全等三角形难题集

合集下载

全等三角形难题集

全等三角形难题集

全等三角形难题集引言全等三角形是初等数学中的一个重要概念,也是几何学的基础之一。

全等三角形指的是在形状、大小、角度等各方面完全相同的两个三角形。

解决全等三角形的难题对于培养学生的逻辑思维能力和几何直观能力具有重要意义。

本文将介绍一些关于全等三角形的难题,希望能够帮助读者更好地理解和掌握全等三角形的相关知识。

难题一:全等三角形的判定给定两个三角形ABC和XYZ,判断它们是否全等。

请根据下列条件判断并给出理由:1.两个三角形的三边分别相等,即AB = XY,BC = YZ,AC = XZ。

2.两个三角形的三个角度分别相等,即∠A = ∠X,∠B = ∠Y,∠C = ∠Z。

3.两个三角形的两边和夹角分别相等,即AB = XY,AC = XZ,∠BAC = ∠YXZ。

理由:1.两个三角形的三边分别相等,根据全等三角形的定义,可以判断它们为全等三角形。

因为边长相等可以保证三角形的形状和大小完全相同。

2.两个三角形的三个角度分别相等,根据全等三角形的定义,可以判断它们为全等三角形。

因为角度相等可以保证三角形的形状和大小完全相同。

3.两个三角形的两边和夹角分别相等,根据全等三角形的定义,可以判断它们为全等三角形。

因为两边和夹角的相等关系可以保证三角形的形状和大小完全相同。

综上所述,根据给定的条件判断两个三角形ABC和XYZ为全等三角形。

难题二:全等三角形的性质全等三角形具有以下性质,请证明或反驳:1.全等三角形的周长相等。

2.全等三角形的面积相等。

3.全等三角形的高度和中线相等。

证明或反驳:1.全等三角形的周长相等:假设三角形ABC和XYZ为全等三角形,根据全等三角形的定义,可以知道它们的边长相等。

所以,周长也相等。

2.全等三角形的面积相等:假设三角形ABC和XYZ为全等三角形,根据全等三角形的定义,可以知道它们的底边和高相等。

由于面积等于底边乘以高的一半,所以面积也相等。

3.全等三角形的高度和中线相等:反驳。

全等三角形难题集锦(整理)

全等三角形难题集锦(整理)

1、(1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;(2)如图2,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.图1 图22、(1)如图1,现有一正方形ABCD ,将三角尺的指直角顶点放在A 点处,两条直角边也与CB 的延长线、DC 分别交于点E 、F .请你通过观察、测量,判断AE 与AF 之间的数量关系,并说明理由. (2)将三角尺沿对角线平移到图2的位置,PE 、PF 之间有怎样的数量关系,并说明理由.(3)如果将三角尺旋转到图3的位置,PE 、PF 之间是否还具有(2)中的数量关系?如果有,请说明3、E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.4、C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边ABC ∆和等边CDE ∆,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论: ① AD=BE ; ② AE PQ //; ③ AP=BQ ;④ DE=DP ; ⑤ ︒=∠60AOB ⑥CP=CQ ⑦△CPQ 为等边三角形. ⑧共有2对全等三角形 ⑨CO 平分AOE ∠ ⑩CO 平分BCD ∠ 恒成立的结论有______________(把你认为正确的序号都填上).CHF ED BAABC ED O P Q5、D 为等腰ABC Rt ∆斜边AB 的中点,DM ⊥DN ,DM ,DN 分别交BC ,CA 于点E ,F 。

(1)当MDN ∠绕点D 转动时,求证:DE=DF 。

(2)若AB=2,求四边形DECF 的面积。

全等三角形难题(含答案.解析)

全等三角形难题(含答案.解析)
∵∠BFE+∠CFE=180o
∴∠D=∠CFE
又∵∠DCE=∠FCE
CE平分∠BCD
CE=CE
∴⊿DCE≌⊿FCE(AAS)
∴CD=CF
∴BC=BF+CF=AB+CD
8. 已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
ED
C
F
AB
AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,
1<AD<3
∴AD=2
1
2.已知:D是AB中点,∠ACB=90°,求证:
CDAB
2
A
D
CB
延长CD与P,使D为CP中点。连接AP,BP
∵DP=DC,DA=DB
∴ACBP为平行四边形
又∠ACB=90
∴平行四边形ACBP为矩形
∴AB=CP=1/2AB
3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
AB=AE,BF=EF,
∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF
∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)。
4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
A
2
1
F
C
D
E
B
过C作CG∥EF交AD的延长线于点G
CG∥EF,可得,∠EFD=CGD
DE=DC
∠FDE=∠GDC(对顶角)
∴△EFD≌△CGD
EF=CG
∠CGD=∠EFD
又,EF∥AB
∴,∠EFD=∠1
∠1=∠2
∴∠CGD=∠2

(完整版)全等三角形难题超级好题汇总

(完整版)全等三角形难题超级好题汇总

1. 如图,已知等边△ ABC,P在AC延长线上一点,以PA为边作等边△ APE,EC延长线交BP于M,连接AM,求证:(1)BP=CE;(2)试证明:EM-PM=AM.3.已知,如图①所示,在△ABC和△ ADE中,AB AC,AD AE,BAC DAE ,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:① BE CD ;② AM AN ;2)在图①的基础上,将△ADE 绕点 A 按顺时针方向旋转180o,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立4、如图1,以△ ABC的边AB 、AC为边分别向外作正方形ABDE和正方形ACFG ,连结EG ,试判断△ABC与△AEG 面积之间的关系,并说明理由.2、点 C 为线段AB 上一点,△ ACM, △ CBN 都是等边三角形,线段AN,MC 交于点E,BM,CN交于点F。

求证:1)AN=MB. (2)将△ ACM 绕点 C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,1)中的结论是否依然成立?(3)AN 与BM 相交所夹锐角是否发生变化。

B图①CB图1)F7、已知 Rt △ ABC 中, AC BC ,∠C 90,D 为AB 边的中点, EDF 90°,EDF 绕 D 点旋转,它的两边分别交 AC 、 CB (或它们的延长线)于 E 、 F.1 当 EDF 绕 D 点旋转到 DE AC 于E时(如图1),易证S △DEF S △CEF S △ ABC .DEF CEF 2 ABC当 EDF 绕 D 点旋转到 DE 和 AC 不垂直时, 在图 2 和图 3 这两种情况下, 上述结论是否成立?若成立, 请给予证明;8. 已知 AC//BD, ∠CAB 和∠ DBA 的平分线 EA 、EB 与 CD 相交于点 E. 求证 :AB=AC+BD.5、如图所示,已知△ ABC 和△ BDE 都是等边三角形,且 A 、 HB 平分∠ AHD ;④∠ AHC=60 °,⑤△ BFG 是等边三角形;⑥ A .3个 B .4 个 C .5个 D .6 个B 、D 三点共线.下列结论:① AE=CD ;② BF=BG ;③ FG ∥AD .其中正确的有()6. 如图所示,△ ABC 是等腰直角三角形,∠ ACB =90°,AD 交 AD 于点 F ,求证:∠ ADC =∠ BDE .是 BC 边上的中线,过 C 作 AD 的垂线,交 AB 于点 E , 、 S △CEF 、 S △ABC 又有怎样的数量关系?请写出你的猜想,不需证明.图1若不成立,S △ DEF 图2图210、已知,如图1,在四边形ABCD 中,BC>AB,AD=DC,BD 平分∠ ABC 。

全等三角形难题集锦超级好

全等三角形难题集锦超级好

1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ; (2)试证明:EM-PM=AM.2.已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图B E3.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB ,连接AE CD ,. (1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.CGAEDBF4、在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;ADBECF 1A1CADBECF 1A1C5. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .ABCD EF6已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°, EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.A EC F BD图1图3ADFECBADBCE 图2F7、已知AC//BD,∠CAB和∠DBA的平分线EA、EB与CD相交于点E.求证:AB=AC+BD.8.等边△ABC,D为△ABC外一点,∠BDC=120°,BD=DC.∠MDN=60°射线DM与直线AB相交于点M,射线DN与直线AC相交于点N,①当点M、N在边AB、AC上,且DM=DN时,直接写出BM、NC、MN之间的数量关系.②当点M、N在边AB、AC上,且DM≠DN时,猜想①中的结论还成立吗?若成立,请证明.③当点M、N在边AB、CA的延长线上时,请画出图形,并写出BM、NC、MN之间的数量关系.DCBA9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ;(2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;10、如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,AD+AB=2AE ,则∠B 与∠ADC 互补.为什么?ABCD FE 图2DBEAC图十一11如图,在△ABC 中∠ABC,∠ACB 的外角平分线交P.求证:AP 是∠BAC 的角平分线12、如图在四边形ABCD 中,AC 平分∠BAD ,∠ADC +∠ABC =180度,CE ⊥AD 于E ,猜想AD 、AE 、AB 之间的数量关系,并证明你的猜想,EBAC图2DCB13如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD14如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF15如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。

全等三角形难题集锦超级好

全等三角形难题集锦超级好

2、点C 为线段AB 上一点,△ ACM, △ CBN 都是等边三角形,线段 AN,MC 交于点E ,BM,CN 交于点F 。

求证:(1) AN=MB.(2)将厶ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否依然成立? ( 3) AN 与BM 相交所夹锐角是否发生变化。

5.已知,如图①所示,在 △ ABC 和厶ADE 中,AB AC ,AD AE , BAC DAE ,且点B ,A ,D 在一条直 线上,连接 BE ,CD ,M ,N 分别为BE ,CD 的中点.(1)求证:① BE CD :② AM AN ;(2)在图①的基础上,将 △ ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到图出(1)中的两个结论是否仍然成立6.如图,C 为线段AE 上一动点(不与点 A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE AD 与BE 交于点O, AD 与BC 交于点P, BE 与CD 交于点 Q 连结PQ 以下五个结论:① AD=BE ;② PQ // AE ;③ AP=BQ;④DE=DP ⑤ / AOB=60 ⑥CP=CQ ⑦厶CPQ 为等边三角形. ⑧共有2对全等三角形⑨CO 平分/ AOP ⑩CO 平分/ BCD恒成立的结论有 _________________ (把你认为正确的序号都填上).10.已知:如图,△ ABC 是等边三角形, 使 DE DB ,连接 AE ,CD .(1)求证:△ AGE ◎△ DAC ;过AB 边上的点D 作DG // BC ,交AC 于点G ,在GD 的延长线上取点 E , 1.如图,已知等边厶ABC P 在AC 延长线上一点,以PA 为边作等边△ APE,EC 延长线交BP 于M 连接AM,求证:(1) BP=CE(2)试证明:EM-PM=AM.(把你认为正确的序号都填A. 3个1、在厶 ABC 中,AB BC 2, ABC 120°将△ ABC 绕(0 ° 90 °得厶ABG , AB 交AC 于点E , A 1C 1分别点B 顺时针旋转角 交 AC 、BC 于 D 、F2.如图所示,△ ABC 是等腰直角三角形,/ ACB= 90° AB 于点E ,交AD 于点F ,求证:/ ADC=Z BDE(2)过点E 作EF // DC ,交BC 于点F ,请你连接AF ,并判断△ AEF 是怎样的三角形,试证明你的结论.11、如图1,以 △ ABC 的边AB 、AC 为边分别向外作正方形 ABDE 和正方形 ACFG ,连结EG ,试判断△ ABC与厶AEG 面积之间的关系,并说明理由.9如图,C 为线段AE 上一动点(不与点A, E 重合),在AE 同侧分别作正三角形 AD 与BC 交于点P, BE 与CD 交于点Q,连结PQ 以下五个结论:① AD=BE ; ② PQ // AE ③ AP=BQ ④ DE=DP ⑤ / AOB=60 .恒成立的结论有 ________________ 10.如图所示,已知△ ABC^n ^ BDE 都是等边三角形,且 A 、B 、D 三点共线.下列结论: ①AE=CD ②BF=BG ③HB 平分/ AHD ④/ AHC=60,⑤A BFG 是等边三角形; ⑥FG// AD.其中正确的有()两点•如图1,观察并猜想,在旋转过程中,线段EA 与FC 有怎样的数量关系?并证明你的结论;Q113. 如图1,四边形ABCD 是正方形,M 是AB 延长线上一点。

全等三角形难题集锦超级好题汇总

全等三角形难题集锦超级好题汇总

1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ;(2)试证明:EM-PM=AM.2、点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,线段AN,MC 交于点E ,BM,CN 交于点F 。

求证:(1)AN=MB.(2)将△ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否依然成立 (3)AN与BM 相交所夹锐角是否发生变化。

3.已知,如图①所示,在ABC △和ADE △中,AB AC =,ADAE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.22题PB EAB A B N CNA4、如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.5、如图所示,已知△ABC 和△BDE 都是等边三角形,且A 、B 、D 三点共线.下列结论:①AE=CD ;②BF=BG ;③HB 平分∠AHD ;④∠AHC=60°,⑤△BFG 是等边三角形;⑥FG ∥AD .其中正确的有( )A .3个B .4个C .5个D .6个6. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .AGFCBDE(图1)ABC DEF7、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEFABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系请写出你的猜想,不需证明.8.已知AC 求证:AB=AC+BD.A E C FBD图1图3ADFECBADBCE 图2FDCBA9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ;(2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;10、已知,如图1,在四边形ABCD 中,BC >AB ,AD=DC ,BD 平分∠ABC 。

全等三角形难题(含答案)

全等三角形难题(含答案)

全等三角形经典证明已知:AB=10,AC=2,D 是BC 中点,AD 是整数,求AD1. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BECDB AADBC6. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

7.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C8、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C9.(5分)如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 10.(5分)如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA 11.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,DCB A FEBD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.12.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):/13.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .14、(10分)如图:DF=CE ,AD=BC ,∠D=∠C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,已知等边厶ABC P 在AC 延长线上一点,以PA 为边作等边△ APE,EC 延长线交BP 于M 连接AM,求证:(1) BP=CE (2)试证明:EM-PM=AM.(1) AN=MB.(2)将厶ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否依然成5.已知,如图①所示,在 △ ABC 和厶ADE 中,AB AC ,AD AE , BAC DAE ,且点B ,A ,D 在一条直 线上,连接 BE ,CD ,M ,N 分别为BE ,CD 的中点.(1)求证:① BE CD :② AM AN ;(2)在图①的基础上,将 △ ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到图②所示的图形•请直接写CME图②10.已知:如图,△ ABC 是等边三角形,过AB 边上的点D 作DG // BC ,交AC 于点G ,在GD 的延长线上取点 E ,使 DE DB ,连接 AE , CD • (1) 求证:△ AGE ◎△ DAC ;(2) 过点E 作EF // DC ,交BC 于点F ,请你连接 AF ,并判断△ AEF 是怎样 的三角形,试证明你的结论.2、点C 为线段AB 上一点,△ ACM, △ CBN 都是等边三角形,线段AN,MC 交于点 立(3) AN 与BM 相交所夹锐角是否发生变化。

出(1)中的两个结论是否仍然成立ED图①EAGBF2.如图所示,△ ABC 是等腰直角三角形,/ ACB= 90°, AD 是BC 边上的中线,过 C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:/ ADG=Z BDE11、如图1,以 △ ABC 的边AB 、AC 为边分别向外作正方形 与△ AEG 面积之间的关系,并说明理由.ABDE 和正方形9如图,C 为线段AE 上一动点(不与点A, E 重合),在AE 同侧分别作正三角形 ABC 和正三角形 CDE AD 与BE 交于点0, AD 与BC 交于点P, BE 与CD 交于点Q,连结PQ 以下五个结论:① AD=BE ; ② PQ // AE ③ AP=BQ ④ DE=DP ⑤ / AOB=60 .恒成立的结论有 ________________(把你认为正确的序号都填上)如图所示,已知△ AB^H A BDE 都是等边三角形, 且A 、B D 三点共线.下列结论:①AE=CD ②BF=BG ③HB 平分/ AHD ④/ AHC=60,⑤△ BFG 是等边三角形;⑥A. 3个B . 4个C . 5个D . 6个FG// AD.其中正确的有( )(图1)B已知Rt △ ABC 中,AC BC ,Z C 90, D 为 AB 边的中点,EDF 90°EDF 绕D 点旋转,它的两边分别交 AC 、CB (或它们的延长线)于 E 、F .1当 EDF 绕D点旋转到DE AC 于E 时(如图1),易证S ADEF S ACEFABC.2当 EDF 绕D 点旋转到DE 和AC 不垂直时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明; 若不成立,S ADEF 、S ACEF 、S AABC 又有怎样的数量关系请写出你的猜想,不需证明.1.已知 AC 求证:AB=AC+BD.1、已知,如图1,在四边形 ABCDK BC>AB AD =DC BD 平分Z ABC3.如图1,BD 是等腰Rt 从BC 的角平分线,Z BAC = 90(1)求证 BOAB F AD(2)如图2,AF 丄BD 于F ,CE 丄BD 交延长线于 E ,求证:BD =2CE图1图2F图22、如图,四边形ABCD中, AC平分/ BAD CE! AB于E, AD+AB=2AE则/ B与/ ADC互补.为什么4.如图,在△ ABC中/ ABC,/ ACB的外角平分线交P.求证:AP是/ BAC的角平分线求证:/ BAB/BCD180 °。

图十一3、如图4,在厶ABC中, BD=CD / ABD=/ ACD,求证AD平分/ BAC.并证明你的猜想 图③图②5、如图在四边形 ABCD 中, AC 平分/ BAD / ADO Z ABC= 180 度,CE1AD 于 E ,猜想 AD AE 、 AB 之间的数量关系,OCABEOBCDBE=CFDBACFBBMD P OCAC图①图2ED (1)中的其它条件不变,请问,你在 (1)中所得结论是否仍然EF7.如图所示,已知在厶 AEC 中,/ E=90° AD 平分/ EAC DF 丄AC,垂足为F , DB=DC 求证E6、如图,已知在厶 ABC 中,/ B=60°,^ ABC 的角平分线 AD,CE 相交于点 O,求证:OE=ODA8如图①,OP 是/ MON 勺平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。

请你参考这个作全等三角形的方法,解答下列问题:(1) 如图②,在△ ABC 中,/ ACB 是直角,/ B =60°, AD CE 分别是/ BAC / BCA 的平分线,AD CE 相交于点 请你判断并写出 FE 与FD 之间的数量关系;(2) 如图③,在△ ABC 中,如果/ ACB 不是直角,而成立若成立,请证明;若不成立,请说明理由。

N AF .DBF 丄AC 于点F , CEL AB 于点E ,且BD=CD 求证:([)△ BDE ^A CDF ( 2) 点D 在/ A 的平分线上11、(2007年成都)已知:如图,△ ABC 中,/ ABC 45°, CD L AB 于D, BE 平分/ ABC 且BE!AC 于E ,与CD 相交于 点F , H 是BC边的中点,连结 DH 与 BE 相交于点 G(!)求证:BF =AC ;1(2) 求证:CE= = BF ;2(3) CE 与 BC 的大小关系如何试证明你的结论。

10、如图在△ ABC 中,AB>AC, / 1=Z 2, P 为AD 上任意一点,求证 C;AB-AC > PB-PC9.已知:如图,12、(2009年赤峰市)如图,在四边形ABCD中, AB=BC BF是/ ABC的平分线,AF// DC,连接AG CF,求证:CA是/ DCF的平分线。

5. (1)如图,已知在正方形ABCD中, M是AB的中点,E是AB延长线上一点,MN L DM且交/ CBE的平分线于N.试判定线段MD 与MN的大小关系;(2)若将上述条件中的“ M是AB的中点”改为“ M是AB上或AB延长线上任意一点”,其余条件不变.试问(1)中的结论还成立吗如果成立,请证明;如果不成立,请说明理由.6.如图,在△ ABC中,/ A=90°, D是AC 上的一点,证:PE+PF=AB/ C=40° , AP平分/ BAC交BC于P,BQ平分/ ABC交AC于Q,求证:AB+BP=BQ+AQBD=DC P是BC上的任一点,PE± BD, PF丄AC, E、F 为垂足.求1. 在^ABC中,AD丄BC, BE丄AC, D、E 为垂足,AD与BE交与点H, BD=AD4.如图1 , A、E、F、C在同一条直线上,AE=CF过E、F分别作DEL AC, BF丄AC,若AB=CD试说明BD平分EF;若将△ DEC的边EC沿AC方向移动变为图2时,其余条件不变,BD是否还平分EF,请说明理由。

5.如图,△ ABC中,/ ACB= 90°, AC= BC, AE是BC边上的中线,过C作CF L AE垂足为F,过B作BD L BC交CF的延长线于D.求证:(1) AE= CD (2)若AC= 12 cm,求BD的长.求证:BH=AC BE! AD6.如图, 两个全等的含30 、60°E、A、C三点在一条直线上, 连接角的三角板ADE和三角板ABC放置在一起,/ DEA=/ ACB=90 , / DAEN ABC=3C° ,BD取BD中点M连接ME MC试判断△ EMC的形状,并说明理由.ACE7.已知BE, CF是厶ABC的高,且BP=AC CQ=AB试确定AP与AQ的数量关系和位置关系8.在Rt △ ABC中,AC= BC / ACB= 90°, D是AC的中点,DGL AC交AB于点G.(1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF连结EF与CF,过点F作FH丄FC,交直线AB于点H.①求证:DG=DC②判断FH与FC的数量关系并加以证明.(2)若E为线段DC的延长线上任意一点,点F在射线DG上, (1)中的其他条件不变,借助图2画出图形。

在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变. (本小题直接写出结论,不必证明)AC平分BAD CE AB 于E,且B+ D=180 ,求证:AE=AD+BE6、在厶 ABC 中,BD=DC ED 丄 DF.求证:BE + CF > EF.3.操作:如图①,△ ABC 是正三角形, 分别交AB AC 边于M N 两点,连接 探究:线段BM MN NC 之间的关系,△ BDC 是顶角/ BDC= 120。

的等腰三角形,以 D 为顶点作一个60°角,角的两边MN并加以证明.4.如图,已知 E 是正方形 ABCD 的边CD 的中点,点 F 在BC 上,且/ DAE 2 FAE 求证:AF=AD-CF5.如图所示,已知△ ABC 中,AB=AC D 是CB 延长线上一点,/ ADB=60 , E 是AD 上一点,且 DE=DB 求证:AC=BE+BC仃'3、(1)如图7,点0是线段AD 的中点,分别以 A0和DO 为边在线段 AD 的同侧作等边三角形 OAB 和等边三角形 OCD 连结AC 和BD,相交于点 E ,连结BC.求/ AEB 的大小;(2)如图8,△ OAB 固定不动,保持△ OCD 勺形状和大小不变,将△ / AEB 的大小.5、如图所示,已知 AE! AB, AF 丄 AC, AE=AB AF=AC 求证: (1) EC=BF(2) EC ! BFB C 2. E 、F 分别是正方形 ABCD 的边BC 、CD 上的点,且 Z EAF 45, AH EF , H AH AB .为垂足,求证: F OCD 绕着点O 旋转(△ OAB 和△ OCD 不能重叠),求B。

相关文档
最新文档