2006年高考第一轮复习数学:13.2 数列的极限
高考数学函数的极限1

4 求当 x
2x 1 2x 1 lim lim 2. x | x | x x 2x 1 2x 1 lim lim x | x | x | x | 2x 1 lim 不存在. x | x |
5.
lim
x
x 3 x
2
的值是
x
也可记作: 当 x 时,f ( x ) a 当自变量x 取负值并且绝对值无限增大时,如果函数 f ( x ) 无限趋近于一个常数a , 就说当x 趋向于负无穷大时, 函数 f ( x ) 的极限是a ,记作 lim f ( x ) a
x
也可记作: 当 x 时,f ( x ) a
1 考察函数 y x 当x 无限增大时的变化趋势. y 当自变量x 取正值并无限增 1 y 大时,函数 的值无限趋近 x x 于0,即|y-0|可以变得任意小. O
当x 趋向于正无穷大时,函数 1 1 y 的极限是0,记作 lim 0 x x x x y 1 1 10 0.1 100 0.01 1000 0.001 10000 0.0001 100000 0.00001 · · · · · ·
f ( x ) 的值保持为1.即 lim f ( x ) 1; 解:当 x 时, x
f ( x ) 1; 当 x 时,f ( x ) 的值保持为-1,即 xlim
1 1 lim 例2、观察函数 y 1 的图象,写出极限 x 1 x x
lim f ( x ) a lim f ( x ) a
x
f ( x ) 无限趋 近于常数a
lim f ( x ) a
x
2.3 函数的极限
例1、分别就自变量x 趋向于 和 的情况,讨论下列 函数的变化趋势: x 1 (1) y 2
高考第一轮复习数学:132数列的极限-教案(含习题及答案).

13.2 数列的极限●知识梳理1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a|无限地接近于0),那么就说数列{a n }以a 为极限.注:a 不一定是{a n }中的项.2.几个常用的极限:①∞→n lim C=C (C 为常数);②∞→n limn1=0;③∞→n lim q n=0(|q|<1).3.数列极限的四则运算法则:设数列{a n }、{b n },当∞→n lim a n =a, ∞→n lim b n =b 时,∞→n lim (a n ±b n )=a ±b;∞→n lim (a n ·b n )=a ·b; ∞→n limn n b a =ba(b ≠0). 特别提示(1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. ●点击双基1.下列极限正确的个数是①∞→n lim αn 1=0(α>0) ②∞→n lim q n=0 ③∞→n lim n n nn 3232+-=-1 ④∞→n lim C=C (C 为常数) A.2 B.3C.4D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]等于 A.0 B.1C.2D.3解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ] =∞→n lim 22+n n=2. 答案:C 3.下列四个A.若∞→n lim a n 2=A 2,则∞→n lim a n =AB.若a n >0,∞→n lim a n =A ,则A >0C.若∞→n lim a n =A ,则∞→n lim a n 2=A 2D.若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n解析:排除法,取a n =(-1)n,排除A ; 取a n =n1,排除B;取a n =b n =n ,排除D . 答案:C4.(2005年春季上海,2) ∞→n limnn ++++ 212=__________.解析:原式=∞→n lim 2)1(2++n n n =∞→n lim 221212nn n ++=0.答案:05.(2005年春季北京,9) ∞→n lim 32222-+n nn =____________.解析:原式=∞→n lim23221nn -+=21. 答案:21【例1】 求下列极限:(1)∞→n lim757222+++n n n ;(2) ∞→n lim (n n +2-n );(3)∞→n lim (22n +24n+…+22n n ).剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因n n +2与n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限.解:(1)∞→n lim 757222+++n n n =∞→n lim 2275712nn n +++=52. (2)∞→n lim (n n +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n=21. (3)原式=∞→n lim 22642n n ++++ =∞→n lim 2)1(n n n +=∞→n lim (1+n1)=1. 评述:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n2+n+7), ∞→n lim (5n 2+7)不存在,∴原式无极限.对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )= ∞→n lim n n +2-∞→n lim n=∞-∞=0;②原式=∞→n limn n +2-∞→n lim n=∞-∞不存在.对于(3)要避免出现原式=∞→n lim22n +∞→n lim 24n +…+∞→n lim22n n =0+0+…+0=0这样的错误.【例2】 已知数列{a n }是由正数构成的数列,a 1=3,且满足lga n =lga n -1+lgc ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim 1122+-+-n n nn a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1.∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c c c c nn 且(2) ∞→n lim1122+-+-n n n n a a =∞→n lim n n n n cc 323211+---. ①当c=2时,原式=-41; ②当c>2时,原式=∞→n lim c cc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c =21.评述:求数列极限时要注意分类讨论思想的应用.【例3】 已知直线l:x -ny=0(n ∈N *),圆M:(x+1)2+(y+1)2=1,抛物线ϕ:y=(x-1)2,又l 与M 交于点A 、B ,l 与ϕ交于点C 、D ,求∞→n lim 22||||CD AB .剖析:要求∞→n lim 22||||CD AB 的值,必须先求它与n 的关系.解:设圆心M (-1,-1)到直线l 的距离为d,则d 2=1)1(22+-n n .又r=1,∴|AB|2=4(1-d 2)=218nn+. 设点C (x 1,y 1), D (x 2,y 2), 由⎩⎨⎧-==-2)1(0x y ny x ⇒nx 2-(2n+1)x+n=0, ∴x 1+x 2=nn 12+, x 1·x 2=1. ∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=214n n +,(y 1-y 2)2=(n x 1-n x 2)2=414n n +, ∴|CD|2=(x 1-x 2)2+(y 1-y 2)2=41n(4n+1)(n 2+1).∴∞→n lim 22||||CD AB =∞→n lim 225)1)(14(8++n n n =∞→n lim 2)11)(14(8nn ++=2. 评述:本题属于解析几何与数列极限的综合题.要求极限,需先求22||||CD AB ,这就要求掌握求弦长的方法.【例4】 若数列{a n }的首项为a 1=1,且对任意n ∈N*,a n 与a n+1恰为方程x 2-b n x+c n=0的两根,其中0<|c|<1,当∞→n lim (b 1+b 2+…+b n )≤3,求c 的取值范围.解:首先,由题意对任意n ∈N*,a n ·a n+1=c n恒成立. ∴121+++⋅⋅n n n n a a a a =n n a a 2+=n n cc 1+=c.又a 1·a 2=a 2=c.∴a 1,a 3,a 5,…,a 2n -1,…是首项为1,公比为c 的等比数列,a 2,a 4,a 6,…,a 2n ,…是首项为c,公比为c 的等比数列.其次,由于对任意n ∈N*,a n +a n+1=b n 恒成立.∴n n b b 2+=132+++++n n n n a a a a =c.又b 1=a 1+a 2=1+c,b 2=a 2+a 3=2c,∴b 1,b 3,b 5,…,b 2n -1,…是首项为1+c,公比为c 的等比数列,b 2,b 4,b 6,…,b 2n ,…是首项为2c,公比为c 的等比数列,∴∞→n lim (b 1+b 2+b 3+…+b n )= ∞→n lim (b 1+b 3+b 5+…)+ ∞→n lim (b 2+b 4+…)=c c -+11+cc-12≤3. 解得c ≤31或c >1.∵0<|c|<1,∴0<c ≤31或-1<c <0. 故c 的取值范围是(-1,0)∪(0,31].评述:本题的关键在于将题设中的极限不等式转化为关于c 的不等式,即将{b n }的各项和表示为关于c 的解析式,显然“桥梁”应是一元二次方程根与系数的关系,故以根与系数的关系为突破口.●闯关训练 夯实基础1.已知a 、b 、c 是实常数,且∞→n lim c bn can ++=2, ∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是A.2B.3C.21D.6解析:由∞→n lim c bn can ++=2,得a=2b.由∞→n lim b cn c bn --22=3,得b=3c,∴c=31b. ∴ca=6. ∴∞→n lim a cn c an ++22=∞→n lim 22nac n c a ++=ca =6. 答案:D2.(2003年北京)若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n=1,2,…,则∞→n lim (a 1+a 2+…+a n )等于A.2411 B.2417 C.2419 D.2425 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n nn n n n n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n n n∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…).∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419 答案:C3.(2004年春季上海)在数列{a n }中,a 1=3,且对任意大于1的正整数n,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim 2)1(+n a n=__________________.解析:由题意得n a -1-n a =3 (n ≥2). ∴{n a }是公差为3的等差数列,1a =3. ∴n a =3+(n -1)·3=3n. ∴a n =3n 2.∴∞→n lim 2)1(+n a n =∞→n lim 12322++n n n =∞→n lim21213nn ++=3.答案:34.(2004年 上海,4)设等比数列{a n }(n ∈N )的公比q=-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1=_________________. 解析:∵q=-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38.∴a 1=2.答案:25.(2004年湖南,理8)数列{a n }中,a 1=51,a n +a n+1=156+n ,n ∈N*,则∞→n lim (a 1+a 2+…+a n )等于A.52 B.72 C.41 D.254解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n56]+a n .∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ).∵a n +a n+1=156+n ,∴∞→n lim a n +∞→n lim a n+1=0.∴∞→n lim a n =0.答案:C6.已知数列{a n }满足(n -1)a n+1=(n+1)(a n -1)且a 2=6,设b n =a n +n (n ∈N*). (1)求{b n }的通项公式;(2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值.解:(1)n=1时,由(n -1)a n+1=(n+1)(a n -1),得a 1=1.n=2时,a 2=6代入得a 3=15.同理a 4=28,再代入b n =a n +n,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2.要证b n =2n 2,只需证a n =2n 2-n.①当n=1时,a 1=2×12-1=1成立.②假设当n=k 时,a k =2k 2-k 成立.那么当n=k+1时,由(k -1)a k+1=(k+1)(a k -1),得a k+1=11-+k k (a k -1) =11-+k k (2k 2-k -1)=11-+k k (2k+1)(k -1)=(k+1)(2k+1)=2(k+1)2-(k+1). ∴当n=k+1时,a n =2n 2-n 正确,从而b n =2n 2.(2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ] =41∞→n lim [1+21-n 1-11+n ]=83. 培养能力7.已知数列{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n lim n n b a =21,求极限∞→n lim (111b a +221b a +…+n n b a 1)的值. 解:{a n }、{b n }的公差分别为d 1、d 2.∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1), ∴2d 2-3d 1=2.又∞→n lim n n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4.∴a n =a 1+(n -1)d 1=2n+1,b n =b 1+(n -1)d 2=4n -2.∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n ). ∴原式=∞→n lim41(1-121+n )=41. 8.已知数列{a n }、{b n }都是由正数组成的等比数列,公比分别为p 、q,其中p >q 且p≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求∞→n lim1-n nS S . 解:S n =p p a n --1)1(1+qq b n --1)1(1,.1)1(1)1(1)1(1)1(1111111qq b p p a qq b p p a S S n n n n n n --+----+--=--- 当p >1时,p >q >0,得0<pq <1,上式分子、分母同除以p n -1,得.1])(1[1)11(1)1(1)1(11111111111q p q pb p p a qpq p b p p p a S S n n n n nn n n n --+----+--=-------∴∞→n lim 1-n n S S=p. 当p <1时,0<q <p <1, ∞→n lim 1-n n S S =qb p a qbp a -+--+-11111111=1.探究创新9.已知数列{a n }满足a 1=0,a 2=1,a n =221--+n n a a ,求∞→n lim a n .解:由a n =221--+n n a a ,得2a n +a n -1=2a n -1+a n -2,∴{2a n +a n -1}是常数列. ∵2a 2+a 1=2,∴2a n +a n -1=2.∴a n -32=-21(a n -1-32).∴{a n -32}是公比为-21,首项为-32的等比数列.∴a n -32=-32×(-21)n -1.∴a n =32-32×(-21)n -1.∴∞→n lim a n =32. ●思悟小结1.运用数列极限的运算法则求一些数列的极限时必须注意以下几点: (1)各数列的极限必须存在;(2)四则运算只限于有限个数列极限的运算. 2.熟练掌握如下几个常用极限: (1) ∞→n lim C=C (C 为常数);(2) ∞→n lim (n1)p=0(p >0);(3) ∞→n lim d cn b an k k ++=ca(k ∈N *,a 、b 、c 、d ∈R 且c ≠0);(4) ∞→n lim q n=0(|q|<1).●教师下载中心 教学点睛1.数列极限的几种类型:∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限,另外还有先求和,约分后再求极限,对含参数的题目一定要控制好难度,不要太难了.2.重视在日常学习过程中化归思想、分类讨论思想和极限思想的运用.拓展题例【例题】 已知等比数列{a n }的首项为a 1,公比为q,且有∞→n lim (q a +11-q n)=21,求首项a 1的取值范围.解: ∞→n lim (q a +11-q n)=21, ∴∞→n lim q n一定存在.∴0<|q|<1或q=1.当q=1时,21a -1=21,∴a 1=3.当0<|q|<1时,由∞→n lim (q a +11-q n)=21得q a +11=21,∴2a 1-1=q.∴0<|2a 1-1|<1.∴0<a 1<1且a 1≠21.综上,得0<a 1<1且a 1≠21或a 1=3.。
2006高考《数列》题及答案.doc

解:在等差数列 an 中,已知 a1 2, a2 a3 13, ∴ d=3,a5=14, a4 a5 a6 =3a5=42,选 B. 4. (广东卷)已知某等差数列共有 10 项,其奇数项之和为 15,偶数项之和为 30,则其公差 为 A.5 B.4 C. 3 D. 2 解:
a1 , b1 N * . 设 cn abn ( n N * ), 则 数 列 {cn } 的 前 10 项 和 等 于
ab1 ab2 ab10 = ab1 ab1 1 ab1 9 , ab1 a1 (b1 1) 4 ,∴ ab1 ab1 1 ab1 9
= 4 5 6 13 85 ,选 C. 16. (天津卷)设 an 是等差数列, a1 a3 a5 9 , a6 9 ,则这个数列的前 6 项和等于 ( ) A.12 B.24 C.36 D.48
解: an 是等差数列, a1 a3 a5 3a3 9, a3 3, a6 9. ∴ d 2, a1 1 ,则这个数 列的前 6 项和等于
(B)
2 n 1 (8 1) 7
(C)
2 n 3 (8 1) 7
n4 (D) (8 1)
2 7
解:依题意, f ( n) 为首项为 2,公比为 8 的前 n+4 项求和,根据等比数列的求和公式可得 D 2. (北京卷)如果-1,a,b,c,-9 成等比数列,那么 (A)b=3,ac=9 (B)b=-3,ac=9 (C)b=3,ac=-9 (D)b=-3,ac=-9 解:由等比数列的性质可得 ac=(-1)×(-9)=9,b×b=9 且 b 与奇数项的符号相同, 故 b=-3,选 B 3. (福建卷)在等差数列{a n }中,已知 a 1 =2,a 2 +a 3 =13,则 a 4 +a 5 +a 6 等于 A.40 B.42 C.43 D.45
大纲版数学理科高考总复习13-2数列的极限

依次为 r, 23r,( 23)2r,…,从而可知所有的圆的面积
形成一个以 πr2 为首项,34为公比的等比数列,因此lni→m∞Sn
=1π-r234=4πr2,选 C.
答案:C
易错点 忽视解题细节致误
例 已知 p 和 q 是两个不相等的正整数,且 q≥2,
则lni→m∞ 11+ +1n1npq- -11=(
【解】
(1)原式=lni→m∞ nn5422+-1n1n-+32=-32;
(2)原式=lni→m∞
n3+n2 2n+12n2-1
=lni→m∞ 2+11n+21n-n12=14;
(3)原式=lni→m∞
n n+1+
n=lni→m∞
1+1 1n+1=12;
(4)∵nn1+1+nn4+1+…+n3nn- +21=
)
A.0
B.1
p
p-1
C.q
D.q-1
• 【错因分析】 此题粗看上去超出了 学习的范围,考生解答此题时只注重 了对整体的分析,而忽视了对细节的 考虑,没有将选择题的特殊化解法用 好而盲目选择了D选项.
【正确解答】 解法一:特殊值法,由题意取 p=1,
q=2,
则lni→m∞
11+ +1n1npq- -11=nli→1 D.2
解析:lni→m∞ n22n+2+3n1=lni→m∞ 21++n13n2=2.
• 答案:B
2 . (2010 年 江 西 高 考 ) lni→m∞ 1+13+312+…+31n =
()
3
3
A.5
B.2
C.2
D.不存在
解析:lni→m∞ 1+13+312+…+31n=lni→m∞ 1-1-1313n+1=32, 故选 B.
高考数学一轮总复习数列与数列极限的数学归纳法证明步骤

高考数学一轮总复习数列与数列极限的数学归纳法证明步骤高考数学一轮总复习:数列与数列极限的数学归纳法证明步骤数列与数列极限是高中数学中的重要概念,在高考数学考试中也是常见的考点。
本文将介绍数学归纳法证明数列与数列极限的步骤及其应用。
在解题过程中,我们将以具体的例子进行说明,以帮助读者更好地理解和掌握这一重要的数学方法。
一、数学归纳法的基本思想数学归纳法是一种基于数学归纳思想的证明方法,常用于证明一般性陈述在自然数集上成立。
使用数学归纳法证明一个命题通常分为三个步骤:1. 证明基本情况:首先证明当 n 取一个特定的值时,命题成立。
这一步又称为“递归起点”。
2. 归纳假设:假设当 n=k 时,命题成立,即假设命题对于某个特定的自然数 k 成立。
3. 归纳步骤:通过归纳假设证明当 n=k+1 时,命题也成立。
这一步又称为“递归关系”。
二、数列定义与数列极限的概念在进行数学归纳法证明数列与数列极限之前,我们先来回顾一下数列的定义及数列极限的概念。
数列是将自然数与实数联系起来的一种函数关系。
通常用 {an} 或者 (an) 表示一个数列,其中 an 表示数列的第 n 个元素。
数列极限是指数列随着 n 趋向无穷大时的极限值。
当数列随着 n 的增大无限逼近某个实数 L 时,就称数列 {an} 的极限为 L,记作 lim an = L。
三、数学归纳法证明数列与数列极限的步骤下面我们将以一个具体的例子来说明如何使用数学归纳法证明数列与数列极限。
【例】证明数列 {an} = 2^n + 1 是递增数列。
解:首先,我们先验证 n=1 时数列成立。
当 n=1 时,a1 = 2^1 + 1 = 3。
根据数列的定义,可以得出 a1 = 3,所以当 n=1 时,数列成立。
这就是我们要证明的基本情况。
接下来,我们假设当 n=k 时数列成立,即 ak < ak+1。
这个假设就是我们的归纳假设。
现在我们来证明当 n=k+1 时数列也成立,即证明 ak+1 < ak+2。
2006年高考第一轮复习数学134函数的连续性及极限的应用

13.4 函数的连续性及极限的应用•知识梳理1•函数的连续性.一般地,函数f ( X)在点X=X o处连续必须满足下面三个条件:(1)函数 f (x)在点x=x o 处有定义;(2) lim f( x)存在;(3) lim f( x) =f( x o)—Xo j x,如果函数y=f( x)在点x=x0处及其附近有定义,而且lim f( x)=f( x0),就说函数f( x)在T o点X o处连续•2•如果f(x)是闭区间]a,b]上的连续函数,那么 f (x)在闭区间]a,b]上有最大值和最小值.3若 f (x)、g (x)都在点xo处连续则f( x)± g (x),f(x)・g(x),f x)(g( x"0)也在点x o处连续.若U ( x)在点x o处连续,且f ( u)在U o=u (x o)处连续,则复合函数f [u (x)]在点x o处也连续.特别提示(1)连续必有极限,有极限未必连续.(2)从运算的角度来分析,连续函数在某一点处的极限运算与函数关系“f”是可以交换顺序的.•点击双基1. __________________________________________________ f (X)在x=x o处连续是f ( X)在x=x o处有定义的____________________________________________ 条件.A. 充分不必要C.充要解析:f ( X)在x=x o处有定义不一定连续答案:Ancos—2.----------------- f (x) = x的不连续点为ncos—XA. x=oB. x= ( k=0, ±1,±2,…)2k +1C. x=0 和x=2k n ( k=0, ±1,±2,…)B.必要不充分D.既不充分又不必要D.x=0 和x=22k 1(k=0, ± 1,± 2,…)解析:由cos n=0,得n= k n + nx x 22(k€ Z),••• X=E Z)■x 又x=0也不是连续点,故选D答案:D3. 下列图象表示的函数在x=x o处连续的是处连续的函数是 ______________ .(把你认为正确的代号都填上)答案:②③④ •典例剖析(2)讨论函数f (x )=—匚在区间[0,3]上的连续性.x —3剖析:(1)需判断 lim f (x ) = lim f (x ) =f (0).+(2)需判断f (乂)在(0,3) 上的连续性及在 x=0处右连续,在x=3处左连续. 解:(1 ):T im f (x ) =— 1, lim f (x ) =1, x —^^0 十lim f ( X )M lim f (x ),x ― 0 …x )0 '•'•lim f (x )不存在.••• f (x )在x=0处不连续.x )0(2)v f (x )在x=3处无定义, • f (x )在x=3处不连续. • f (x )在区间[0,3]上不连续.e x(x £0)【例2】 设f (x )=丿’当a 为何值时,函数f (x )是连续的、a +x(x^0),lim ( a+x ) =a, lim f (x ) = lim e x =1,而 f ( 0) =a,故当 a=1x )0x Qf x )0_凹 f (x ) =f (0)即说明函数f (x )在x=0处连续,而在X M 0时,f (x )显然连续,于是我们可判断当A.① 答案:A4•四个函数:①f (x ) xD.③④1二一;②g (x ) =sinx;③f (x ) =|x|;④f (x ) x =ax 3+bx 2+cx+d.其中在x=0【例1】(1)讨论函数f (x )=;-1 (x 0),(x =0),在点x =0处的连续性;(x ::: 0)解:lim f (x )xT 'a=1xf (X )在(一8 , + 8)内是连续的•评述:分段函数讨论连续性,一定要讨论在“分界点”的左、右极限,进而断定连续性 【例3】如右图,在大沙漠上进行勘测工作时,先选定一点作为坐标原点, 然后采用如下方法进行:从原点出发,在x 轴上向正方向前进 a (a > 0)个单位 后,向左转90°,前进a ((0v r < 1=个单位,再向左转90° ,又前进a r 2个单位,…, 如此连续下去•(1)若有一小分队出发后与设在原点处的大本营失去联系,且可以断定此小分队的行动 与原定方案相同,则大本营在何处寻找小分队 ?(2)若其中的r 为变量,且 0< r < 1,则行动的最终目的地在怎样的一条曲线上 ? 剖析:(1)小分队按原方案走,小分队最终应在运动的极限位置 • (2)可先求最终目的地关于 r 的参数形式的方程• 解: (1)由已知可知即求这样运动的极限点,设运动的极限位置为 Q (x ,y ),则3 5_ ar y=ar — ar +ar —…= ------ 2,1 +r 2•••大本营应在点( 一^石,一J )附近去寻找小分队1 +r2 1 +r 2aX2,21 r消去 r 得(x — a) 2+y 2=^- ar 2 4 y=—, 1 +r 2即行动的最终目的地在以( |,0)为圆心,号为半径的圆上•闯关训练 夯实基础'x 2+2x-3xE11.函数 f (x ) = x 1 ::: x ::: 2,则有2x-2 x_2,LA. f (x )在x=1处不连续B. f (x )在x=2处不连续C. f (x )在x=1和x=2处不连续D. f (x )处处连续• f (x )在x=1处不连续• 答案:A2. 若f (x )在定义域]a,b ]上有定义,则在该区间上 A. 一定连续 B. 一定不连续C. 可能连续也可能不连续24x=a — ara a 1 _(_r 2)=1 r 2 (其中 x > -,y > 0)2(2)由 解析: lim f (x ) =0,x —1 -的x) =1,D. 以上均不正确3解析:有定义不一定连续 答案:C1D. x= —1 解析:lim f ( x )= lim f ( x )=f ( )• i 亠i —2x 访x i答案:D4•有以下四个命题:1 ① f (x )=—在]0,1]上连续;x② 若f (乂)是(a,b )内的连续函数,则f (x )在(a,b )内有最大值和最小值(n — 1) n (2n —1) lim n = 6n3x3•已知函数f (x )=丿J _xA.处处连续 x 为有理数, X 为无理数,B.x=1函数f (X )在哪点连续C.x=0③limnx込2sin 2xcosx=4;④若f (x )=『X x +1 其中正确命题的序号是答案:③(x -0),则 lim f (x ) =0.(x :::0). x 10 ____________ .(请把你认为正确命题的序号都填5抛物线y=b ( ) 2、x 轴及直线AB:x=a 围成了如图(1)的阴影部分,AB 与x 轴交于a点A,把线段OA 分成n 等份,作以a 为底的内接矩形如图(2),阴影部分的面积为n些内接矩形面积之和当 n is 时的极限值,求S. S 等于这1 2解:S= lim _ :b • ( — )+b 紺(3 )彳+…+b (叠)n n=limn —■n3-abab=」ab. (-)n2] 2+…+(n 1)2(1)(3) 解:设f k (b )表示发给第k 位职工后所剩余额,则 f 1 (b )=(11 —-) • b , f2 ( b )n1 2=(1— ) 2・ b ,…,f k (b )=n1 得 P n ( b )= f n ( b ) = ( 1 — n-b,故 lim P n ( b )=-. n — e 探究创新8. ( 2003年北京)如图,在边长为l 的等边△ ABC 中,圆 01 ABC 的内切圆,圆 O 2与圆O 1外切,且与 AB 、BC 相切,…,圆O n+1与圆 O n 外切,且与 AB 、BC 相切,如此无限继续下去,记圆O n 的面积为a n (n € N *).(1)(2) 证明{a n }是等比数列;求lim (a 什a 2+…+a n ) 的值.n )::证明:记r n 为圆O n 的半径,ntt l(3则门=tan30= l. 26培养能力1 16.求 y=f ( x ) = x i x _1 的不连续点 .x -1 x解:易求f (x )的定义域为{x|x M — 1,0,1},所以f ( x )的不连续点为 x= — 1,x=0和x=1. 7( 2002年春季上海)某公司全年的纯利润为 b 元,其中一部分作为奖金发给 n 位职工, 奖金分配方案如下:首先将职工按工作业绩 (工作业绩均不相同) 从大到小,由1到n 排序, 第1位职工得奖金b 元,然后将余额除以n 发给第2位职工,按此方案将奖金逐一发给每位n职工,并将最后剩余部分作为公司发展基金.(1) 设a k ( K k w n )为第k 位职工所得奖金额,试求 a 2、a 3,并用k 、n 和b 表示a k (不必证明);(2) 证明:a k >a k +1 ( k = 1, 2,…,n — 1),并解释此不等式关于分配原则的实际意义; (3) 发展基金与n 和b 有关,记为P n ( b ).对常数b ,当n 变化时,求lim P n (b )(可1 1用公式 lim (1— - ) n =-)n b a 1 = , a 2 = n(1) 解: -(1 — - ) • b ,a 3= - (1 — - ) 2 • b ,…,a k= - (1 —-) n n n n n n k —1• b.(2) 1 证明:a k — a k +1=n(1 — 1) k —1 • b >0,此奖金分配方案体现了按劳分配的原nr n 1 -r n 1 1二 -=sin30 ° =—,二 r n = r n —1 ( n 》2)r n J ■ r n 2 3--{a n }成等比数列.f ( X )在点X o 处的左、右极限存在但不相等 即 丙丁图乙表示的是f (x )在点X 0处的左极限存在,而右极限不存在 也属于lim f (x )不存在 的情况.图丙表示的是lim f (x )存在,但函数f (x )在点X 0处没有定义.X JX 0图丁表示的是lim f (X )存在,但它不等于函数在这一点处的函数值f (X 0).X X•教师下载中心 教学点睛1.函数f ( X )在点X 0处连续与f (X )在点X 0处有极限的联系与区别:其联系是:f (x )在点x 0处连续是依据f (x )在点x 0处的极限来定义的,它要求lim f (x ) 存在. 其区别是:函数在某点处连续比在此点处有极限所具备的条件更强 .首先,f ( X )在点X 0处有极限,对于点X 0而言,X 0可以属于f ( X )的定义域,也可以不属于f ( X )的定义域,即与f (X 0)是否有意义无关,而f (X )在点X 0处连续,要求f ( X )在点x 0及其附近都有定义;其次,f (x )在点x 0处的极限(值)与 f (X )在点X 0处的函数值f(X 0)可以无关,而f (X )在点x 0处连续,要求f ( X )在点X 0处的极限(值)等于它在这一点的函数值f ( X 0).我们通常说"连续必|22nI 于 一^是 a 〔= n r 1 = ------------------------ anan da na n J.2=1 =9(2)解:因为a n =n —1• a 1 (n €N *),3冗I 2 所以 lim (a 1 + a 2+…+a n ) =—a^+ 132 9•思悟小结1.函数f ( X )在点 地,函数f (X )在点 X 0处连续反映到函数f ( X )的图象上是在点 X=X 0处是不间断的.一般 X 0处不连续(间断)大致有以下几种情况(如下图所示)y、= f (x 、 yy |y=f(xiyiOX 0Xox of (x)图甲表示的是 lim X f (x )不存在.X —o甲有极限,有极限未必连续”,正是针对上述事实而言的2•函数f ( x )在点X 。
高考数学一轮复习 第二讲数列极限课件 新人教版选修2

答案:
二、忽视极限存在的条件产生的混淆
2.
答案:0
=________.
三、无穷等比数列的前n项和与各项和混淆
3.一个无穷等比数列的首项为1,公比为,则其前n
项和为__________,各项和为__________. 答案:2-( )n-1 2
四、性质应用错误 4.已知等比数列{an}首项为a1,公比为q,且有 ,则首项a1的取值范围是( A.0<a1<1且a1≠ )
(
A.等于0 C.等于0或等于1 B.等于1 D.不存在
)
当n→∞时,an→1,
综上可知,an的极限值为1. 答案:B
答案:B
答案:C
答案:D
5 .已知数列的通项 an =- 5n + 2 ,其前 n 项和为 Sn , 则 =________.
答案:-
【例1】 求下列极限:
[总结评述]
求数列的极限要充分体现转化思想,通
过一定的策略,如
型要实施分子、分母同除以分母中n
的最高次幂;如 (2) 需分子有理化转化到重要极限上去解
决,如
.
求下列数列的极限:
分析: (1) 应用等差数列求和公式,求得原数列解析 式后再求极限. (2) 应用平方差公式变成连乘积的形式, 用约分变形求得原数列解析式后求极限. (3) 把“不定
(2) 若 f(n) , g(n) 是关于 n 的多项式,其次数分别为 k 和 h,次数最高项的系数分别为a,b(ab≠0),
( 其中 f(n) = ank + a1nk - 1 + … + ak , g(n) = bnh + b1nh - 1
项的和与无限项的和混淆
●基础知识 一、数列极限的概念 1.如果当项数n 无限 增大时, 无穷 数列{an}中的项 an 无限 地趋近于某个常数a(|an-a| 无限 地接近于0),那么 就说数列{an}以a为极限,或者说a是数列{an}的极限.
高考数学一轮总复习教学课件第六章 数 列第1节 数列的概念

[针对训练] 数列 0,,,,…的一个通项公式为(
-
*
(n∈N )
C.a =
√
-
n
*
*
B.an=+(n∈N )
A.an=+(n∈N )
(-)
-
)
*
D.an=
+
(n∈N )
解析:注意到分子0,2,4,6都是偶数,对照选项排除即可.故选C.
考点二
[针对训练] 已知Sn=2n+3,则an=
, = ,
- , ≥
解析:当n=1时,a1=5;
当n≥2时,
an=Sn-Sn-1=2n+3-(2n-1+3)=2n-1,
当n=1时,21-1=1≠a
, = ,
1,所以an=
- , ≥ .
.
考点三
由数列的递推关系求通项
角度一
数列,则实数k的取值范围为(
A.(3,+∞)
B.(2,+∞)
C.(1,+∞)
D.(0,+∞)
√
)
+
,若数列{an}为递减
解析:(1)因为 an+1-an=
*
++ + --
+
-
=
--
任意 n∈N ,an+1-an=
+
<0,
所以k>3-3n对任意n∈N*恒成立,
3.若数列{an}满足a1=2,an+1=
A.2
C.-
√
B.-3
+
解析:因为 a1=2,an+1=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.2 数列的极限●知识梳理1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限.注:a 不一定是{a n }中的项.2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n limn1=0;③∞→n lim q n =0(|q |<1).3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞→n lim a n =a , ∞→n lim b n =b 时,∞→n lim (a n ±b n )=a ±b ;∞→n lim (a n ·b n )=a ·b ; ∞→n limn n b a =ba(b ≠0). 特别提示(1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个.●点击双基1.下列极限正确的个数是①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0 ③∞→n limnn n n 3232+-=-1 ④∞→n lim C =C (C 为常数)A.2B.3C.4D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]等于 A.0B.1C.2D.3解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-21+n )]=∞→n lim [n ×32×43×54×…×21++n n ] =∞→n lim 22+n n=2. 答案:C3.下列四个命题中正确的是 A.若∞→n lim a n 2=A 2,则∞→n lim a n =AB.若a n >0,∞→n lim a n =A ,则A >0C.若∞→n lim a n =A ,则∞→n lim a n 2=A 2D.若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n解析:排除法,取a n =(-1)n ,排除A ; 取a n =n1,排除B;取a n =b n =n ,排除D . 答案:C4.(2005年春季上海,2) ∞→n limnn ++++ 212=__________.解析:原式=∞→n lim 2)1(2++n n n =∞→n lim 221212nn n ++=0.答案:05.(2005年春季北京,9) ∞→n lim 32222-+n nn =____________.解析:原式=∞→n lim23221nn -+=21. 答案:21●典例剖析【例1】 求下列极限: (1)∞→n lim757222+++n n n ;(2) ∞→n lim (n n +2-n );(3)∞→n lim (22n +24n +…+22n n ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因n n +2与n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限.解:(1)∞→n lim 757222+++n n n =∞→n lim 2275712nn n +++=52. (2)∞→n lim (n n +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n=21. (3)原式=∞→n lim22642n n ++++ =∞→n lim 2)1(n n n +=∞→n lim (1+n1)=1. 评述:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n2+n +7), ∞→n lim (5n 2+7)不存在,∴原式无极限.对于(2)要避免出现下面两种错误:①∞→n lim (n n +2-n )= ∞→n limn n +2-∞→n lim n =∞-∞=0;②原式=∞→n limn n +2-∞→n lim n =∞-∞不存在.对于(3)要避免出现原式=∞→n lim22n +∞→n lim 24n +…+∞→n lim22n n=0+0+…+0=0这样的错误.【例2】 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ;(2)求∞→n lim1122+-+-n n n n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1.∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c n n 且(2) ∞→n lim1122+-+-n n n n a a =∞→n lim n n n n cc 323211+---. ①当c =2时,原式=-41; ②当c>2时,原式=∞→n lim c cc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim 11)2(32)2(31--⋅+-n n c c c =21.评述:求数列极限时要注意分类讨论思想的应用.【例3】 已知直线l :x -ny =0(n ∈N *),圆M :(x +1)2+(y +1)2=1,抛物线ϕ:y =(x -1)2,又l 与M 交于点A 、B ,l 与ϕ交于点C 、D ,求∞→n lim 22||||CD AB .剖析:要求∞→n lim 22||||CD AB 的值,必须先求它与n 的关系.解:设圆心M (-1,-1)到直线l 的距离为d ,则d 2=1)1(22+-n n .又r =1,∴|AB |2=4(1-d 2)=218nn+. 设点C (x 1,y 1), D (x 2,y 2),由⎩⎨⎧-==-2)1(0x y ny x ⇒nx 2-(2n +1)x +n =0, ∴x 1+x 2=nn 12+, x 1·x 2=1. ∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=214nn +,(y 1-y 2)2=(n x 1-n x 2)2=414n n +, ∴|CD |2=(x 1-x 2)2+(y 1-y 2)2 =41n(4n +1)(n 2+1). ∴∞→n lim 22||||CD AB =∞→n lim 225)1)(14(8++n n n =∞→n lim 2)11)(14(8nn ++=2. 评述:本题属于解析几何与数列极限的综合题.要求极限,需先求22||||CD AB ,这就要求掌握求弦长的方法.【例4】 若数列{a n }的首项为a 1=1,且对任意n ∈N *,a n 与a n +1恰为方程x 2-b n x +c n =0的两根,其中0<|c |<1,当∞→n lim (b 1+b 2+…+b n )≤3,求c 的取值范围.解:首先,由题意对任意n ∈N *,a n ·a n +1=c n 恒成立.∴121+++⋅⋅n n n n a a a a =n n a a 2+=n n cc 1+=c .又a 1·a 2=a 2=c .∴a 1,a 3,a 5,…,a 2n -1,…是首项为1,公比为c 的等比数列,a 2,a 4,a 6,…,a 2n ,…是首项为c ,公比为c 的等比数列.其次,由于对任意n ∈N *,a n +a n +1=b n 恒成立.∴nn b b 2+=132+++++n n n n a a a a =c .又b 1=a 1+a 2=1+c ,b 2=a 2+a 3=2c , ∴b 1,b 3,b 5,…,b 2n -1,…是首项为1+c ,公比为c 的等比数列,b 2,b 4,b 6,…,b 2n ,…是首项为2c ,公比为c 的等比数列,∴∞→n lim (b 1+b 2+b 3+…+b n )= ∞→n lim (b 1+b 3+b 5+…)+ ∞→n lim (b 2+b 4+…)=c c -+11+cc-12≤3. 解得c ≤31或c >1.∵0<|c |<1,∴0<c ≤31或-1<c <0. 故c 的取值范围是(-1,0)∪(0,31].评述:本题的关键在于将题设中的极限不等式转化为关于c 的不等式,即将{b n }的各项和表示为关于c 的解析式,显然“桥梁”应是一元二次方程根与系数的关系,故以根与系数的关系为突破口.●闯关训练 夯实基础1.已知a 、b 、c 是实常数,且∞→n lim c bn can ++=2, ∞→n lim b cn c bn --22=3,则∞→n lim acn c an ++22的值是A.2B.3C.21D.6 解析:由∞→n limcbn can ++=2,得a =2b . 由∞→n lim b cn c bn --22=3,得b =3c ,∴c =31b . ∴ca =6. ∴∞→n lim a cn c an ++22=∞→n lim22na c n c a ++=ca =6. 答案:D2.(2003年北京)若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于A.2411 B.2417 C.2419 D.2425解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n nn nnn n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n n n∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…). ∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C3.(2004年春季上海)在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =__________________.解析:由题意得n a -1-n a =3 (n ≥2). ∴{n a }是公差为3的等差数列,1a =3. ∴n a =3+(n -1)·3=3n . ∴a n =3n 2.∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim21213nn ++=3.答案:34.(2004年 上海,4)设等比数列{a n }(n ∈N )的公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1=_________________. 解析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38.∴a 1=2.答案:25.(2004年湖南,理8)数列{a n }中,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim (a 1+a 2+…+a n )等于A.52 B.72 C.41 D.254 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n 56]+a n .∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ).∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0.∴∞→n lim a n =0.答案:C6.已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *). (1)求{b n }的通项公式; (2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值. 解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1.n =2时,a 2=6代入得a 3=15.同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2.要证b n =2n 2,只需证a n =2n 2-n . ①当n =1时,a 1=2×12-1=1成立. ②假设当n =k 时,a k =2k 2-k 成立.那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1) =11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1). ∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2. (2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim [311⨯+421⨯+…+)1)(1(1+-n n ] =41∞→n lim [1-31+21-41+…+11-n -11+n ] =41∞→n lim [1+21-n 1-11+n ]=83. 培养能力7.已知数列{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limn n b a =21,求极限∞→n lim (111b a +221b a +…+nn b a 1)的值.解:{a n }、{b n }的公差分别为d 1、d 2.∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1), ∴2d 2-3d 1=2. 又∞→n limn n b a =∞→n lim 21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1, ∴d 1=2,d 2=4.∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2. ∴n n b a 1=)24()12(1-⋅+n n =41(121-n -121+n ). ∴原式=∞→n lim41(1-121+n )=41. 8.已知数列{a n }、{b n }都是由正数组成的等比数列,公比分别为p 、q ,其中p >q 且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求∞→n lim1-n nS S . 解:S n =p p a n --1)1(1+qq b n --1)1(1,.1)1(1)1(1)1(1)1(1111111qq b p p a q q b p p a S S n n n n n n --+----+--=--- 当p >1时,p >q >0,得0<pq <1,上式分子、分母同除以p n -1,得 .1])(1[1)11(1)1(1)1(11111111111qp q pb p p a q pq p b p p p a S S n n n n nn n n n --+----+--=-------∴∞→n lim1-n nS S =p .当p <1时,0<q <p <1, ∞→n lim1-n n S S =qb p a q bp a -+--+-11111111=1. 探究创新9.已知数列{a n }满足a 1=0,a 2=1,a n =221--+n n a a ,求∞→n lim a n . 解:由a n =221--+n n a a ,得 2a n +a n -1=2a n -1+a n -2,∴{2a n +a n -1}是常数列. ∵2a 2+a 1=2,∴2a n +a n -1=2.∴a n -32=-21(a n -1-32). ∴{a n -32}是公比为-21,首项为-32的等比数列.∴a n -32=-32×(-21)n -1.∴a n =32-32×(-21)n -1.∴∞→n lim a n =32. ●思悟小结1.运用数列极限的运算法则求一些数列的极限时必须注意以下几点: (1)各数列的极限必须存在;(2)四则运算只限于有限个数列极限的运算. 2.熟练掌握如下几个常用极限: (1) ∞→n lim C =C (C 为常数);(2) ∞→n lim (n1)p=0(p >0); (3) ∞→n lim d cn b an k k ++=ca(k ∈N *,a 、b 、c 、d ∈R 且c ≠0);(4) ∞→n lim q n =0(|q |<1).●教师下载中心教学点睛1.数列极限的几种类型:∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限,另外还有先求和,约分后再求极限,对含参数的题目一定要控制好难度,不要太难了.2.重视在日常学习过程中化归思想、分类讨论思想和极限思想的运用.拓展题例【例题】 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求首项a 1的取值范围.解: ∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在.∴0<|q |<1或q =1.当q =1时,21a -1=21,∴a 1=3.当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q . ∴0<|2a 1-1|<1.∴0<a 1<1且a 1≠21. 综上,得0<a 1<1且a 1≠21或a 1=3.。