广东省深圳市宝安区2018届高三9月调研测数学理试题含答案

合集下载

二项式定理(1)

二项式定理(1)

x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。

深圳市宝安区宝安中学2018-2019学年高三上学期第三次月考试卷数学含答案

深圳市宝安区宝安中学2018-2019学年高三上学期第三次月考试卷数学含答案

深圳市宝安区宝安中学2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±32. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .3. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( )A .3B .72C .D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.4. 设x ∈R ,则x >2的一个必要不充分条件是( ) A .x >1 B .x <1 C .x >3 D .x <35. 设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 6. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件7. 已知函数()f x 的定义域为[],a b ,函数()y f x =的图象如图甲所示,则函数(||)f x 的图象是 图乙中的( )8. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .12 9. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( )A .若,m βαβ⊂⊥,则m α⊥B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥10.记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y xy =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 11.二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .4112.函数2(44)xy a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .1二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .14.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( ) A .1 B .±1 C 2 D .2±【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.15.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .16.已知直线:043=++m y x (0>m )被圆C :062222=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .三、解答题(本大共6小题,共70分。

广东省深圳市宝安区2017-2018学年高三上学期调研数文试卷 Word版含答案

广东省深圳市宝安区2017-2018学年高三上学期调研数文试卷 Word版含答案

2017-2018学年第一学期宝安区高三调研测试卷数学(文科)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的班别、姓名、考号填写在答题卡的密封线内.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能写在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内相应的位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.一、选择题:1.已知集合{}{}220,ln(1)A x x x B x y x =--≤==-,则AB =( )A .(1,2)B .(1,2]C .[1,1)-D .(1,1)- 2.复数Z =32ii-++的共轭复数是 ( ) A .2i + B .2i - C .1i -+ D .1i --3.下列叙述正确的是( )A .若,,a b c R ∈,则“20ax bx c ++≥”的充分条件是“240b ac -≤”B .若,,a b c R ∈,则“22ab cb >”的充要条件是“a c >”C. “对任意x R ∈,20x ≥”的否定是“存在2,0x R x ∈≥”D .l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则α∥β4.已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则BC =( )A .(7,4)--B .(1,2)C .(1,4)-D .(1,4) 5.已知函数23()3x f x x +=,数列{}n a 满足11a =,11(),n na f n N a ++=∈.则数列{}n a 的通项公式为 ( ) A .2133n a n =+ B .2133n a n =- C .1133n a n =+ D .2134n a n =+ 6.已知向量(1,3),(3,)a b m ==,若向量,a b 的夹角为30,则实数m =( )A .BC .0D .7.已知直线50x y --=与圆2246120x y x y +-+-=相交于点,A B ,则弦长AB 为( ) A .5 B .8 C .10 D .128.某几何体的三视图如图所示,且几何体的体积是3,则正视图中的x 的值是( )A .2B .92 C .32D .3 9.在平面区域00x y x y ⎧≥⎪≥⎨⎪+≤⎩随机取一点,则所取的点恰好落在221x y +=内的概率是( )A .2πB .4πC .8π D .16π10.如图,以Ox 为始边作角α与(0)ββαπ<<<,它们的终边分别与单位圆相交于点,P Q ,已知点P 的坐标为34(,)55-,30β=,则sin()αβ-=( )ABCD11.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点为12,F F ,2F 的直线l交C 于,A B ,若△1AF B的周长为C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 12. 若定义在区间[2015,2015]-上的函数()f x 满足:对于任意的12,[2015,2015]x x ∈-,都有1212()()()2014f x x f x f x +=+-,且0x >时,有()2014f x >,()f x 的最大值、最小值分别为,M N ,则M N +的值为( )A .2014B .2015C .4028D .4030二、填空题:本大题共4小题,每小题5分,满分20分.13.阅读图13所示的框图,运行相应的程序,输出S 的值为 14.函数x x f 6log 21)(-=的定义域为 15.已知递增的等比数列{}n a 中,28383,2,a a a a +=⋅=则1310a a = 16.如下表,为一等式组: 11,s =2235,s =+= 345615,s =++= 47891034,s =+++= 5111213141565,s =++++=………………………………某学生根据上表猜测221(21)()n S n an bn c -=-++,老师说回答正确,则a b c ++=三、解答题:本大题共6小题(其中22、23、24题任选一题),满分70分. 解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别是a b c ,,,且,,A B C 成等差数列,(1)若1,a b ==求sin C ;(2)若a b c ,,成等差数列,试判断ABC ∆的形状. 18.(本小题满分12分)某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人,陈老师采用A 、B 两种不同的教学方式分别在甲、乙两个班进行教学实验。

2018届广东省深圳市高三第一次调研考试理科数学

2018届广东省深圳市高三第一次调研考试理科数学


19 1 19 sin( x ) sin 3 x sin x 6 2 6 6
2 2 2 sin x sin x sin x 3 2 6 2 6 3 2 cos x 6 4 原式 1 + 3 = 1
2
2 4 4
4.夏秋两季,生活在长江口外浅海域的中华鲟回游到长 江,历经三千多公里的溯流博击,回到金沙江一带产卵繁 殖.产后待幼鱼长大到15厘米左右,又携带它们旅居外 海.一个环保组织曾在金沙江中放生一批中华鲟鱼苗,该 批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长 成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中 的一个雌性个体在长江口外浅海域已长成熟,则其能成功 溯流产卵繁殖的概率为( C ) 1 1 A. 0.05 B. 0.0075 C. D. 3 6 设事件A为雌性个体能长成熟,事件B为成功溯流产卵繁 殖,则根据题意
因为PO OB , 所以4 x x 4, 3 5 解得x , 所以R 4 x , 2 2 2 所以外接球表面积S 4 R 25
命题p3显然是真命题.
6. 设有下面四个命题 : p1 : x N , n2 2n ; p2 : x R, x 1是x 2的充分不必要条件; p3 : 命题“若x y , 则 sin x sin y”的逆否命题是
“若 sin x sin y , 则x y” ; p4 : p q, 则p一定是真命题. 其中为真命题的是( D ) A. p1 , p2 B. p2 , p3 C . p2 , p4 D. p1 , p3
8.如图,格纸上小正方形的边长为1,某几何体的三 视图如图所示,则该几何体的外接球表面积为( ) 16 25 A. B. C . 16 D. 25 9 4

2018年广东省深圳市高考数学一模试卷(理科)高考模拟试卷

2018年广东省深圳市高考数学一模试卷(理科)高考模拟试卷

A.0.05
B.0.0075
C.
D.
5.(5 分)若双曲线 t 的离心率为( )
1(a>0,b>0)的一条渐近线与圆 x2+(y﹣a)2 ‴ 相切,则该双曲线
A.3
B.
C.
D.
6.(5 分)设有下面四个命题: p1:∃n∈N,n2>2n; p2:x∈R,“x>1”是“x>2”的充分不必要条件; P3:命题“若 x=y,则 sin x=siny”的逆否命题是“若 sin x≠siny,则 x≠y”;
10.(5 分)已知函数 f(x)是定义在 R 上的奇函数,且在区间(0,+∞)上有 3f(x)+xf′(x)>0
恒成立,若 g(x)=x3f(x),令 a=g(log2( )),b=g(log52),c=g( t )则( )
A.a<b<c
B.b<a<c
C.b<c<a
D.c<b<a
第 2页(共 8 页)
ttt A.
ttt B. t
C.5
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
D.15
㽰㽰 t
13.(5 分)若实数 x,y 满足约束条件 㽰 t t,则 z=2x﹣y 的最小值为

tt t
14.(5 分)(x2+1)(2x+1)6 展开式的 x3 的系数是

15.(5 分)已知 F 为抛物线 y2=4 x 的焦点,过点 F 的直线交抛物线于 A,B 两点,若
(I)求数列{an}的通项公式;
(Ⅱ)设 bn=1+log2(an)2,求数列{
}的前 n 项和 Tn< .

18.(12 分)如图,在三棱柱 ABC﹣A1B1C1 中,底面 ABC 为边长为 2 等边三角形,BB1=4,A1C1⊥ BB1,且∠A1B1B=45°. (I)证明:平面 BCC1B1⊥平面 ABB1A1; (Ⅱ)求 B﹣AC﹣A1 二面角的余弦值.

2018届高三数学9月考题(含答案).docx

2018届高三数学9月考题(含答案).docx

[X 2 + y 2 < 1 < x + y > — 111. 已知乂,丫满足1 yvO ,贝ijz = x-y 的取值范围是() A.[-返叮 B.[・ 1,1] C.[-返返] D. [ - 1,返] 12.已知定义在R 上的函数f (x)在(-8, -2)上是减函数,若g (x) =f (x - 2)是奇函数,且g (2)=0,则不等式xf (x) W0的解集是(A. ( - °°, - 2] U [2, +°°) C. ( - 8, - 4]U[ - 2, +8)二、填空题(20分)13. 已知f (x )= log 3(x 2-2x)?则函数f(x)的单调递减区间是 _____________ .14. 已知函数f(x) = x 3 + ax 2 + bx + a 2(a,b 6 R)且函数f(x)在x = 1处有极值10,则实数b 的值为15. _________ 已知f (x) = |e x -l|,又g(x) =f 2(x)-tf(x)(tG R),若满足g(x) = 一1的x 有三个,贝吐的取值范 围是 ____________ •16. 设f(x)是定义在R 上的偶函数,且当x > 0时,f(x) = 2X ,若对任意的xG [a,a + 2],不等式 f(x + a) >『(x)恒成立,则实数a 的取值范围是 _____________ .=、解答题:木题共6道题,共70分.17. 锐角AABC 的内角A, B, C 的对边分别为a, b, c,己知AABC 的外接圆半径为R,旦满足R = t asinA (1) 求角A 的大小;(2)若a = 2,求AABC 周长的最大值.A. ( -- 3] B. [ - 3, +°°) C. ( - °°, VS] D. [V3, +8))B. [-4, -2]U[0, +°o) D. ( - °°, - 4] U [0, +8)2018届高三数学9月考题(含答案)2017-9-28一、选择题(60分)1. 若集合A={x|x> - 1},则( )A. OCAB. {0}cAC. {0}£AD. 0£A2. 设集合A = (X|X2-2X-3 < 0},B = {x|y = ln(2-x)},则A n B =()A. {x|-l < x < 3}B. {x|-l < x < 2}C. {x|-3 < x < 2}D. {x|l < x < 2}2 _3. 若复&z =屮i为虚数单位,^z=()A. 1 + iB. 1-iC. -1-iD. -1-i4. 已知命题p:Vx > 0,总有(x + l)e x > 1,则「p为()A. 3x o 三°,使得do + l)e X°三1B. 3x o > 0,使得do + l)e X°三1C. 3x o > °,使得(X。

广东省深圳中学2018届高三上学期第一次月考数学(理)试题及答案解析

广东省深圳中学2018届高三上学期第一次月考数学(理)试题及答案解析

深圳中学2018届高三年级第一次阶段性测试数学(理科)本试卷共4页,22小题,满分150分. 考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上. 用2B 铅笔将试卷类型和考生号填涂在答题卡相应位置上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应的题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再填涂其他答案. 答案不能答在试卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题组号的信息点,再作答.漏涂、错涂、多涂的,答案无效. 5.考生必须保持答题卡的整洁.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合要求.1. 已知全集U =R , 集合{}2|20N A x x x =∈-≤, {}2,3B =, 则=)(B C A U(A)∅ (B){}0 (C){}1 (D){}0,1 2.函数()()121log 21f x x =+的定义域为(A)1(,0)2-(B)1(,)2-+∞(C)()1(,0)0,2-+∞(D)1(,2)2- 3.设,,x y ∈R 则“222x y +≥”是“1x ≥,且1y ≥”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 4.根据下列条件,能确定ABC ∆有两解的是(A)︒===120,20,18A b a (B)︒===60,48,3B c a (C)︒===30,6,3A b a (D)︒===45,16,14A b a 5.已知tan 2α=,则2sin 2cos αα+=(A)35 (B)35- (C) 35-或1 (D)16.把函数())4f x x π=-的图象上每个点的横坐标扩大到原来的4倍,再向左平移3π个单位,得到函数()g x 的图象,则函数()g x 的一个单调递减区间为 (A)57[,]66ππ-(B)719[,]66ππ (C)24[,]33ππ-(D)175[,]66ππ-- 7.函数23ln(44)()(2)x x f x x -+=-的图象可能是(A) (B) (C) (D) 8.若函数()()2log 8a f x x ax=-在区间221,4a a ⎛⎫⎪⎝⎭上为减函数,则a 的取值范围是(A) 2⎛⎫ ⎪ ⎪⎝⎭ (B)2⎛⎫ ⎪ ⎪⎝⎭(C) ((D) (]1,29.已知函数()cos f x x x =,其中π,3x m ⎡⎤∈⎢⎥⎣⎦,若()f x 的值域是[]1,2-,则实数m 的取值范围是 (A) π,03⎡⎤-⎢⎥⎣⎦ (B) ππ,23⎡⎤--⎢⎥⎣⎦ (C) 2ππ,32⎡⎤--⎢⎥⎣⎦ (D) ππ,3⎡⎤--⎢⎥⎣⎦10.已知 e πa =,π3b =,πe c =,则它们的大小关系是(A)a b c >> (B)c b a >> (C)b c a >> (D)c a b >>11.已知定义在R 上的函数()f x 对任意x ∈R 满足:()(2)f x f x =-,当1x ≤时,()e 1x f x =-,则方程()|1|10f x x +--=的实根个数为(A)2 (B)3 (C)4 (D)512.已知函数()e ln x f x a x x =-,存在N n ∈,使得函数()f x 在区间(,2)n n +上有两个极值点,则实数a 的取值范围是 (A )3ln 3e 1(,)e e (B ) 2ln 2e 1(,)e e (C )32ln 3ln 2(,)e e (D )2ln 21(,)e e第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.若定义在区间2[3,]m m m ---上的函数2()m f x x -=是奇函数,则()f m = . 14.2sin π1)x x dx +-⎰( .15. 设函数2(1)3,1()2,1x ax a x a x f x x ⎧-++<⎪=⎨≥⎪⎩,,的最小值为2,则实数a 的取值范围是_____.16.已知锐角三角形ABC 中,角,,A B C 所对的边分别为,,,a b c 若2()b a a c =+,则2sin sin()AB A -的取值范围是____________.三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知三个集合:{}22log (58)1A x x x =∈-+=R ,{}22821R xx B x +-=∈=,{}22190R C x x ax a =∈-+->.(Ⅰ)求A B ;(Ⅱ)已知,A C B C ≠∅=∅,求实数a 的取值范围.18.(本小题满分12分)已知函数πππ())2sin()sin()344f x x x x =---+. (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程;(Ⅱ)求函数()f x 在区间ππ[,]122-上的值域. 19.(本小题满分12分)在ABC ∆中,内角A B C ,,对边分别是a b c ,,,已知2sin sin sin B A C =. (Ⅰ)求证:π03B <≤; (Ⅱ)求cos 4cos2A CB ++的最大值. 20.(本小题满分12分)中国移动通信将于3月21日开始在所属18个省、市移动通信公司陆续推出“全球通”移动电话资费“套餐”,具体方案如下:原计费方案的基本月租为50元,每通话一分钟收取0.4元,请问:(I )求“套餐”中第4种收费方式的月话费y 与月通话量t (月通话量是指一个月内每次通话用时之和,每次通话用时以分为单位取整计算,不足一分钟的按一分钟计算,如某次通话时间为3分20秒,则按4分钟计通话用时)的函数解析式;(II )若采用第4种收费方式,且比原计费方式的月话费省钱,求通话量的取值范围; (III )据中国移动某年公布的中期业绩,每个用户的月通话量平均为320分钟. 若一个用户的月通话量恰好是这个平均值,则在表中所列出的七种方案中,选择哪种方案更合算?请说明理由.21.(本小题满分12分)已知R a ∈,函数32()3333f x x x ax a =-+-+,]2,0[∈x . (Ⅰ)求()f x 的单调区间; (Ⅱ)求()f x 取得最大值时x 的值.22.(本小题满分12分)已知ln 1()21x xf x x-=++. (Ⅰ)判断函数()f x 的零点个数,并说明理由; (Ⅱ)已知0k >,0a >,若曲线1:ln C y x k=上有两点()()e ,,e ,ka ka P a Q a --,且曲线C 在点P 、Q 处的切线相交于点M ,证明:点M 一定在x 轴上方.数学(理科)参考答案第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合要求.第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.1-; 14.0; 15.[1,)+∞; 16.1(,22. 16.解:∵2cos c a a B -=,sin sin 2sin cos C A A B ∴-=,()sin sin 2sin cos A B A A B ∴+-=,∴()sin sin B A A ∴-=,∵ABC ∆是锐角三角形,∴2B A =,且ππ64A <<,∴()2sin 1sin ,sin 22AA B A ⎛=∈ -⎝⎭. 三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知三个集合:{}22log (58)1A x x x =∈-+=R ,{}22821R xx B x +-=∈=,{}22190R C x x ax a =∈-+->.(I) 求A B ;(II)已知,A C B C ≠∅=∅,求实数a 的取值范围.解:(I){}{}25822,3R A x x x =∈-+==, . …………………………………2分{}{}22802,4R B x x x =∈+-==-,. ……………………………………….4分{}2,3,4.A B ∴=-. …………………………………………………..………..5分(II),A C B C ≠∅=∅,2,4,3.C C C ∴∉-∉∈ ……………………………………………..…….…..6分{}22190,R C x x ax a =∈-+->22222222190,(4)4190,33190.a a a a a a ⎧-+-≤⎪∴-++-≤⎨⎪-+->⎩……………………………………………..…..7分即35,222 5.a a a a -≤≤⎧⎪-≤≤-+⎨⎪<->⎩或解得3 2.a -≤<- ……………………..……..9分 所以实数a 的取值范围是[3,2).-- ………………………………………..….10分 18.(本小题满分12分)已知函数πππ())2sin()sin()344f x x x x =---+. (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ[,]122-上的值域. 解:(I)πππ())2sin()sin()344f x x x x =---+3cos 2sin 2(cos sin )(sin cos )22x x x x x x =-++-+223cos 22cos sin 22x x x x =-++-3cos 22cos 22x x x =-+πsin(2)6x =-,………………….......……3分2πT π2∴==,………………….................................................................……..4分由ππ2π62x k -=+()Z k ∈得ππ23k x =+()Z k ∈. ∴函数()f x 的最小正周期为π,对称轴方程为ππ3x k =+()Z k ∈.………………6分 (II )ππππ5π[,],2[,]122636x x ∈-∴-∈- 因为π()sin(2)6f x x =-在区间ππ[,]123-上单调递增,在区间ππ[,]32上单调递减,所以,当π3x =时,()f x 取最大值1..………………….........................……..8分又π1()()1222f f π-=<=,.…………………..........................……..10分当π12x =-时,()f x 取最小值.…………………....................……..11分所以函数()f x 在区间ππ[,]122-上的值域为[-..……………………..12分 19.(本小题满分12分)在ABC ∆中,内角A B C ,,对边分别是a b c ,,,已知2sin sin sin B A C =. (Ⅰ)求证:π03B <≤; (Ⅱ)求cos 4cos2A CB ++的最大值. 解:(Ⅰ)由正弦定理可得2sin sin sin a b cR A B C===, ∴sin 2a A R =,sin 2b B R =,sin 2c C R=,………………………………2分 ∵2sin sin sin B A C =,∴2b ac =, ……………………………4分∴222cos 2a c b B ac +-=2122ac ac ac -≥=, 而0πB << ∴π03B <≤.……………………………………………………………………6分 (Ⅱ)cos 4cos2A CB ++ 2π12sin 4cos 22B B -=-+ 212sin 4sin 22B B =-+22sin 132B =--+(),………………………………8分 由(Ⅰ)知π03B <≤, ∴10sin22B <≤, ………………………………10分 ∴当1sin22B =,即π3B =时,cos 4cos 2A CB ++取得最大值52.………………12分20.(本小题满分12分)中国移动通信将于3月21日开始在所属18个省、市移动通信公司陆续推出“全球通”移动电话资费“套餐”,具体方案如下:原计费方案的基本月租为50元,每通话一分钟收取0.4元,请问:(I )求“套餐”中第4种收费方式的月话费y 与月通话量t (月通话量是指一个月内每次通话用时之和,每次通话用时以分为单位取整计算,不足一分钟的按一分钟计算,如某次通话时间为3分20秒,则按4分钟计通话用时)的函数解析式;(II )若采用第4种收费方式,且比原计费方式的月话费省钱,求通话量的取值范围; (III )据中国移动某年公布的中期业绩,每个用户的月通话量平均为320分钟. 若一个用户的月通话量恰好是这个平均值,则在表中所列出的七种方案中,选择哪种方案更合算?请说明理由.解:(I )易知268,0600,2680.45(600),600,N,N.t t y t t t ⎧≤≤∈⎪=⎨+->∈⎪⎩ 所以268,0600,0.452,600,N,N.t t y t t t ⎧≤≤∈⎪=⎨->∈⎪⎩.……………………….......................…..4分 (II )当0600,N t t ≤≤∈时,解不等式500.4268t +>且N t ∈得545600,N t t <≤∈, 当600,N t t >∈时,解不等式500.40.452t t +>-,得6001040,N t t <<∈, 综上,当6001040,N t t <<∈时,采用第4种收费方式比原收费方式的月通话费省钱. ………………………………………………………..................................................8分(III )因为按照原来的收费方式,320分钟收费178元(即500.4320+⨯), 所以,不会选择月租费多于178元的收费方式,从而只考虑“套餐”中的前三种方式. 第一种方式的话费为:300.632048193.2+⨯-=()(元); 第二种方式的话费为:980.6320170188+⨯-=()(元); 第三种方式的话费为:168元.故选择第三种方式. ……………………………..................................................12分 21.(本小题满分12分)已知R a ∈,函数32()3333f x x x ax a =-+-+,]2,0[∈x . (I)求()f x 的单调区间;(II)求()f x 取得最大值时的x 的值.解:(I)由已知得到:2()3633[(2)]f x x x a x x a '=-+=-+,(1)当0a ≤时,Q [0,2]x ∈,∴(2)0x x -≤, ∴()0f x '≤恒成立;……..…………...1分(2)当1a ≥时,Q [0,2]x ∈,∴2(2)(1)11x x x -=--≥-,()0f x '≥恒成立; …….2分(3)当01a <<时,2()3630f x x x a '=-+=,36360a ∆=->,11x ∴=,21x =12012x x <<<<,令()0f x '>解得:10x x <<或22x x <<.……………………………………………....3分综上:当0a ≤时,()f x 的单调减区间为(0,2);当1a ≥时,()f x 的单调増区间为(0,2);当01a <<时,()f x 的单调増区间为(0,1和()12,单调减区间为(1.………………………………………………………5分(II)由(I)知(1)当0a ≤时,()f x 在(0,2)上递减,所以max ()(0)33f x f a ==-;……....6分(2)当1a ≥时,()f x 在(0,2)上递增,所以max ()(2)31f x f a ==-;……………....…...7分(3)当01a <<时,max 1()max{(),(2)}f x f x f =, 332221111111()(2)23(2)3(2)(2)(23)f x f x x a x x x x a -=---+-=---+, 21120x x a -+=∴2112x x a =-,()112a x x =-,111()(2)(2)(22)f x f x x a -=--+,.…………………………………………………………..................................................…..9分 ①当304a <≤,由()112a x x =-,得1102x <≤,所以13222x -<-≤-,且3022a <≤,此时120x a -+≤,又12x <,∴1()(2)0f x f -≥,即max 1()()f x f x =; .…………………………………………………………..................................................…..10分 ②当314a <<时,由()112a x x =-,得1112x <<,所以13212x -<-<,且3222a <<,此时1220x a -+>,又12x <,∴1()(2)0f x f -<,即max ()(2)f x f =; .…………………………………………………………..................................................…..11分综上,当0a ≤时, ()f x 在0x =处取得最大值; 当304a <≤时,()f x在1x = 当34a >时,()f x 在2x =处取得最大值. …..........................................................…..12分 22.(本小题满分12分)已知ln 1()21x x f x x -=++. (Ⅰ)判断函数()f x 的零点个数,并说明理由;(Ⅱ)已知0k >,0a >,若曲线1:ln C y x k=上有两点()()e ,,e ,ka ka P a Q a --,且曲线C 在点P 、Q 处的切线相交于点M ,证明:点M 一定在x 轴上方.解:(Ⅰ)函数ln 1()21x x f x x-=++定义域为∞(0,+), 22212(1)()02(1)2(1)x f x x x x x -'=-=>++, ∴函数()f x 在(0,)+∞单调递增,因为(1)0f =, ……………………………………………………….……………..3分所以,函数()f x 有唯一的零点1……………………………………………………..5分 (Ⅱ)1ln y x k =1y kx'⇒=. 过点()()e ,,e ,ka ka P a Q a --的切线方程为:()1e ,e ka ka y x a k =-+和()1e ,eka ka y x a k --=--…………………………………8分 设两条切线交点M 的纵坐标为y ,可解得()()()()22e e e e 1e 11e e e ka ka ka ka ka kaka ka ka a y k k -------+++==-+--,…………………10分 法一:设2e ka t -=,因为0ka >,所以,01t <<,且有ln 2t ka =-. 于是12ln a k t-=,因此,()1221ln 1ln 1a t a t y a t t t t ++⎛⎫=+=+ ⎪--⎝⎭,………………………………………….11分 由(Ⅰ)知,当01x <<时,()(1)0f x f <=,所以,ln 1021t t t -+<+, 故ln 121210,21ln 1ln 1t t t t t t t t t-++<-⇔>-⇔+>+--又0a >, 0y ∴>,所以点M 一定在x 轴上方. ……………………………………………….12分法二:∵0k >,0a >,()e e 0ka ka k -∴->,下证()()e e e e 0ka ka ka ka ka --+-->,设e ka t =,则ln ka t =,即证当1t >时,不等式ln 1ln 0t t t t t t +-+>成立,……………………………..11分 令()ln 1ln ,1t g t t t t t t t =+-+≥,则()21ln 1g t t t ⎛⎫'=- ⎪⎝⎭,且()10g =, 显然当1t >时,()0g t '>,所以()()10g t g >=,即()()e e e e 0ka ka ka ka ka --+-->, 0y ∴>,所以点M 一定在x 轴上方. ……………………………………………..12分。

2018.9高三数学理科九月考试题答案

2018.9高三数学理科九月考试题答案

数学(理)答案2018.9一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.请答案填在横线上. 13. 12e -14. 12- 15.1a ≥ 16.10,e ⎛⎫ ⎪⎝⎭三、解答题: 本大题共6小题,共70分.解答应写出文字说明, 演算步骤或证明过程.17. 解: (Ⅰ)f(x)=2sinx(32sinx +12cosx)=3×1-cos2x 2+12sin2x =sin(2x -π3)+32.函数f(x)的最小正周期为T =π由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f(x)的单调递增区间是[-π12+k π,5π12+k π],k ∈Z .(Ⅱ)当x∈[0,π2]时,2x -π3∈[-π3,2π3], sin(2x -π3)∈[-32,1],f(x)∈[0,1+32].所以当x∈[0,π2]时,函数f(x)的值域为[0,1+32]. 18. 解:(Ⅰ)由 解得 所以(Ⅱ)19. 解:(Ⅰ)正弦定理得又(Ⅱ)在,根据余弦定理得即又又 ,20.解:(Ⅰ)取BC 中点O ,连结AO .∵△ABC 为正三角形,∴AO ⊥BC . ∵在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,∴AO ⊥平面BCC 1B 1. 取B 1C 1中点O 1,以O 为原点,OB ,1OO ,OA 的方向为x ,y ,z 轴的正方向建立空间 直角坐标系: O xyz -,如图所示,则B (1,0,0),D (-1,1,0), A 1(0,2,A (0,0,B 1(1,2,0),∴(11,2,AB =,()2,1,0BD =-,(1BA =-. ∴10AB BD ⋅=,110AB BA ⋅=,∴1AB BD ⊥,11AB BA ⊥,∴AB 1⊥平面A 1BD . (Ⅱ)设平面A 1AD 的法向量为(),,x y z =n . 1,1,3()AD =--,1,2,0(0)AA =.∵AD ⊥n ,1AA ⊥n ,∴100AD AA ⋅=⋅⎧⎪⎪⎩=⎨n n,∴020x y y ⎧-+-==⎪⎨⎪⎩,0y x ==⎧⎪⎨⎪⎩,令1z =得(3,,1)0=n 为平面A 1AD 的一个法向量.由(1)知AB 1⊥平面A 1BD ,1AB 为平面A 1BD 的法向量,∴111cos AB AB AB ⋅-===⋅n n,n . ∴锐二面角A -A 1D -B 的大小的余弦值为21. 解:(Ⅰ)证明:当1a =时,函数()2x f x e x =-.则()'2x f x e x =-,令()2x g x e x =-,则()'2x g x e =-,令()'0g x =,得l n 2x =.当()0,l n 2x ∈时,()'0g x <,当()ln2,x ∈+∞时,()'0g x >∴()f x 在[)0,+∞单调递增,∴()()01f x f ≥=. (Ⅱ)()f x 在()0,+∞有两个零点⇔方程2e 0x ax -=在()0,+∞有两个根,2x e a x ⇔=在()0,+∞有两个根,即函数y a =与()2xe G x x=的图像在()0,+∞有两个交点.()()3e 2'x x G x x -=,当()0,2x ∈时,()'0G x <,()G x 在()0,2递减当()2x ∈+∞,时,()'0G x >,()G x 在()2+∞,递增所以()G x 最小值为()2e 24G =, 当0x →时,()G x →+∞,当x →+∞时,()G x →+∞,∴()f x 在()0,+∞有两个零点时,错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年第一学期宝安区高三调研测试卷 数学(理科) 2017.9 全卷满分:150分 考试时间:120分钟

第Ⅰ卷(共60分) 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) ( )1.已知全集U=R,集合A={x|lg(x-2)≥0}, B={x|x≥2}, 则(CUA)∩B=

A.13xx B.23xx C.3xx D. ( )2.某居民小区为如图所示矩形ABCD,A, C两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF,若在该小区内随机地选一地点, 则该地点无.信号的概率是 (注:该小区内无其他信号来源, 基站工作正常).

A.12 B.22

C.14 D.4

( )3.“0a”是“复数1aizi在复平面内对应的点在第三象限”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件

( )4.设na是等差数列,1359aaa,69a,则这个数列的前6项和等于 A.12 B.24 C.36 D.48 ( )5.已知0.11.12log0.1,2,0.2abc,则,,abc的大小关系是 A.abc B.bca C.cab D. acb ( )6.把函数sinyx(xR)的图象上所有点向左平行移动3个单位长度,再把

所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 A.sin(2)3yx,xR B.sin()26xy,xR

C.sin(2)32yx,xR D.sin(2)3yx, xR ( )7.执行右图的程序框图,若输出的5n, 则输入整数p的最大值是 A.15 B.14 C.7 D.6 ( )8.51(1)(1)xx展开式中2x的系数为 A.20 B.15 C.6 D.1 ( )9.设奇函数f(x)在(0,+∞)上为单调递减函

数,且f(1)=0,则不等式20fxfxx 的解集为 A.(-∞,-1]∪(0,1] B.[-1,0]∪[1,+∞) C.(-∞,-1]∪[1,+∞) D.[-1,0)∪(0,1] ( )10.一个四面体的三视图如图所示,则该四面 体的表面积是

A.1+

B.1+2 C.2+ D.2 ( )11.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若 |AF|=2|BF|,则线段AB的长为.

A.8 B.92 C.16 D.163 ( )12.已知定义在),0[上的函数)(xf满足)2(2)(xfxf,当)2,0[x时,xxxf42)(2,设)(xf在)2,22[nn上的最大值为)(*Nnan,且}{na的前n

项和为nS,则nS=

A.1212n B.2214n C.n212 D.1214n

第Ⅱ卷(共90分) 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知向量25,10),1,2(babaa,则b .

14.设yx,满足约束条件11yyxxy,则yxz2的最大值为 . 15.如图,已知双曲线2222:1xyCab(0,0)ab的右顶点 为,AO为坐标原点,以A为圆心的圆与双曲线C的一条 渐近线交于两点P,Q,若060PAQ,且3OQOPuuuruuur, 则双曲线C的离心率为 . 16.如图所示,ABCD是边长为60 cm的正方形硬纸 片,切去阴影部分所示的四个全等的等腰直角 三角形,再沿虚线折起,使得ABCD四个点重合 于图中的点P, 正好形成一个正四棱柱形状的 包装盒,若要包装盒容积V(cm3)最大, 则EF长 为 cm .

三、解答题:(共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。) (一)必考题:共60分。 17.(本小题满分12分) 在△ABC中,角A、B、C对应的边分别是a、b、c,已知22cossinsincosC2cosBCBA,A为锐角

(I)求角A的大小;

(II)若1a,3sinsin12BC, 求△ABC的面积S. 18.(本小题满分12分) 在某大学自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级. 某考场考生两科的考试成绩的数据统计条形图如下图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.

(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数; (Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分. (i)求该考场考生“数学与逻辑”科目的平均分; (ii)若该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分. 从这10人中随机抽取两人,求两人成绩之和的分布列和数学期望. . 19.(本小题满分12分) 如图,在三棱锥PABC中,侧面PAB为边

长为22的正三角形,底面ABC为以AB为斜边的等腰直角三角形, PCAC. (Ⅰ)求证:PCABC平面; (Ⅱ)求二面角BAPC的的余弦值 .

20.已知椭圆2222:10xyCabab的左焦点

P A B C

P 的离心率为是 和 的等比中项. (1)求曲线的方程; (2)倾斜角为的直线过原点且与交于两点,倾斜角为的直线过且与交于

两点,若,求2ABDE的值.

21.(本小题满分12分)已知函数2lnaxxxxf,xfxg (1)若12a,试判断函数xg的零点个数; (2)若函数xf 在定义域内不单调且在2,上单调递减,求实数a的取值范围。 (二)选考题(共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。)

22.[选修4―4:坐标系与参数方程](10分) 在直角坐标系中,以原点为极点, x轴的正半轴为极轴建坐标系,已知曲线 2:sin2cos(0)Caa,已知过点(2,4)P的直线l的参数方程为:

222242xtyt



,直线l与曲线C分别交于NM,两点.

(1)写出曲线C和直线l的普通方程; (2)若,,PMMNPN成等比数列, 求a的值.

23.[选修4—5:不等式选讲](10分) 已知函数()2123fxxx (1)求不等式()6fx的解集; (2)若关于x的不等式()1fxa的解集非空,求实数a的取值范围.

2017-2018学年第一学期宝安区高三调研测试卷 数学(理科)参考答案 2017.9 1-12 BCBB DDAA CCBB 13. 5 14. 3 15. 72 16. 20 17. 【解】 (I)由22cossinsincosC2cosBCBA, 得 2sin2A=sin (B+C)= sinA, .----2分

解得sin A=12或sin A=0(舍去). ----4分

因为A为锐角,所以A=6 -----6分 (II)由正弦定理,得sin B+sin C=basin A+·casin A=12(b+c)=1+ 32, 所以 23bc —8分

由余弦定理a2=b2+c2-2bccos A得2231bcbc所以 2231bcbc,所以23bc ---- 10分

S=12bcsin A=11323222gg ---12分 19. 证明:(Ⅰ)取AB中点D,连结PDCD,. APBPQ,PDAB.

ACBCQ,CDAB.PDCDDQI,

AB平面PCD.----3分

PCQ平面PCD,

PCAB,又∵PCAC,∴PCABC平面- ----6分

解:(Ⅱ)如图,以C为原点建立空间直角坐标系Cxyz. 则(000)(020)(200)CAB,,,,,,,,.设(00)Pt,,.---8分 22PBAB,2t,(002)P,,. ----9分

取AP中点E,连结BECE,.ACPC, ABBP, CEAP,BEAP.

BEC是二面角BAPC的平面角.

A C B

P z x y E (011)E,,,(011)ECuuur,,,(211)EBuur,,, ---10分

23cos326ECEBBECECEBuuuruurguuuruurgg

二面角BAPC的余弦值为33. -------- -12分

20.【答案】(1); (2) . 【解析】 (1) 由题可知,椭圆中,解得,所以椭圆的方程是; 。。。。。。。。。。。。。5分 (2)设倾斜角为的直线为,倾斜角为的直线,

①当时,由,知,则,

于是,此时;。。。。。。。。。。6分 (2)当时,由,知,且这两条直线的斜率互为相反数, 设,则, 由,可得,

则,。。。。。。。。。。。8分 由可得:, 由于, 设与椭圆的两个交点坐标依次为,

相关文档
最新文档