ,设(,)M x y ,则1(,2)F M x y =+ ,2(,2)F M x y =-;由120F M F M ⋅=得:2240x y +-=(1);又点M 在椭圆上,可得22126x y +=(2);(1)(2)联立消去2x 得,23y =,即||y =;故点M 到x 17.(1)已知点A ,B 的坐标分别为()2,0-,2,0,直线AM ,BM 相交于点M ,且它们的斜率之积是34-,求点M 的轨迹方程;(2)如图,已知圆22:1O x y +=和定点()4,0A ,P 为圆O 外一点,直线PQ 与圆O 相切于点Q ,若PQ =,求点P 的轨迹方程.【答案】(1)()221243x y x +=≠±;(2)221633x y x +-+=0.【解析】【分析】设动点坐标为(),x y ,用坐标表示动点满足的条件,列出方程,化简即可.【详解】(1)设s ,则2AM y k x =+,2BM y k x =-,()32224AM BM y y k k x x x ∴⋅=⋅=-≠±+-,化简整理得,()2234122x y x +=≠±,所以点M 的轨迹方程为:()221243x y x +=≠±.(2)设s ,依题意2PQ =,则222PQ PA =,即2222OP OQ PA -=,即()2222124x y x y ⎡⎤+-=-+⎣⎦,整理得2216330x y x +-+=.18.(1)求圆心在直线1:2l y x =-上,与直线2:1l x y +=相切于点(2,1)A -的圆C 的方程.(2)若过点(1,0)P -作圆22:(1)(2)2D x y -++=的切线,求切线的斜率.【答案】(1)22(1)(2)2x y -++=;(2)23-±【解析】【分析】(1)由圆的切线性质求出直线CA 的方程,进而求出圆心C 的坐标及圆半径即可得解.(2)按切线斜率存在与否分类讨论,借助点到直线距离公式列式计算即得.【详解】(1)依题意,2CA l ⊥,则直线CA 的斜率为1,方程为12y x +=-,即3y x =-,由23y x y x =-⎧⎨=-⎩,解得12x y =⎧⎨=-⎩,则圆C 的圆心(1,2)C -,22(21)(12)2||CA -=-++=所以所求圆的方程为:22(1)(2)2x y -++=.(2)圆22:(1)(2)2D x y -++=的圆心(1,2)D -,半径r =当切线l 的斜率不存在时,:1l x =-,点D 到切线l 的距离为2,不等于半径,不满足题意;当切线l 的斜率存在时,设:(1)l y k x =+,即0kx y k -+=,=,解得2k =-±,所以切线的斜率为2-±19.如图,已知椭圆2222:1(0)x y C a b a b+=>>过点()3,1P ,焦距为,斜率为13-的直线l 与椭圆C 相交于异于点P 的,M N 两点,且直线,PM PN 均不与x 轴垂直.(1)求椭圆C 的方程;(2)若MN =,求MN 的方程;(3)记直线PM 的斜率为1k ,直线PN 的斜率为2k ,证明:12k k 为定值.【答案】(1)221124x y +=(2)123y x =--(3)证明见解析【解析】【分析】(1)根据条件列方程组求解即可;(2)设直线l 的方程为13y x m =-+,与椭圆联立,由弦长公式求得MN 的方程;(3)将韦达定理代入12k k 中计算结果为定值.【小问1详解】由题意得222229112a b c a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2a b c ⎧=⎪=⎨⎪=⎩,故椭圆C 的方程为221124x y +=.【小问2详解】设直线l 的方程为13y x m =-+,()()1122,,,M x y N x y 由22131124y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得22469360x mx m -+-=,由()22Δ(6)14440m m =-->,得434333m -<<,则212123936,24m m x x x x -+==.2MN ===解得2m =或2m =-当2m =时,直线1:23l y x =-+经过点()3,1P ,不符合题意,舍去;当2m =-时,直线l 的方程为123y x =--.【小问3详解】直线PM ,PN 均不与x 轴垂直,所以123,3x x ≠≠,则0m ≠且2m ≠,所以()()1212121212111111333333x m x m y y k k x x x x ⎛⎫⎛⎫-+--+- ⎪⎪--⎝⎭⎝⎭=⋅=----()()()212121212111(1)9339x x m x x m x x x x --++-=-++()222221936131(1)3619432936391833942m m m m m m m m m m -⋅--⋅+--===---⋅+为定值.。

广西壮族自治区北海市2023-2024学年七年级下学期7月期末考试数学试卷(含答案)

广西壮族自治区北海市2023-2024学年七年级下学期7月期末考试数学试卷(含答案)

北海市2024年春季学期期末教学质量检测七年级数学(考试时间:120分钟满分:120分)注意事项:1.答题前,考生务必将姓名、准考证号、座位号填写在试卷和答题卡上。

2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷上作答无效。

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列交通标志中,是轴对称图形的是()A.B.C.D.2.下列计算结果正确的是()A.B.C.D.3.下列方程组中,是二元一次方程组的是()A.B.C.D.4.下列各式从左到右变形是因式分解,并分解正确的是()A.B.C.D.5.如图,直线a,b被直线c所截,下列说法中不正确的是()A.∠1与∠2是对顶角B.∠1与∠4是同位角C.∠2与∠5是同旁内角D.∠2与∠4是内错角6.如图,如果∠1=∠3,∠4=140°,那么∠2的度数为()A.140°B.130°C.80°D.40°7.如图,三角形OCD是由三角形OAB绕点O顺时针旋转40°后得到的图形,∠AOB=60°,则∠COB的度数是()A.60°B.40°C.20°D.10°8.某校篮球数比排球数的3倍多5个,篮球数与排球数的差是15个,若设篮球有x个,排球有y个,则可得方程组()A.B.C.D.9.在元旦晚会的校园歌唱比赛中,21名参赛同学的成绩各不相同,按照成绩取前10名进入决赛.如果小庆知道了自己的比赛成绩,要判断能否进入决赛,小庆需要知道这21名同学成绩的()A.中位数B.众数C.平均数D.方差10.同时满足二元一次方程和的x,y的值为()A.B.C.D.11.一组数据6,1,6,3,4,6的众数是()A.6B.1C.3D.412.如图,在三角形ABC中,∠ABC=90°,将三角形ABC沿BC方向平移得到三角形DEF,其中AB=7,BE=3,DM=2,则阴影部分的面积是()A.15B.18C.21D.不确定二、填空题(本大题共6小题,每小题2分,共12分)13.把方程写成用含有x的代数式表示y的形式 .14.计算: .15.因式分解: .16.将一个长方形纸片按如图方式折叠,若∠1=55°,则∠2= °.17.甲、乙两位同学10次数学测试的成绩的平均分是相同的,甲同学成绩的方差为,乙同学成绩的方差为,则两位同学的数学测试成绩比较稳定的是.(填“甲”或“乙”)18.如图,AD∥BC,BC=6,且三角形ABC的面积为12,则点C到AD的距离为 .三、解答题(本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤)(1)计算:;(2)计算:;(3)因式分解:.20.(本题满分8分,每小题4分)解下列二元一次方程组:(1)(2)21.(本题满分7分)先化简,再求值:,其中,.22.(本题满分9分)如图,在平面直角坐标系中,点A的坐标为,点B的坐标为,点C的坐标为.(1)画出将△ABC向下平移5个单位长度得到的,写出的坐标;(2)画出将△ABC绕原点O逆时针旋转90°后得到的.23.(本题满分9分)如图,已知直线AB和CD相交于O点,∠DOE是直角,OF平分∠AOE,∠BOD=36°,求∠COF的度数.24.(本题满分9分)某班七年级第二学期数学一共进行四次测试,小丽和小明的成绩如表所示:学生单元测验1期中考试单元测验2期末考试小丽80709080小明60908090(1)求小丽和小明的成绩平均数.(2)若老师计算学生的学期总评成绩按照事下的标准:单元测验1占10%,期中考试占30%,单元测验2占20%,期末考试占40%.请你通过计算,比较谁的学期总评成绩高?25.(本题满分9分)某同学在某家超市发现他看中的随身听和书包,随身听和书包单价之和是435元,且随身听的单价比书包单价的4倍少10元.求该同学看中的随身听和书包单价各是多少元?26.(本题满分9分)如图,在△ABC中,E、G分别是AB、AC上的点,E、D是BC上的点,连接EF、AD、DG,AD∥EF,∠1+∠2=180°.(1)求证:AB∥DG;(2)若DG是∠ADC的平分线,∠2=4∠B-20°,求∠B的度数.北海市2024年春季学期期末教学质量检测·七年级数学参考答案、提示及评分细则一、选择题1.C2.A3.B4.A5.C6.D7.C8.B9.A10.D11.A12.B二、填空题13.14.15.16.7017.乙18.4三、解答题19.解:(1)(2);(3).20.解:(1)①代入②得,,解得,,把代入①得,,∴原方程组的解为:;(2)①×2-②得,,解得,把代入①得,,解得,,∴原方程组的解为21.解:原式,当,时,原式.22.解:(1)如图所示:即为所求作的图;的坐标;(2)如图所示:即为所求作的图.23.解:∵∠DOE是直角,∴∠DOE=90°∴∠COE=180°-∠DOE=180°-90°=90°,又∵∠AOC=∠BOD=36°,∴∠AOE=∠AOC+∠COE=90°+36°=126°,又∵OF平分∠AOE,∴,∴∠COF=∠AOF-∠AOC=63°-36°=27°.24.解:(1)小丽的成绩平均数为:,小明的成绩平均数为:,答:小丽和小明的成绩平均数都是80;(2)小丽的学期总评成绩为:80×10%+70×30%+90×20%+80×40%=79,小明的学期总评成绩为:60×10%+90×30%+80×20%+90×40%=85,答:小明的学期总评成绩高.25.解:设随身听和书包的单价分别为x元,y元.由题意可得,解得,答:随身听和书包的单价分别为346元,89元.26.(1)证明:∵AD∥EF,∴∠BAD+∠2=180°,又∵∠1+∠2=180°,∴∠BAD=∠1,∴AB∥DG.(2)解:∵DG是∠ADC的平分线,∴∠1=∠GDC,∵AB∥DG,∴∠GDC=∠B,又∵∠1=∠GDC,∴∠1=∠GDC=∠B,∵∠2=4∠B-20°,∠1+∠2=180°.∴180°-∠1=4∠B-20°,∴180°-∠B=4∠B-20°,∴∠B=40°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北海市2013-2014学年度第二学期期末教学质量测查卷
高二数学参考答案及评分标准
说明:1.本参考答案提供一至二种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则;
2.解答题右端所注分数,表示考生正确做到这一步应得的累加分; 3.只给整数分数,选择题和填空题不给中间分数。

二、填空题:
13. 8 14.理:6,文:8 15.4
16.理:
34π,文:0或2
3
- 三、解答题:
17.解:(Ⅰ)依题意,知1,b 为方程2320ax x -+=的两根,且1,0b a >>. ……………3分
∴22
13120320a a b b ⎧⨯-⨯+=⎪
⎨⨯-⨯+=⎪⎩ (或由韦达定理) …………………………………5分 解得1,2a b ==(b=1舍去). ……………………………………………………………7分 (Ⅱ)原不等式即为2320x x -+<,即(1)(2)0x x --<,
解得12x <<. ……………………………………………………………………9分 所以,原不等式的解集为{|12}.x x << ………………………………………………………10分
18.解:(Ⅰ)
sin sin a b A B ==sin sin A A =)…………………………2分
∴ sin B B = ∴ tan B =4分
又 0B π<<,∴ 3
B π
=
………………………………………………………6分
(Ⅱ)2a =,1
2
S ac B =
=sin ∴4c =, …………………………………8分 由余弦定理可得
222212cos b a c ac B =+-=
b ∴=………………………………………………………………………………10分
222c a b =+,
∴ABC ∆是直角三角形. ………………………………………………12分
19.解:(Ⅰ)设等比数列{}n a 的公比为q ,则214
5
12,128.a a q a a q ==⎧⎪⎨==⎪⎩ ………………………2分 解之,得11,
24.a q ⎧
=⎪⎨⎪=⎩. ……………………………………………………………………4分
∴112311
422
n n n n a a q ---==⋅=. ………………………………………………………………6分
(Ⅱ)2322log log 223n n n b a n -===-. …………………………………………………………8分
∵1[2(1)3](23)2n n b b n n +-=+---=, ∴{}n b 是首项为1-,公差为2的等差数列. ∴(123)
3602
n n n S -+-=
=. …………………………………………………………10分
∴223600n n --=,∴20n =或18n =-(舍去).
因此,所求20n =. ………………………………………………………………………12分
20.解:由题意知,抛物线焦点在x 轴上,开口方向向右,
可设抛物线方程为22(0)y px p =>, ……………………………………………………3分
将交点3
(2
代入得2p =,故抛物线方程为24y x =.………………………………6分
双曲线的一个焦点坐标为(10),
,则1c =.………………………………………………8分
又点3(2
也在双曲线上,因此有
22
9614a b
-=,又221a b +=, ………………10分 因此可以解得2213
44
a b ==,,
因此,双曲线的方程为22
4413
y x -=. ………………………………………………12分
21.【理科】解:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示的空间直角坐标系D xyz -.
依题设B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).
DE =(0,2,1),DB =(2,2,0), 1AC =(-2,2,-4),1DA =(2,0,4). ………………………………………………………3分
(Ⅰ)∵1AC ·DB =0,1AC ·DE =0,
∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,
∴1AC ⊥平面BED .……………………………………6分 (Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则
n DE ⊥、1n DA ⊥.
∴20,240y z x z +=+=. 令1y =,则2,4z x =-=,
∴n =(4,1,-2).……………………………………9分

1
11cos ,42||||
16n AC n AC n AC 〈〉=
==
∵1,n AC 〈〉等于二面角1A DE B --的平面角, ∴二面角1A DE B --…………………………………………………12分
21.【文科】解:(Ⅰ)易得'2()2f x x ax b =+-, ……………………………………………1分
'(1)4f =-,∴ 124a b +-=-. ①……………………………………………………3分
又11
(1,)3-在()y f x =的图象上,
∴111
33
a b +-=-,即40a b -+=.②……………………………………………………5分 由①②解得=1,
=3.a b -⎧⎨⎩ …………………………………………………………………………6分
∴32
1()33
f x x x x =--,
(Ⅱ)'2()23(3)(1)f x x x x x =--=-+
令'
()0f x =,解得1x =-或3.……………………………………………………………8分
∴在[3,6]-上,当x 变化时,'
,()f x 的变化情况如下表:
∴当x ∈[-3,6]时,max ()(6)18f x f ==,min ()(3)(3)9f x f f ==-=-.………12分
22.【理科】解:(Ⅰ)由题设知点C 到点F 的距离等于它到1l 的距离,
∴点C 的轨迹是以F 为焦点,1l 为准线的抛物线.
∴所求轨迹的方程为24x y =.………………………………………………………………3分
(Ⅱ)由题意知,直线2l 的方程可设为1(0)y kx k =+≠,与抛物线方程联立消去y 得
2440x kx --=.……………………………………5分
设1122(,),(,)P x y Q x y , 则12124,4x x k x x +==-. 又易得点R 的坐标为2
(,1)k
--.……………7分 ∴112222
(,1)(,1)RP RQ x y x y k k
=+
+++ 121222
()()(1)(1)x x kx kx k k =+++++
21212224
(1)(2)()4k x x k x x k k =++++++
2224
4(1)4(2)4k k k k k =-+++++
22
1
4()8k k =+
+.……………………………………………………………………………10分 ∵2
21
2k k
+
≥,当且仅当21k =时取等号, ∴42816RP RQ ≥⨯+=,
即RP RQ 的最小值为16. …………………………………………………………………12分 22.【文科】解:(Ⅰ)设椭圆的半长轴长为a ,半短轴长为b
由已知,212a =,所以6a =. 又
1
3
c a =,即3a c =,所以36c =,即2c =. ……3分 于是2
2
2
36432b a c =-=-=
因为椭圆的焦点在x 轴上,故椭圆的标准方程是
22
13632
x y +=. …………………………6分 (Ⅱ)解法一:因为6a =,所以直线l 的方程为6x =-,又2c =,所以右焦点为2(2,0)F .
过点M 作直线l 的垂线,垂足为H ,由题设,2||||4MF MH =-.………………8分
设点(,)M x y (6)42x x =+-=+. …………………10分
两边平方,得222(2)(2)x y x -+=+,即28y x =.
故点M 的轨迹方程是28y x =.…………………………………………………………12分 解法二:因为6a =,所以直线l 的方程为6x =-,又2c =,所以右焦点为2(2,0)F . 因为动点M 到椭圆右焦点2(2,0)F 的距离比它到直线l :6x =-的距离小4 所以动点M 到椭圆右焦点2(2,0)F 的距离等于它到直线l :2x =-的距离 ……9分 所以点M 的轨迹方程是28y x = ……………………………………………………12分。

相关文档
最新文档