高考数学一轮复习数列的极限知识点

高考数学一轮复习数列的极限知识点
高考数学一轮复习数列的极限知识点

17年高考数学一轮复习数列的极限知识点

极限是微积分中的基础概念,下面是整理的数列的极限知识点,希望考生可以认真学习。

1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;

2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在;

3、渐近线,(垂直、水平或斜渐近线);

4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在.

下面我们重点讲一下数列极限的典型方法.

重要题型及点拨

1.求数列极限

求数列极限可以归纳为以下三种形式.

★抽象数列求极限

这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证.

★求具体数列的极限,可以参考以下几种方法:

a.利用单调有界必收敛准则求数列极限.

首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极

限,解方程, 从而得到数列的极限值.

b.利用函数极限求数列极限

如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解.

★求项和或项积数列的极限,主要有以下几种方法:

a.利用特殊级数求和法

如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果.

l b.利用幂级数求和法

若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值.

c.利用定积分定义求极限

若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限.

d.利用夹逼定理求极限

若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解.

e.求项数列的积的极限,一般先取对数化为项和的形式,然

后利用求解项和数列极限的方法进行计算.

17年高考数学一轮复习数列的极限知识点就为大家分享到这里,更多精彩内容请关注高考数学知识点栏目。

上海市2019届高三数学理一轮复习专题突破训练:数列

上海市2017届高三数学理一轮复习专题突破训练 数列 一、填空、选择题 1、(2016年上海高考)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________. 2、(2015年上海高考)记方程①:x 2+a 1x+1=0,方程②:x 2+a 2x+2=0,方程③:x 2+a 3x+4=0,其中a 1,a 2,a 3是正实数.当a 1,a 2,a 3成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B . 方程①有实根,且②无实根 C .方程①无实根,且②有实根 D . 方程①无实根,且②无实根 3、(2014年上海高考)设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞ =++ +,则q = . 4、(虹口区2016届高三三模)若等比数列{}n a 的公比1q q <满足,且24 344,3,a a a a =+=则12lim()n n a a a →∞ ++ +=___________. 5、(浦东新区2016届高三三模)已知公差为d 的等差数列{}n a 的前n 项和为n S ,若 533S S =,则53 a a = 6、(杨浦区2016届高三三模)若两整数a 、 b 除以同一个整数m ,所得余数相同,即 a b k m -=()k Z ∈,则称a 、b 对模m 同余,用符号(mod )a b m ≡表示,若10(mod 6)a ≡(10)a >,满足条件的a 由小到大依 次记为12,,,,n a a a ??????,则数列{}n a 的前16项和为 7、(黄浦区2016届高三二模) 已知数列{}n a 中,若10a =,2i a k =*1 (,22,1,2,3, )k k i N i k +∈≤<=,则满足2100i i a a +≥的i 的最小值 为 8、(静安区2016届高三二模)已知数列{}n a 满足181a =,1 311log ,2, (*)3, 21n n n a a n k a k N n k ---+=?=∈?=+?,则数列{}n a 的前n 项和n S 的最大值为 . 9、(闵行区2016届高三二模)设数列{}n a 的前n 项和为n S , 2 2|2016|n S n a n (0a >),则使得1 n n a a +≤(n ∈* N )恒成立的a 的最大值为 . 10、(浦东新区2016届高三二模)已知数列{}n a 的通项公式为(1)2n n n a n =-?+,* n N ∈,则这个数列的前 n 项和n S =___________. 11、(徐汇、金山、松江区2016届高三二模)在等差数列{}n a 中,首项13,a =公差2,d =若某学生对其中连

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

高考数学题型全归纳

2010-2016高考理科数学题型全归纳题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围 题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系

题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

数列极限的概念(经典课件)

第二章 数列极限 引言: 在第一章中我们已经指出,数学分析课程研究的对象是定义在实数集上的函数,那么数学分析用什么方法研究实数集上的函数呢?从本质上来说,这个方法就是极限。极限思想和方法贯穿于数学分析课程的始终,几乎所有的概念都离不开极限,是我们数学分析课程的基础。 §1 数列极限的概念 教学内容:数列极限的概念,应用定义证明简单数列的极限,无穷小数列。 教学要求:使学生逐步建立起数列极限的N ε-定义的清晰概念。深刻理解数列发散、单调、有界和无穷小 数列等有关概念。会应用数列极限的N ε-定义证明数列的有关命题,并能运用N ε-语言正确表述数列不以某实数为极限等相应陈述。 教学重点:数列极限的概念。 教学难点:数列极限的N ε-定义及其应用。 教学方法:讲授为主。 教学学时:2学时。 一、数列概念: 1.数列的定义: 简单的说,数列就是“一列数”,是有一定的规律,有一定次序性的“一列数”。 若函数f 的定义域为全体正整数集合N +,则称:f N R +→或+∈N n n f ),(为数列。 若记()n f n a =,则数列n n n f ,2,1),(=就可写作为:12,,,, n a a a ,简记为{}n a ,其中n a 称为 该数列的通项。 2.数列的例子: (1)(1)111:1,,,, 234n n ??---???? ; (2)11111:2,1,1,1,435 n ? ?+ +++???? (3){}2 :1,4,9,16,25, n ; (4){}1 1(1) :2,0,2,0,2, n ++- 二、数列极限的概念: 1.引言: 对于这个问题,先看一个例子:古代哲学家庄周所著的《庄子. 天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”。把每天截下的部分的长度列出如下(单位为尺): 第1天截下 12,第2天截下2111222?=,第3天截下23111222?=,…,第n 天截下1111 222 n n -?=,… 得到一个数列:? ?? ?? ?n 21: 231111 ,,,,,2222n 不难看出,数列12n ?? ? ??? 的通项12n 随着n 的无限增大而无限地接近于零。 一般地说,对于数列{}n a ,若当n 无限增大时,n a 能无限地接近某一个常数a ,则称此数列为收敛数列,常数a 称为它的极限。不具有这种特性的数列就不是收敛的数列,或称为发散数列。

高考数学题型全归纳:数学家高斯的故事(含答案)

数学家高斯的故事 高斯(Gauss,1777—1855)、著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。 还在少年时代、高斯就显示出了他的数学才能。据说、一天晚上,父亲在计算工薪账目、高斯在旁边指出了其中的错误、令父亲大吃一惊。10岁那年、有一次老师让学生将1、2、3、…连续相加、一直加到100、即1+2+3+…+100。高斯没有像其他同学那样急着相加、而是仔细观察、思考、结果发现: 1+100=101、2+99=101、3+98=101、…、50+51=101一共有50个101、于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷、惊讶得说不出话。其他学生过了很长时间才交卷、而且没有一个是算对的。从此、小高斯“神童”的美名不胫而走。村里一位伯爵知道后、慷慨出钱资助高斯、将他送入附近的最好的学校进行培养。 中学毕业后、高斯进入了德国的哥廷根大学学习。刚进入大学时、还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后、决定研究数学。卡斯特纳本人并没有多少数学业绩、但他培养高斯的成功、足以说明一名好教师的重要作用。 从哥廷根大学毕业后、高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长、并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法、19岁时发现了正17边形的尺规作图法、并给出可用尺规作出正多边形的条件、解决了这个欧几里得以来一直悬而未决的问题。为了这个发现、在他逝世后、哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学、高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础、该书不仅在数论上是划时代之作、就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数、提出所有复数都可以用平面上的点来表示、所以后人将“复平面”称为高斯平面、高斯还利用平面向量与复数之间的一一对应关系、阐述了复数的几何加法与乘法、为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》、全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域、而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。 高斯一生共有155篇论文。他治学严谨、把直观的概念作为入门的向导、然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎、他的许多数学思想与结果从不轻易发表、而且、他的论文很少详细写明思路。所以有的人说:“这个人、像狐狸似的、把沙土上留下的足迹、用尾巴全部扫掉。”

【高考数学专题突破】《专题三第讲数列求和及综合应用学案》(解析版)

第2讲 数列求和及综合应用 数列求和问题(综合型) [典型例题] 命题角度一 公式法求和 等差、等比数列的前n 项和 (1)等差数列:S n =na 1+ n (n -1)2 d (d 为公差)或S n =n (a 1+a n ) 2 . (2)等比数列:S n =???? ?na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1其中(q 为公比). 4类特殊数列的前n 项和 (1)1+2+3+…+n =1 2n (n +1). (2)1+3+5+…+(2n -1)=n 2 . (3)12+22+32+…+n 2 =16n (n +1)(2n +1). (4)13+23+33+…+n 3=14 n 2(n +1)2 . 已知数列{a n }满足a 1=1,a n +1=3a n 2a n +3 ,n ∈N * .

(1)求证:数列???? ?? 1a n 为等差数列; (2)设T 2n = 1 a 1a 2- 1 a 2a 3+ 1 a 3a 4- 1 a 4a 5 +…+ 1 a 2n -1a 2n - 1 a 2n a 2n +1 ,求T 2n . 【解】 (1)证明:由a n +1=3a n 2a n +3,得1a n +1=2a n +33a n =1a n +2 3 , 所以 1 a n +1-1a n =23. 又a 1=1,则1a 1=1,所以数列???? ??1a n 是首项为1,公差为2 3的等差数列. (2)设b n = 1 a 2n -1a 2n - 1 a 2n a 2n +1 =? ??? ?1a 2n -1-1a 2n +11a 2n , 由(1)得,数列???? ??1a n 是公差为2 3的等差数列, 所以 1 a 2n -1 - 1 a 2n +1=-43,即 b n =? ????1a 2n -1-1a 2n +11a 2n =-43×1a 2n , 所以b n +1-b n =-43? ????1a 2n +2-1a 2n =-43×43=-16 9. 又b 1=-43×1a 2=-43×? ????1a 1+23=-20 9 , 所以数列{b n }是首项为-209,公差为-16 9的等差数列, 所以T 2n =b 1+b 2+…+b n =- 209n +n (n -1)2×? ?? ??-169=-49(2n 2 +3n ). 求解此类题需过“三关”:第一关,定义关,即会利用等差数列或等比数列的定义,判断所给的数列是等差数列还是等比数列;第二关,应用关,即会应用等差(比)数列的前n 项和公式来求解,需掌握等差数列{a n }的前n 项和公式:S n = n (a 1+a n ) 2 或S n =na 1+ n (n -1) 2d ;等比数列{a n }的前n 项和公式:S n =?????na 1,q =1,a 1(1-q n )1-q ,q ≠1;第三关,运算关,认真运算,此类题将迎刃而解. 命题角度二 分组转化法求和 将一个数列分成若干个简单数列(如等差数列、等比数列、常数列等),然后分别求和.也可先根据通项公式的特征,将其分解为可以直接求和的一些数列的和,再分组求和,即把一个通项拆成几个通项求和的形式,方便求和. 已知等差数列{a n }的首项为a ,公差为d ,n ∈N * ,且不等式ax 2 -3x +2<0的解集为(1,

最新高考数学数列题型专题汇总

1. 高考数学数列题型专题汇总 1 一、选择题 2 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 3 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

2. 4、如图,点列{A n },{B n }分别在某锐角的两边上,且 19 1122,,n n n n n n A A A A A A n ++++=≠∈*N , 20 1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 21 若1n n n n n n n d A B S A B B +=,为△的面积,则 22 23 A .{}n S 是等差数列 B .2{}n S 是等差数列 24 C .{}n d 是等差数列 D .2{}n d 是等差数列 25 【答案】A 26 27 28 29 30 二、填空题 31 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 32 6=S _______.. 33 【答案】6 34 35 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 36

2017年高考数学题型归纳完整版

第一章集合与常用逻辑用语 第一节集合 题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算 第二节命题及其关系、充分条件与必要条件题型1-4 四种命题及关系 题型1-5 充分条件、必要条件、充要条件的判断与证明 题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围 第三节简单的逻辑联结词、全称量词与存在量词 题型1-7 判断命题的真假 题型1-8 含有一个量词的命题的否定 题型1-9 结合命题真假求参数的取值范围 第二章函数 第一节映射与函数 题型2-1 映射与函数的概念 题型2-2 同一函数的判断 题型2-3 函数解析式的求法 第二节函数的定义域与值域(最值) 题型2-4 函数定义域的求解 题型2-5 函数定义域的应用 题型2-6 函数值域的求解 第三节函数的性质——奇偶性、单调性、周期性 题型2-7 函数奇偶性的判断 题型2-8 函数单调性(区间)的判断 题型2-9 函数周期性的判断 题型2-10 函数性质的综合应用 第四节二次函数 题型2-11 二次函数、一元二次方程、二次不等式的关系 题型2-12 二次方程的实根分布及条件 题型2-13 二次函数“动轴定区间” “定轴动区间”问题 第五节指数与指数函数 题型2-14 指数运算及指数方程、指数不等式题型2-15 指数函数的图象及性质 题型2-16 指数函数中恒成立问题 第六节对数与对数函数 题型2-17 对数运算及对数方程、对数不等式 题型2-18 对数函数的图象与性质 题型2-19 对数函数中恒成立问题 第七节幂函数 题型2-20 求幂函数的定义域 题型2-21 幂函数性质的综合应用 第八节函数的图象 题型2-22 判断函数的图象 题型2-23 函数图象的应用 第九节函数与方程 题型2-24 求函数的零点或零点所在区间 题型2-25 利用函数的零点确定参数的取值范 围 题型2-26 方程根的个数与函数零点的存在性 问题 第十节函数综合 题型2-27 函数与数列的综合 题型2-28 函数与不等式的综合 题型2-29 函数中的信息题 第三章导数与定积分 第一节导数的概念与运算 题型3-1 导数的定义 题型3-2 求函数的导数 第二节导数的应用 题型3-3 利用原函数与导函数的关系判断图像 题型3-4 利用导数求函数的单调性和单调区间 题型3-5 函数的极值与最值的求解 题型3-6 已知函数在区间上单调或不单调,求 参数的取值范围 题型3-7 讨论含参函数的单调区间 题型3-8 利用导数研究函数图象的交点和函数 零点个数问题 题型3-9 不等式恒成立与存在性问题 题型3-10 利用导数证明不等式 题型3-11 导数在实际问题中的应用 第三节定积分和微积分基本定理 题型3-12 定积分的计算 题型3-13 求曲边梯形的面积 第四章三角函数 第一节三角函数概念、同角三角函数关系式和 诱导公式 题型4-1 终边相同角的集合的表示与识别 题型4-2 α 2 是第几象限角 题型4-3 弧长与扇形面积公式的计算 题型4-4 三角函数定义 题型4-5 三角函数线及其应用 题型4-6 象限符号与坐标轴角的三角函数值 题型4-7 同角求值——条件中出现的角和结论 中出现的角是相同的 题型4-8 诱导求值与变形 第二节三角函数的图象与性质 题型4-9 已知解析式确定函数性质 题型4-10 根据条件确定解析式 题型4-11 三角函数图象变换 第三节三角恒等变换 题型4-12 两角和与差公式的证明 题型4-13 化简求值 第四节解三角形 题型4-14 正弦定理的应用 题型4-15 余弦定理的应用 题型4-16 判断三角形的形状 题型4-17 正余弦定理与向量的综合 题型4-18 解三角形的实际应用 第五章平面向量 第一节向量的线性运算 题型5-1 平面向量的基本概念 题型5-2 共线向量基本定理及应用 题型5-3 平面向量的线性运算 题型5-4 平面向量基本定理及应用 题型5-5 向量与三角形的四心 题型5-6 利用向量法解平面几何问题 第二节向量的坐标运算与数量积 题型5-7 向量的坐标运算 题型5-8 向量平行(共线)、垂直充要条件的坐 标表示 题型5-9 平面向量的数量积 题型5-10 平面向量的应用 第六章数列 第一节等差数列与等比数列 题型6-1 等差、等比数列的通项及基本量的求 解 题型6-2 等差、等比数列的求和 题型6-3 等差、等比数列的性质应用 题型6-4 判断和证明数列是等差、等比数列 题型6-5 等差数列与等比数列的综合 第二节数列的通项公式与求和 题型6-6 数列的通项公式的求解 题型6-7 数列的求和 第三节数列的综合 题型6-8 数列与函数的综合 题型6-9 数列与不等式综合 第七章不等式 第一节不等式的概念和性质 题型7-1 不等式的性质 题型7-2 比较数(式)的大小与比较法证明不 等式 第二节均值不等式和不等式的应用 题型7-3 均值不等式及其应用 题型7-4 利用均值不等式求函数最值 题型7-5 利用均值不等式证明不等式 题型7-6 不等式的证明 第三节不等式的解法 题型7-7 有理不等式的解法 题型7-8 绝对值不等式的解法 第四节二元一次不等式(组)与简单的线性规 划问题 题型7-9 二元一次不等式组表示的平面区域 题型7-10 平面区域的面积 题型7-11 求解目标函数中参数的取值范围 题型7-12 简单线性规划问题的实际运用 第五节不等式综合 题型7-13 不等式恒成立问题中求参数的取值 范围

高考数学一轮复习数列的极限知识点

17年高考数学一轮复习数列的极限知识点 极限是微积分中的基础概念,下面是整理的数列的极限知识点,希望考生可以认真学习。 1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限; 2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在; 3、渐近线,(垂直、水平或斜渐近线); 4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在. 下面我们重点讲一下数列极限的典型方法. 重要题型及点拨 1.求数列极限 求数列极限可以归纳为以下三种形式. ★抽象数列求极限 这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证. ★求具体数列的极限,可以参考以下几种方法: a.利用单调有界必收敛准则求数列极限. 首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极

限,解方程, 从而得到数列的极限值. b.利用函数极限求数列极限 如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解. ★求项和或项积数列的极限,主要有以下几种方法: a.利用特殊级数求和法 如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果. l b.利用幂级数求和法 若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值. c.利用定积分定义求极限 若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限. d.利用夹逼定理求极限 若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解. e.求项数列的积的极限,一般先取对数化为项和的形式,然

高考数学题型全归纳

题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系 题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件 题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质

题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像 题型43、利用导数求函数的单调区间 题型44、含参函数的单调性(区间) 题型45、已知含参函数在区间上单调或不单调或存在单调区间,求参数范围题型46、函数的极值与最值的求解 题型47、方程解(函数零点)的个数问题 题型48、不等式恒成立与存在性问题

浙江专版2018年高考数学第1部分重点强化专题专题2数列突破点5数列求和及其综合应用教学案

突破点5 数列求和及其综合应用 (对应学生用书第19页) [核心知识提炼] 提炼1 a n 和S n 的关系 若a n 为数列{a n }的通项,S n 为其前n 项和,则有a n =??? ? ? S 1,n =1,S n -S n -1,n ≥2. 在使用这个关系 式时,一定要注意区分n =1,n ≥2两种情况,求出结果后,判断这两种情况能否整合在一起. 提炼2求数列通项常用的方法 (1)定义法:①形如a n +1=a n +c (c 为常数),直接利用定义判断其为等差数列.②形如 a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列. (2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如 a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a n a n -1 ,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q 1-p ,再转化为等比数列求解. (5)构造法:形如a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以q n +1 ,得 a n +1q n +1=p q ·a n q n +1q ,构造新数列{ b n }? ? ???其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解. (6)取对数法:形如a n +1=pa m n (p >0,a n >0),先在原递推公式两边同时取对数,再利用待定系数法求解. 提炼3数列求和 数列求和的关键是分析其通项,数列的基本求和方法有公式法、裂(拆)项相消法、错位相减法、分组法、倒序相加法和并项法等,而裂项相消法,错位相减法是常用的两种方法. 提炼4数列的综合问题 数列综合问题的考查方式主要有三种: (1)判断数列问题中的一些不等关系,可以利用数列的单调性比较大小,或者是借助数列对应函数的单调性比较大小. (2)以数列为载体,考查不等式的恒成立问题,此类问题可转化为函数的最值问题.

高中数学复习数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞ →n lim C =C (C 为常数);②∞ →n lim n 1 =0;③∞→n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1- 31)(1-41)(1-51)…(1-21+n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

高考数学题型全归纳

高考数学题型全归纳 1高考数学必考七个题型 第一,函数与导数 主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。 第二,平面向量与三角函数、三角变换及其应用 这一部分是高考的重点但不是难点,主要出一些基础题或中档题。 第三,数列及其应用 这部分是高考的重点而且是难点,主要出一些综合题。 第四,不等式 主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。 第五,概率和统计 这部分和我们的生活联系比较大,属应用题。 第六,空间位置关系的定性与定量分析 主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。 第七,解析几何 高考的难点,运算量大,一般含参数。 高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。 针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。 2高考数学题型全归纳 题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系

题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系 题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件 题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间

高考数学二轮考点专题突破检测 数列专题

专题达标检测 一、选择题 1.在等差数列{a n }中,若a 2+2a 6+a 10=120,则a 3+a 9等于 ( ) A .30 B .40 C .60 D .80 解析:由等差数列性质:若m +n =p +q ,则a m +a n =a p +a q ,故a 2+2a 6+a 10=4a 6 =120,故a 6=30,a 3+a 9=2a 6=2×30=60. 答案:C 2.(2009·宁夏、海南理)等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若 a 1=1,则S 4等于 ( ) A .7 B .8 C .15 D .16 解析:设等比数列的公比为q ,则由4a 1,2a 2,a 3成等差数列.得4a 2=4a 1+a 3.∴4a 1q =4a 1+a 1q 2.∴q 2-4q +4=0 ∴q =2,∴S 4=a 1(1-q 4)1-q =15. 答案:C 3.等比数列{a n }中,a 1=512,公比q =-1 2,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n , 则Πn 中最大的是 ( ) A .Π11 B .Π10 C .Π9 D .Π8 解析:Πn =a 1a 2…a n =a n 1· q 1+2+… +n -1=29n ????-12(n -1)n 2=(-1)n (n -1)22-n 2 +19n 2 ,∴ 当 n =9时,Πn 最大.故选C 答案:C 4.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列?? ?? ?? 1f (n )(n ∈N *)的前n 项和是( ) A.n n +1 B.n +2n +1 C.n n -1 D.n +1n 解析:∵f ′(x )=m x m -1+a =2x +1, ∴m =2,a =1, ∴f (x )=x 2+x =x (x +1),

高三数学二轮复习:数列专题及其答案

2018届高三第二轮复习——数列 第1讲等差、等比考点 【高 考 感 悟】 从近三年高考看,高考命题热点考向可能为: 1.必记公式 (1)等差数列通项公式:a n =a 1+(n -1)d . (2)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d 2. (3)等比数列通项公式:a n a 1q n - 1. (4)等比数列前n 项和公式: S n =?????na 1 (q =1)a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1). (5)等差中项公式:2a n =a n -1+a n +1(n ≥2). (6)等比中项公式:a 2n =a n -1·a n +1(n ≥2). (7)数列{a n }的前n 项和与通项a n 之间的关系:a n =?????S 1(n =1) S n -S n -1 (n ≥2). 2.重要性质 (1)通项公式的推广:等差数列中,a n =a m +(n -m )d ;等比数列中,a n =a m q n - m . (2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列. ②等比数列中,若a 1>0且q >1或a 1<0且0<q <1,则数列为递增数列;若a 1>0且0<q <1或a 1 <0且q >1,则数列为递减数列. 3.易错提醒 (1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件. (2)漏掉等比中项:正数a ,b 的等比中项是±ab ,容易漏掉-ab .

【 真 题 体 验 】 1.(2015·新课标Ⅰ高考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( ) A.172 B.19 2 C .10 D .12 2.(2015·新课标Ⅱ高考)已知等比数列{a n }满足a 1=1 4 ,a 3a 5=4(a 4-1),则a 2=( ) A .2 B .1 C.12 D.1 8 3.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________,d =________. 4.(2016·全国卷1)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111 ==3 n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式;(II )求{}n b 的前n 项和. 【考 点 突 破 】 考点一、等差(比)的基本运算 1.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 2.(2015·重庆高考)已知等差数列{a n }满足a 3=2,前3项和S 3=9 2 . (1)求{a n }的通项公式; (2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .

湖南师范大学附属中学高一数学 数列极限的定义1教案

湖南师范大学附属中学高一数学教案:数列极限的定义1 教材:数列极限的定义 目的:要求学生首先从实例(感性)去认识数列极限的含义,体验什么叫无限地“趋近”,然后初步学会 用N -ε语言来说明数列的极限,从而使学生在学习数学中的“有限”到“无限”来一个飞跃。 过程: 一、 实例:1?当n 无限增大时,圆的内接正n 边形周长无限趋近于圆周长 2?在双曲线1=xy 中,当+∞→x 时曲线与x 轴的距离无限趋近于0 二、 提出课题:数列的极限 考察下面的极限 1? 数列1: ,10 1,,101,101,10132n ①“项”随n 的增大而减少 ②但都大于0 ③当n 无限增大时,相应的项n 10 1可以“无限趋近于”常数0 2? 数列2: ,1 ,,43,32,21+n n ①“项”随n 的增大而增大 ②但都小于1 ③当n 无限增大时,相应的项1+n n 可以“无限趋近于”常数1 3? 数列3: ,)1(,,31,21,1n n --- ①“项”的正负交错地排列,并且随n 的增大其绝对值减小 ②当n 无限增大时,相应的项n n )1(-可以“无限趋近于”常数 引导观察并小结,最后抽象出定义: 一般地,当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个数a (即a a n -无限地接近于0),那么就说数列{}n a 以a 为极限,或者说a 是数列{}n a 的极限。 (由于要“无限趋近于”,所以只有无穷数列才有极限) 数列1的极限为0,数列2的极限为1,数列3的极限为0 三、 例一 (课本上例一)略 注意:首先考察数列是递增、递减还是摆动数列;再看这个数列当n 无限增大时是否可以“无 限趋近于”某一个数。 练习:(共四个小题,见课本) 四、 有些数列为必存在极限,例如:n a a n n n =?-=或2 2)1(都没有极限。 例二 下列数列中哪些有极限?哪些没有?如果有,极限是几?

相关文档
最新文档