初一数学全等三角形难题全集

合集下载

初一数学全等三角形难题全集

初一数学全等三角形难题全集

三角形的边角与全等三角形一、选择题1.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组2、已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50° 3、如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对 B .3对C .4对D .5对ABC DO4、如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560B.680C.1240D.18005、如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35° D .40°6、尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS7、图(三)、图(四)、图(五)分别表示甲、乙、丙三人由A 地到B 地的路线图。

已知 甲的路线为:A →C →B 。

乙的路线为:A →D →E →F →B ,其中E 为AB 的中点。

丙的路线为:A →I →J →K →B ,其中J 在AB 上,且AJ >JB 。

全等三角形难题集

全等三角形难题集

全等三角形难题集引言全等三角形是初等数学中的一个重要概念,也是几何学的基础之一。

全等三角形指的是在形状、大小、角度等各方面完全相同的两个三角形。

解决全等三角形的难题对于培养学生的逻辑思维能力和几何直观能力具有重要意义。

本文将介绍一些关于全等三角形的难题,希望能够帮助读者更好地理解和掌握全等三角形的相关知识。

难题一:全等三角形的判定给定两个三角形ABC和XYZ,判断它们是否全等。

请根据下列条件判断并给出理由:1.两个三角形的三边分别相等,即AB = XY,BC = YZ,AC = XZ。

2.两个三角形的三个角度分别相等,即∠A = ∠X,∠B = ∠Y,∠C = ∠Z。

3.两个三角形的两边和夹角分别相等,即AB = XY,AC = XZ,∠BAC = ∠YXZ。

理由:1.两个三角形的三边分别相等,根据全等三角形的定义,可以判断它们为全等三角形。

因为边长相等可以保证三角形的形状和大小完全相同。

2.两个三角形的三个角度分别相等,根据全等三角形的定义,可以判断它们为全等三角形。

因为角度相等可以保证三角形的形状和大小完全相同。

3.两个三角形的两边和夹角分别相等,根据全等三角形的定义,可以判断它们为全等三角形。

因为两边和夹角的相等关系可以保证三角形的形状和大小完全相同。

综上所述,根据给定的条件判断两个三角形ABC和XYZ为全等三角形。

难题二:全等三角形的性质全等三角形具有以下性质,请证明或反驳:1.全等三角形的周长相等。

2.全等三角形的面积相等。

3.全等三角形的高度和中线相等。

证明或反驳:1.全等三角形的周长相等:假设三角形ABC和XYZ为全等三角形,根据全等三角形的定义,可以知道它们的边长相等。

所以,周长也相等。

2.全等三角形的面积相等:假设三角形ABC和XYZ为全等三角形,根据全等三角形的定义,可以知道它们的底边和高相等。

由于面积等于底边乘以高的一半,所以面积也相等。

3.全等三角形的高度和中线相等:反驳。

全等三角形难题含答案

全等三角形难题含答案

全等三角形经典证明:AB=10,AC=2,D 是BC 中点,AD 是整数,求AD1.:D 是AB 中点,∠ACB=90°,求证:12CD AB2.:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. :∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4.:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5.:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

7.:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠CCDBAADBC8、:AB=CD ,∠A=∠D ,求证:∠B=∠C9.〔5分〕如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .10.〔5分〕如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA11.〔6分〕如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,假设AB =CD ,AF =CE ,BD 交AC 于点M .〔1〕求证:MB =MD ,ME =MF〔2〕当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?假设成立请给予证明;假设不成立请说明理由.12.〔7分〕:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,〔1〕求证:△AED ≌△EBC .〔2〕观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.〔直接写出结果,不要求证明〕:/13.〔7分〕如图,△ABC 中,∠BAC =90度,AB =AC ,BD是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .14、〔10分〕如图:DF=CE ,AD=BC ,∠D=∠C 。

全等三角形证明难题

全等三角形证明难题

FE DCBA1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .3.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF . 求证∠A =∠D .4.已知,如图,AB=AD ,DC=CB .求证:∠B=∠D 。

5.如图, AD =BC, AB =DC, DE =BF. 求证:BE =DF.AD C B1.如图,AC 和BD 相交于点O ,OA =OC ,OB =OD .求证DC ∥AB .2.如图,△ABC ≌△A B C ''',AD ,A D ''分别是△ABC ,△A B C '''的对应边上的中线,AD 与A D ''有什么关系?证明你的结论.3.如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.4.已知:如图,AD ∥BC ,AD=CB ,求证:△ADC ≌△CBA .5.已知:如图AD ∥BC ,AD=CB ,AE=CF 。

求证:△AFD ≌△CEB .6.已知,如图,AB=AC ,AD=AE ,∠1=∠2。

求证:△ABD ≌△ACE .AC EDBAE B CFDAB CD2A CBE1H F ED CB A 7.已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF. 求证:AC ∥DF .8.已知:如图,AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .9.如图, 在△ABC 中, 分别延长中线BE 、CD 至F 、H, 使EF =BE, DH =CD, 连结AF 、AH . 求证:(1) AF =AH ;(2)点A 、F 、H 三点在同一直线上; (3)HF ∥BC.10.如图, 在△ABC 中, AC ⊥BC, AC =BC, 直线EF 交AC 于F, 交AB 于E, 交BC 的延长线于D, 连结AD 、BF, CF =CD. 求证:BF =AD, BF ⊥AD.11.证明:如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(提示:首先分清已知和求证,然后画出图形,再结合图形用数学符号表示已知和求证)AB E F12.证明:如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等.13.已知:如图,正方形ABCD ,BE =CF ,求证:(1)AE =BF ; (2)AE ⊥BF . 14.已知:E 是正方形ABCD 的边长AD 上一点,BF 平分∠EBC ,交CD 于F ,求证BE=AE+CF.(提示:旋转构造等腰)15.如图,△ABD 和△ACE 是△ABC 外两个等腰直角三角形,∠BAD=∠CAE=900.(1)判断CD 与BE 有怎样的数量关系;(2)探索DC 与BE 的夹角的大小.(3)取BC 的中点M ,连MA ,探讨MA 与DE 的位置关系。

全等三角形难题(含答案.解析)

全等三角形难题(含答案.解析)
∵∠BFE+∠CFE=180o
∴∠D=∠CFE
又∵∠DCE=∠FCE
CE平分∠BCD
CE=CE
∴⊿DCE≌⊿FCE(AAS)
∴CD=CF
∴BC=BF+CF=AB+CD
8. 已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
ED
C
F
AB
AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,
1<AD<3
∴AD=2
1
2.已知:D是AB中点,∠ACB=90°,求证:
CDAB
2
A
D
CB
延长CD与P,使D为CP中点。连接AP,BP
∵DP=DC,DA=DB
∴ACBP为平行四边形
又∠ACB=90
∴平行四边形ACBP为矩形
∴AB=CP=1/2AB
3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
AB=AE,BF=EF,
∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF
∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)。
4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
A
2
1
F
C
D
E
B
过C作CG∥EF交AD的延长线于点G
CG∥EF,可得,∠EFD=CGD
DE=DC
∠FDE=∠GDC(对顶角)
∴△EFD≌△CGD
EF=CG
∠CGD=∠EFD
又,EF∥AB
∴,∠EFD=∠1
∠1=∠2
∴∠CGD=∠2

(完整版)全等三角形难题超级好题汇总

(完整版)全等三角形难题超级好题汇总

1. 如图,已知等边△ ABC,P在AC延长线上一点,以PA为边作等边△ APE,EC延长线交BP于M,连接AM,求证:(1)BP=CE;(2)试证明:EM-PM=AM.3.已知,如图①所示,在△ABC和△ ADE中,AB AC,AD AE,BAC DAE ,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:① BE CD ;② AM AN ;2)在图①的基础上,将△ADE 绕点 A 按顺时针方向旋转180o,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立4、如图1,以△ ABC的边AB 、AC为边分别向外作正方形ABDE和正方形ACFG ,连结EG ,试判断△ABC与△AEG 面积之间的关系,并说明理由.2、点 C 为线段AB 上一点,△ ACM, △ CBN 都是等边三角形,线段AN,MC 交于点E,BM,CN交于点F。

求证:1)AN=MB. (2)将△ ACM 绕点 C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,1)中的结论是否依然成立?(3)AN 与BM 相交所夹锐角是否发生变化。

B图①CB图1)F7、已知 Rt △ ABC 中, AC BC ,∠C 90,D 为AB 边的中点, EDF 90°,EDF 绕 D 点旋转,它的两边分别交 AC 、 CB (或它们的延长线)于 E 、 F.1 当 EDF 绕 D 点旋转到 DE AC 于E时(如图1),易证S △DEF S △CEF S △ ABC .DEF CEF 2 ABC当 EDF 绕 D 点旋转到 DE 和 AC 不垂直时, 在图 2 和图 3 这两种情况下, 上述结论是否成立?若成立, 请给予证明;8. 已知 AC//BD, ∠CAB 和∠ DBA 的平分线 EA 、EB 与 CD 相交于点 E. 求证 :AB=AC+BD.5、如图所示,已知△ ABC 和△ BDE 都是等边三角形,且 A 、 HB 平分∠ AHD ;④∠ AHC=60 °,⑤△ BFG 是等边三角形;⑥ A .3个 B .4 个 C .5个 D .6 个B 、D 三点共线.下列结论:① AE=CD ;② BF=BG ;③ FG ∥AD .其中正确的有()6. 如图所示,△ ABC 是等腰直角三角形,∠ ACB =90°,AD 交 AD 于点 F ,求证:∠ ADC =∠ BDE .是 BC 边上的中线,过 C 作 AD 的垂线,交 AB 于点 E , 、 S △CEF 、 S △ABC 又有怎样的数量关系?请写出你的猜想,不需证明.图1若不成立,S △ DEF 图2图210、已知,如图1,在四边形ABCD 中,BC>AB,AD=DC,BD 平分∠ ABC 。

全等三角形难题集锦

全等三角形难题集锦

1、(2007 年)已知:如图,△ ABC中,∠ ABC=45 °,CD⊥AB于D,BE平分∠ ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。

(!)求证:BF=AC;1(2)求证:CE= BF;2(3)CE与BC 的大小关系如何?试证明你的结论2.(2012?江)已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C 重合),以AD 为边作菱形ADEF(A、D、E、F按逆时针排列),使∠ DAF=60°,连接CF.(1)如图1,当点 D 在边BC上时,求证:① BD=CF;② AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD 之间存在的数量关系,并说明理由;(3)如图3,当点 D 在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD 之间存在的数量关系.3(08中考第24题)如图14-1,在△ABC中,BC边在直线l上,AC⊥BC,且AC = BC.△ EFP的边FP也在直线l 上,边EF与边AC 重合,且EF= FP.(1)在图14-1 中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△ EFP沿直线l 向左平移到图14-2 的位置时,EP交AC 于点Q,连结AP,BQ.猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将△ EFP沿直线l 向左平移到图14-3 的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.4.如图1、图2、图3,△ AOB,△ COD 均是等腰直角三角形,∠ AOB=∠COD=90o,(1)在图1中,AC与BD相等吗,有怎样的位置关系?请说明理由。

全等三角形难题集锦超级好

全等三角形难题集锦超级好

1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ; (2)试证明:EM-PM=AM.2.已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图B E3.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB ,连接AE CD ,. (1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.CGAEDBF4、在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;ADBECF 1A1CADBECF 1A1C5. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .ABCD EF6已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°, EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.A EC F BD图1图3ADFECBADBCE 图2F7、已知AC//BD,∠CAB和∠DBA的平分线EA、EB与CD相交于点E.求证:AB=AC+BD.8.等边△ABC,D为△ABC外一点,∠BDC=120°,BD=DC.∠MDN=60°射线DM与直线AB相交于点M,射线DN与直线AC相交于点N,①当点M、N在边AB、AC上,且DM=DN时,直接写出BM、NC、MN之间的数量关系.②当点M、N在边AB、AC上,且DM≠DN时,猜想①中的结论还成立吗?若成立,请证明.③当点M、N在边AB、CA的延长线上时,请画出图形,并写出BM、NC、MN之间的数量关系.DCBA9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ;(2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;10、如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,AD+AB=2AE ,则∠B 与∠ADC 互补.为什么?ABCD FE 图2DBEAC图十一11如图,在△ABC 中∠ABC,∠ACB 的外角平分线交P.求证:AP 是∠BAC 的角平分线12、如图在四边形ABCD 中,AC 平分∠BAD ,∠ADC +∠ABC =180度,CE ⊥AD 于E ,猜想AD 、AE 、AB 之间的数量关系,并证明你的猜想,EBAC图2DCB13如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD14如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF15如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的边角与全等三角形
一、选择题
1.如图,给出下列四组条件:
①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.
其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组
2、已知图2中的两个三角形全等,则∠α度数是( )
A.72°
B.60°
C.58°
D.50°
3、如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对 B .3对 C .4对
D .5对
A
D
O
4、如图,将Rt △ABC(其中∠B =340
,∠C =900
)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560
B.680
C.1240
D.1800
5、如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35° D .40°
6、尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于
C 、
D ,再分别以点C 、D 为圆心,以大于1
2
CD 长为半径画弧,两弧交于点P ,作射线
OP ,
由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS
7、图(三)、图(四)、图(五)分别表示甲、乙、丙三人由A 地到B 地的路线图。

已知 甲的路线为:A C B 。

乙的路线为:A D E F B ,其中E 为AB 的中点。

丙的路线为:A I
J K B ,其中J 在AB 上,且AJ >JB 。

若符号「」表示「直线前进」,则根据图(三)、图(四)、图(五)的数据,判断三人行进路线
长度的大小关系为何?
O
D
P
C
A B
C A
B B '
A '
340
B 1
C B
A
C 1
C D I F
70︒
70︒
70︒
70︒
70︒
K
(A) 甲=乙=丙 (B) 甲<乙<丙 (C) 乙<丙<甲 (D )丙<乙<甲 。

8、在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论:
①ACD ACE △≌△; ②CDE △为等边三角形; ③
2EH
BE
=;
④EDC EHC S AH S CH =△△. 其中结论正确的是( )
A .只有①②
B .只有①②④
C .只有③④
D .①②③④
9、如图,已知AB AD =,那么添加下列一个条件后, 仍无法判定ABC ADC △≌△的是( )
A .C
B CD = B .BA
C DAC =∠∠ C .BCA DCA =∠∠
D .90B D ==︒∠∠
二、填空题
1、已知△ABC 中,AB=BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个.
2、如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,1C ∠= .
A
B
C C 1
A 1
B 1
D
C B
E A
H
A
B
C
D
第(10)题
3.如图,已知AD AB =,DAC BAE ∠=∠,要使
ABC △≌ADE △,
可补充的条件是
(写出一个即可).
三、解答题
1、如图,在ABC △中,40AB AC BAC =∠=,°,分别以AB AC
,为边作两个等腰直角三角形ABD 和ACE ,使90BAD CAE ∠=∠=°. (1)求DBC ∠的度数; (2)求证:BD CE =.
2、如图1,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(80)-,,直线BC 经过点
(86)B -,,(06)C ,,将四边形OABC 绕点O 按顺时针方向旋转α度得到四边形OA B C ''',此
时直线OA '、直线B C ''分别与直线BC 相交于点P 、Q . (1)四边形OABC 的形状是 , 当90α=°时,
BP
BQ
的值是 ;
3、如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF=BD ,连结BF 。

(1) 求证:BD=CD ;
(2) 如果AB=AC ,试判断四边形AFBD 的形状,并证明你的结论。

A
C
E B
D
4、如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于E ,BF DE ∥,交AG 于F .
求证:AF BF EF =+. 5、如图:已知在ABC △中,
AB AC =,D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥, 垂足分别为E F ,.
(1) 求证:BED CFD △≌△;
(2)若90A ∠=°,求证:四边形DFAE 是正方形.
6、如图10,在△ABC 中,AB =AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .
(1)求证:△ABE ≌△ACE
(2)当AE 与AD 满足什么数量关系时,四边形ABEC 是
菱形?并说明理由.
D
C B
E A
F
D
C B
A E
F
G
7、已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB 的中点,F 为OC 的中点,联结EF (如图所示).
(1)添加条件∠A=∠D ,OEF OFE ∠=∠,求证:AB=DC .
(2)分别将“A D ∠=∠”记为①,“OEF OFE ∠=∠”记为②,“AB DC =”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 命题,命题2是 命题(选择“真”或“假”填入空格).
8、如图,已知点E C ,在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F . 求证:ABC DEF △≌△.
9、如图,在□ABCD 中,点E 是AD 的中点,连接CE 并延长,交BA 的延长线于点F . 求证:FA =AB .
C
E B
F D
A
O
D
C A
B
E
F
10、如图,已知△ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,
AD 与BE 相交于点F .
(1)求证:ABE ∆≌△CAD ; (2)求∠BFD 的度数.
11.图,,AB AC AD BC D AD AE AB DAE DE F =⊥=∠于点,,平分交于点,请你写出图中三对..
全等三角形,并选取其中一对加以证明.

B D
C F A

E。

相关文档
最新文档