图形的相似经典练习题

合集下载

中考数学总复习之图形的相似(15大题)

中考数学总复习之图形的相似(15大题)

中考数学总复习之图形的相似(15大题)1.小明和小红学习了《利用相似三角形测高》一课后,对我国杰出数学家刘徽的著作《海岛算经》非常感兴趣,也想利用相同的方法测量广场上路灯的高度.如图所示,他们在广场上竖立两根长均为1.5米的标杆BC 和DE .测得标杆BC 在路灯AH 下的影长BF 为1米,标杆BF 在路灯AH 下的影长DG 为3米,两根标杆BC 和DE 之间的距离BD 为10.8米.已知AH ⊥HG ,CB ⊥BF ,ED ⊥DG ,点H 、B 、F 、D 、G 五点在同一直线上,求路灯的高AH .2.如图,点D 、E 、F 分别是三角形ABC 的边BC 、CA 、AB 上的点,DE ∥BA ,DF ∥CA . (1)求证:∠FDE =∠A .(2)若BD :DC =1:4,S △CDE =16,求S △ABC .3.(2023•镇海区校级一模)如图,在△ABC 中,BC AC=23,D ,M ,N 分别在直线AB ,直线AC ,直线BC 上.(1)若D 是AB 中点,∠MDN =∠A +∠B ,求MD ND ;(2)若点D ,M ,N 分别在AB ,CA ,CB 的延长线上,且ABBD=34,∠MDN =∠ACB ,求MD ND.4.(2023•工业园区校级模拟)如图,已知BF 是⊙O 的直径,A 为⊙O 上(异于B 、F )一点,过点A 的直线MA 与FB 的延长线交于点M ,G 为BF 上一点,AG 的延长线交⊙O 于点E ,连接BE ,∠MAE +∠AFM =90°. (1)求证:AM ∥EF ;(2)MA =6√2,BE =2,记△AMF 的面积为S 1,记△AEF 的面积为S 2,记△EFG 的面积为S 3,若S 1•S 3=35S 22,求⊙O 的半径.5.(2023•舟山一模)如图,在Rt △ABC 中,∠BAC =90°,∠ABC 的平分线交AC 于点E ,以A 为圆心,AE 为半径作⊙A 交BE 于点F ,直线AB 交⊙A 于G 、H 两点,AF 的延长线交BC 于点D ,作EK ⊥BC ,垂足为点K . (1)求证:AD ⊥BC ; (2)求证:BF BE=AD AC;(3)当BF •BE =BG •BH 且AH =BD 时,求证:BFBG=AC BE.6.(2023春•桐城市月考)如图,平面直角坐标系中点A (﹣3,3),B (﹣5,1),C (﹣2,0),P (a 、b )是△ABC 的边AC 上的任意一点.(1)以点M (﹣1,2)为位似中心,在M 点的右侧把△ABC 按2:1放大得△A 1B 1C 1,画出△A 1B 1C 1;直接写出△A 1B 1C 1的边A 1C 1上与点P (a 、b )的对应点P 1的坐标. (2)将△ABC 绕N (﹣1,﹣2)逆时针旋转90°得△A 2B 2C 2,画出△A 2B 2C 2,求旋转过程中线段BC在平面上扫过部分的面积.(用π表示)7.(2022秋•兴县期末)数学社团的同学们想用边长为20cm的正方形铝板,设计小组会徽下面是“兴趣小组”和“智慧小组”的设计方案,请认真阅读,并解决问题;“兴趣小组”:我们小组设计的会微如图1所示,它是由四个全等的“黄金矩形”组成的正方形图案,在该图案中“矩形的宽与长的比等于矩形的长与正方形的边长之比”.“智慧小组”:我们小组设计的会徽如图2所示,它是由四个全等的直角三角形组成的“赵爽弦图”,其中小正方形的面积为16cm2.解决问题:(1)“兴趣小组”设计的方案中,小正方形的边长约等于cm(精确到0.1 cm).(2)请你求出“智慧小组”设计的方案中,小直角三角形的两条直角边分别是多少cm?8.(2023•蜀山区校级模拟)如图,已知△ABC ,在已知的直角坐标系网格内画出下面图形: (1)画出△ABC 的位似图形△A 1B 1C ,其中点C 为位似中心,且A 1B 1AB=2.(2)画出△ABC 经过平移后得到的△A 2B 2C 2,其中△ABC 的一边上的点K (x ,y ),平移后的对应点为K 2(x +4,y ﹣4).9.(2023春•南岸区校级月考)如图,已知在直角△ABC 中,∠ABC =90°,E 为AC 边上一点,连接BE ,过E 作ED ⊥AC ,交BC 边于点D .(1)如图1,连接AD ,若CE =2,BD =3√2,∠C =45°,求△ADE 的面积; (2)如图2,作∠ABC 的角平分线交AC 于点F ,连接DF ,若∠BDE =∠CDF ,求证:AE +DE =√2BE ;(3)如图3,若∠C =30°,将△BCE 沿BE 折叠,得到△BEF ,且BF 与AC 交于点G ,连接AD ,DF ,点E 在AC 边上运动的过程中,当BF ⊥AC 时,直接写出DF DA的值.10.(2023春•西湖区校级期中)在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,过点D 作DE ⊥AC ,过点F 作DF ⊥BC ,其中AD =185,BC =8. (1)求证:AC 3BC 3=AE BF;(2)求BD 的值.11.(2023•普陀区一模)已知:如图,在四边形ABCD 中,E 为BC 上一点,AB •DE =AE •EC ,∠ABE =∠AED . (1)求证:△ABE ∽△ECD ;(2)如果F 、G 、H 分别是AE 、DE 、AD 的中点,联结BF 、HF 、HG 、CG .求证:BF •HF =CG •HG .12.(2022秋•辽宁期末)如图,在Rt △ABC 中,∠ABC =90°,点D ,E 分别在边BC ,AC 上,联结AD ,BE 交于点G ,且AD =CD . (1)如果BE =AB ,求证:BE •AG =BC •EG ;(2)如果射线CG 交AB 于点P ,且AD •AE =BD •CE ,求证:点P 是AB 中点.13.(2023•大连模拟)如图,在△ABC中,AB=BC,AD⊥BC于点D,AD=3cm,BD=4DC,点P是AB边上一动点(点P不与点A,B重合),过点P作PQ⊥BC于点Q,点M在射线QC上,且QM=BQ.设BQ=xcm,△PQM与△ABD重叠部分的面积为Scm2.(1)求AB的长;(2)求S关于x的函数解析式,并直接写出自变量x的取值范围.14.(2022秋•河西区校级期末)如图,D,E,F是Rt△ABC三边上的点,且四边形CDEF 为矩形,BC=6,∠A=30°.(1)求AB的长;(2)设AE=x,则DE=,EF=(用含x的表达式表示);(3)求矩形CDEF的面积的最大值.15.(2023•宝山区一模)已知:如图,四边形ABCD、ACED都是平行四边形,M是边CD 的中点,联结BM并延长,分别交AC、DE于点F、G.(1)求证:BF2=FM•BG;(2)联结CG,如果AB=√2CG,求证:∠BGC=∠BAC.。

图形的相似练习题及答案

图形的相似练习题及答案

图形的相似一.选择题:1、下列各组数中,成比例的是( )A .-7,-5,14,5B .-6,-8,3,4C .3,5,9,12D .2,3,6,122、如果x:(x+y)=3:5,那么x:y =( )A. B. C. D.3、如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )A 、21B 、31C 、32D 、41 4、下列说法中,错误的是( )(A )两个全等三角形一定是相似形 (B )两个等腰三角形一定相似(C )两个等边三角形一定相似 (D )两个等腰直角三角形一定相似5、如图,RtΔABC 中,∠C =90°,D 是AC 边上一点,AB =5,AC =4,若ΔABC ∽ΔBDC ,则CD = .A .2B .32 C .43 D .94 二、填空题6、已知a =4,b =9,c 是a b 、的比例中项,则c = .7、如图,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)8、如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为9、一公园占地面积约为8000002m ,若按比例尺1∶2000缩小后,其面积约为 2m . 10、如图,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点P 作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.三、解答题 11、如图18—95,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm ,梯上点D 距墙70cm ,BD 长55cm .求梯子的长.(8分) 12、如图,已知AC ⊥AB ,BD ⊥AB ,AO =78cm ,BO =42cm ,CD =159cm ,求CO 和DO .(8分)13、如图,在正方形网格上有111C B A ∆∽222A C B ∆,这两个三角形相似吗?如果相似,求出222111A C B A C B ∆∆和的面积比.(15分)CBA P (第10题) CB AD (第5题)AB C D(第7题)14、已知:如图,在△ABC 中,点D 、E 、F 分别在AC 、AB 、BC 边上,且四边形CDEF 是正方形,AC =3,BC =2,求△ADE 、△EFB 、△ACB 的周长之比和面积之比.(10分)15、如图所示,梯形ABCD 中,AD ∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P 的位置,使得以P,A,D 为顶点的三角形与以P,B,C 为顶点的三角形相似.参考答案一、选择题:二、填空题:6、±6;7、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;8、6m ;9、;10、3三、解答题:11.梯子长为440cm12.cm DO cm CO 65.55,35.103==(提示:设xcm DO =,则()cm x CO -=159,因为AB BD AB AC ⊥⊥,,︒=∠=∠90B A ,BOD AOC ∠=∠,所以△AOC ∽△BDO ,所以DO CO BO AO =即x x -=1594278,所以65.55=x ) 13、相似,相似比为 (提示:,且222111135C A B C A B ∠=︒=∠) 14、周长之比:ADE ∆的周长:EFB ∆的周长:ACB ∆的周长5:2:3=;25:4:9::=∆∆∆ACB EFB ADE S S S .设x EF =,则x AD x EF -==3,.所以5:2:3::=AC EF AD .因为△ADE ∽△EFB ∽△ACB ,所以可求得周长比等于相似比,面积比等于相似比的平方.15、(1)若点A,P,D 分别与点B,C,P 对应,即△APD ∽△BCP, ∴AD AP BP BC=, ∴273AP AP =-, ∴AP 2-7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6, ∴AP AD BC BP=, 又∵∠A=∠B= 90°,∴△APD ∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD ∽△BCP.(2)若点A,P,D 分别与点B,P,C 对应,即△APD ∽△BPC.∴AP AD BP BC =,∴273AP AP =-, ∴AP=145. 1:4,1:2222111=∆∆C B A C B A S S 222112211==B A B A C A C A检验:当AP=145时,由BP=215,AD=2,BC=3,∴AP AD BP BC,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A 1、145、6 处.。

图形相似专题练习含答案解析

图形相似专题练习含答案解析

图形的相似1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,那么MN等于〔〕A.B.C.D.2.图中的两个三角形是位似图形,它们的位似中心是〔〕A.点P B.点O C.点M D.点N3.△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,那么△DEF的周长为〔〕A.2 B.3 C.6 D.544.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为适宜的条件:,使△ADE∽△ABC.〔不再添加其他的字母和线段;只填一个条件,多填不给分!〕5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.〔1〕请写出图中各对相似三角形〔相似比为1除外〕;〔2〕求BP:PQ:QR.6.计算:|3﹣|+〔〕0+〔cos230°〕2﹣4sin60°.7.计算:﹣2sin45°+〔2﹣π〕0﹣.8.计算:|﹣|﹣+〔π﹣4〕0﹣sin30°.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,假设牵引底端B离地面1.5米,求此时风筝离地面高度.〔计算结果准确到0.1米,≈1.732〕10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.〔计算结果准确到0.1米,参考数据:≈1.414,≈1.732.〕12.明媚的一天,数学兴趣小组的同学们去测量一棵树的高度〔这棵树底部可以到达,顶部不易到达〕,他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.〔1〕所需的测量工具是:;〔2〕请在图中画出测量示意图;〔3〕设树高AB的长度为x,请用所测数据〔用小写字母表示〕求出x.13.我国南方局部省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.〔准确到0.1米〕14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.〔1〕求证:AC=AE;〔2〕求AD的长.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E〔,2〕,连接AE,ED.〔1〕求经过A,E,D三点的抛物线的表达式;〔2〕假设以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下列图网格中画出放大后的五边形A′E′D′C′B′;〔3〕经过A′,E′,D′三点的抛物线能否由〔1〕中的抛物线平移得到?请说明理由.16.某县社会主义新农村建立办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段〔村子和公路的宽均不计〕,点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村〔线段CD某处〕,甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村〔线段AB某处〕,请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停顿运动,点Q也随之停顿.设点P,Q运动的时间是t秒〔t>0〕.〔1〕D,F两点间的距离是;〔2〕射线QK能否把四边形CDEF分成面积相等的两局部?假设能,求出t的值;假设不能,说明理由;〔3〕当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;〔4〕连接PG,当PG∥AB时,请直接写出t的值.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.图形的相似参考答案与试题解析1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,那么MN等于〔〕A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM〔三线合一〕,BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,=MN•AC=AM•MC,又S△AMC∴MN==.应选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.图中的两个三角形是位似图形,它们的位似中心是〔〕A.点P B.点O C.点M D.点N【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:点P在对应点M和点N所在直线上,应选A.【点评】位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.考察位似图形的概念.3.△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,那么△DEF的周长为〔〕A.2 B.3 C.6 D.54【考点】相似三角形的性质.【专题】压轴题.【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【解答】解:∵△ABC∽△DEF,相似比为3:1∴△ABC的周长:△DEF的周长=3:1∵△ABC的周长为18∴△DEF的周长为6.应选C.【点评】此题考察对相似三角形性质的理解.〔1〕相似三角形周长的比等于相似比;〔2〕相似三角形面积的比等于相似比的平方;〔3〕相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为适宜的条件:∠B=∠1或,使△ADE∽△ABC.〔不再添加其他的字母和线段;只填一个条件,多填不给分!〕【考点】相似三角形的判定.【专题】压轴题;开放型.【分析】此题属于开放题,答案不唯一.注意此题的条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【解答】解:此题答案不唯一,如∠C=∠2或∠B=∠1或.【点评】此题考察了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似.要注意正确找出两三角形的对应边、对应角,根据判定定理解题.5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.〔1〕请写出图中各对相似三角形〔相似比为1除外〕;〔2〕求BP:PQ:QR.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】几何综合题.【分析】此题的图形比拟复杂,需要仔细分析图形.〔1〕根据平行四边形的性质,可得到角相等.∠BPC=∠BRE,∠BCP=∠E,可得△BCP ∽△BER;〔2〕根据AB∥CD、AC∥DE,可得出△PCQ∽△PAB,△PCQ∽△RDQ,△PAB∽△RDQ.根据相似三角形的性质,对应边成比例即可得出所求线段的比例关系.【解答】解:〔1〕∵四边形ACED是平行四边形,∴∠BPC=∠BRE,∠BCP=∠E,∴△BCP∽△BER;同理可得∠CDE=∠ACD,∠PQC=∠DQR,∴△PCQ∽△RDQ;∵四边形ABCD是平行四边形,∴∠BAP=∠PCQ,∵∠APB=∠CPQ,∴△PCQ∽△PAB;∵△PCQ∽△RDQ,△PCQ∽△PAB,∴△PAB∽△RDQ.〔2〕∵四边形ABCD和四边形ACED都是平行四边形,∴BC=AD=CE,∵AC∥DE,∴BC:CE=BP:PR,∴BP=PR,∴PC是△BER的中位线,∴BP=PR,又∵PC∥DR,∴△PCQ∽△RDQ.又∵点R是DE中点,∴DR=RE.,∴QR=2PQ.又∵BP=PR=PQ+QR=3PQ,∴BP:PQ:QR=3:1:2【点评】此题考察了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.6.计算:|3﹣|+〔〕0+〔cos230°〕2﹣4sin60°.【考点】实数的运算;零指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题.【分析】根据实数的有关运算法那么计算.【解答】解:原式==﹣.【点评】此题考察实数的根本运算,难度适中.7.〔2021•〕计算:﹣2sin45°+〔2﹣π〕0﹣.【考点】实数的运算;零指数幂;负整数指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题;压轴题.【分析】此题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进展计算,然后根据实数的运算法那么求得计算结果.【解答】解:原式==.【点评】此题考察实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;二次根式的化简是根号下不能含有分母和能开方的数.8.计算:|﹣|﹣+〔π﹣4〕0﹣sin30°.【考点】特殊角的三角函数值;绝对值;零指数幂;二次根式的性质与化简.【专题】计算题.【分析】此题涉及零指数幂、特殊角的三角函数值、二次根式化简三个考点.在计算时,需要针对每个考点分别进展计算,然后根据实数的运算法那么求得计算结果.【解答】解:原式=﹣3+1﹣=﹣2.【点评】此题考察实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式、绝对值等考点的运算.注意:任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,假设牵引底端B离地面1.5米,求此时风筝离地面高度.〔计算结果准确到0.1米,≈1.732〕【考点】解直角三角形的应用﹣仰角俯角问题.【专题】计算题;压轴题.【分析】由题可知,在直角三角形中,知道角以及斜边,求对边,可以用正弦值进展解答.【解答】解:在Rt△BCD中,CD=BC×sin60°=20×=10又DE=AB=1.5,∴CE=CD+DE=CD+AB=10+1.5≈18.8答:此时风筝离地面的高度约是18.8米.【点评】此题考察直角三角形知识在解决实际问题中的应用.10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.〔计算结果准确到0.1米,参考数据:≈1.414,≈1.732.〕【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形:根据题意构造直角三角形;此题涉及到两个直角三角形Rt△BCD、Rt△ACD,应利用其公共边DC构造方程关系式,进而可解即可求出答案.【解答】解:在Rt△BCD中,tan45°==1,∴CD=BC.在Rt△ACD中,tan30°=,∴.∴.∴3CD=CD+10.∴CD=+5≈13.66〔米〕∴条幅顶端D点距离地面的高度为13.66+1.44=15.1〔米〕.【点评】此题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.12.明媚的一天,数学兴趣小组的同学们去测量一棵树的高度〔这棵树底部可以到达,顶部不易到达〕,他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.〔1〕所需的测量工具是:皮尺,标杆;〔2〕请在图中画出测量示意图;〔3〕设树高AB的长度为x,请用所测数据〔用小写字母表示〕求出x.【考点】相似三角形的应用.【专题】方案型;开放型.【分析】树比拟高不易直接到达,因而可以利用三角形相似解决,利用树在下出现的影子来解决.【解答】解:〔1〕皮尺,标杆;〔2〕测量示意图如下图;〔3〕如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.【点评】此题运用相似三角形的知识测量高度及考察学生的实践操作能力,应用所学知识解决问题的能力.此题答案有多种,测量方案也有多种,如〔1〕皮尺、标杆、平面镜;〔2〕皮尺、三角尺、标杆.13.我国南方局部省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.〔准确到0.1米〕【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形,据题意构造直角三角形;此题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:作BD⊥AC于D.在Rt△ADB中,sin∠ABD=.∴AD=AB•sin∠ABD=15×sin21°≈5.38米.〔3分〕∵cos∠ABD=.∴BD=AB•cos∠ABD=15×c os21°≈14.00米.〔5分〕在Rt△BDC中,tan∠CBD=.∴CD=BD•tan∠CBD≈14.00×tan38°≈10.94米.〔8分〕∵cos∠CBD=.∴BC=≈≈17.77米〔10分〕∴AD+CD+BC≈5.38+10.94+17.77=34.09≈34.1米〔11分〕答:折断前发射塔的高约为34.1米.〔12分〕注意:按以下方法进展近似计算视为正确,请相应评分.①假设到最后再进展近似计算结果为:AD+CD+BC=34.1;②假设解题过程中所有三角函数值均先准确到0.01,那么近似计算的结果为:AD+CD+BC≈5.40+10.88+17.66=33.94≈33.9.【点评】此题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.〔1〕求证:AC=AE;〔2〕求AD的长.【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【专题】计算题;压轴题.【分析】〔1〕由圆O的圆周角∠ACB=90°,根据90°的圆周角所对的弦为圆的直径得到AD为圆O的直径,再根据直径所对的圆周角为直角可得三角形ADE为直角三角形,又AD是△ABC的角平分线,可得一对角相等,而这对角都为圆O的圆周角,根据同圆或等圆中,相等的圆周角所对的弦相等可得CD=ED,利用HL可证明直角三角形ACD与AED全等,根据全等三角形的对应边相等即可得证;〔2〕由三角形ABC为直角三角形,根据AC及CB的长,利用勾股定理求出AB的长,由第一问的结论AE=AC,用AB﹣AE可求出EB的长,再由〔1〕∠AED=90°,得到DE与AB垂直,可得三角形BDE为直角三角形,设DE=CD=x,用CB﹣CD表示出BD=12﹣x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为CD的长,在直角三角形ACD中,由AC及CD的长,利用勾股定理即可求出AD的长.【解答】解:〔1〕∵∠ACB=90°,且∠ACB为圆O的圆周角〔〕,∴AD为圆O的直径〔90°的圆周角所对的弦为圆的直径〕,∴∠AED=90°〔直径所对的圆周角为直角〕,又AD是△ABC的∠BAC的平分线〔〕,∴∠CAD=∠EAD〔角平分线定义〕,∴CD=DE〔在同圆或等圆中,相等的圆周角所对的弦相等〕,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED〔HL〕,∴AC=AE〔全等三角形的对应边相等〕;〔2〕∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,由〔1〕得到∠AED=90°,那么有∠BED=90°,设CD=DE=x,那么DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即〔12﹣x〕2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==.【点评】此题考察了圆周角定理,勾股定理,以及全等三角形的判定与性质,利用了转化的思想,此题的思路为:根据圆周角定理得出直角,利用勾股定理构造方程来求解,从而得到解决问题的目的.灵活运用圆周角定理及勾股定理是解此题的关键.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E〔,2〕,连接AE,ED.〔1〕求经过A,E,D三点的抛物线的表达式;〔2〕假设以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下列图网格中画出放大后的五边形A′E′D′C′B′;〔3〕经过A′,E′,D′三点的抛物线能否由〔1〕中的抛物线平移得到?请说明理由.【考点】作图﹣位似变换;二次函数图象与几何变换;待定系数法求二次函数解析式;矩形的性质.【专题】压轴题;网格型.【分析】〔1〕A,E,D三点坐标,可用一般式来求解;〔2〕延长OA到A′,使OA′=3OA,同理可得到其余各点;〔3〕根据二次项系数是否一样即可判断两个函数是否由平移得到.【解答】解:〔1〕设经过A,E,D三点的抛物线的表达式为y=ax2+bx+c∵A〔1,〕,E〔,2〕,D〔2,〕〔1分〕∴,解之,得∴过A,E,D三点的抛物线的表达式为y=﹣2x2+6x﹣.〔4分〕〔2〕如图.〔7分〕〔3〕不能,理由如下:〔8分〕设经过A′,E′,D′三点的抛物线的表达式为y=a′x2+b′x+c′∵A′〔3,〕,E′〔,6〕,D′〔6,〕∴,解之,得a=﹣2,,∴a≠a′∴经过A′,E′,D′三点的抛物线不能由〔1〕中的抛物线平移得到.〔8分〕【点评】一般用待定系数法来求函数解析式;位似变化的方法应熟练掌握;抛物线平移不改变a的值.16.某县社会主义新农村建立办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段〔村子和公路的宽均不计〕,点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村〔线段CD某处〕,甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村〔线段AB某处〕,请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?【考点】作图—应用与设计作图.【专题】压轴题;方案型.【分析】〔1〕由题意可得,供水站建在点M处,根据垂线段最短、两点之间线段最短,可知铺设到甲村某处和乙村某处的管道长度之和的最小值为MB+MD,求值即可;〔2〕作点M关于射线OE的对称点M',那么MM'=2ME,连接AM'交OE于点P,且证明P点与D点重合,即AM'过D点.求出AM'的值即是铺设到点A和点M处的管道长度之和最小的值;〔3〕作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM 于点H,连接GM,那么GM=GM',可证得N,D两点重合,即M'N过D点.求GM+GD=M'D的值就是最小值.【解答】解:方案一:由题意可得:∵A在M的正西方向,∴AM∥OE,∠BAM=∠BOE=30°,又∵∠BMA=60°∴MB⊥OB,∴点M到甲村的最短距离为MB,〔1分〕∵点M到乙村的最短距离为MD,∴将供水站建在点M处时,管道沿MD,MB线路铺设的长度之和最小,即最小值为MB+MD=3+〔km〕;〔3分〕方案二:如图①,作点M关于射线OE的对称点M',那么MM'=2ME,连接AM'交OE于点P,PE∥AM,PE=AM,∵AM=2BM=6,∴PE=3,〔4分〕在Rt△DME中,∵DE=DM•sin60°=×=3,ME=DM=×,∴PE=DE,∴P点与D点重合,即AM'过D点,〔6分〕在线段CD上任取一点P',连接P'A,P′M,P'M',那么P'M=P′M',∵AP'+P'M'>AM',∴把供水站建在乙村的D点处,管道沿DA,DM线路铺设的长度之和最小,即最小值为AD+DM=AM'=;〔7分〕方案三:作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM于点H,连接GM,那么GM=GM',∴M'N为点M'到OE的最短距离,即M'N=GM+GN在Rt△M'HM中,∠MM'N=30°,MM'=6,∴MH=3,∴NE=MH=3,∵DE=3,∴N,D两点重合,即M'N过D点,在Rt△M'DM中,DM=,∴M'D=〔10分〕在线段AB上任取一点G',过G'作G'N'⊥OE于N'点,连接G'M',G'M,显然G'M+G'N'=G'M'+G'N'>M'D,∴把供水站建在甲村的G处,管道沿GM,GD线路铺设的长度之和最小,即最小值为GM+GD=M'D=,〔11分〕综上,∵3+<,∴供水站建在M处,所需铺设的管道长度最短.〔12分〕【点评】此题主要考察线路最短问题的作图和求值问题,有一定的难度.17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停顿运动,点Q也随之停顿.设点P,Q运动的时间是t秒〔t>0〕.〔1〕D,F两点间的距离是25 ;〔2〕射线QK能否把四边形CDEF分成面积相等的两局部?假设能,求出t的值;假设不能,说明理由;〔3〕当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;〔4〕连接PG,当PG∥AB时,请直接写出t的值.【考点】相似三角形的判定与性质;三角形中位线定理;矩形的判定与性质.【专题】压轴题.【分析】〔1〕由中位线定理即可求出DF的长;〔2〕连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF 分为面积相等的两局部,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值;〔3〕①当点P在EF上〔2≤t≤5时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值;②当点P在FC上〔5≤t≤7〕时,PB=PF+BF就可以得到;〔4〕当PG∥AB时四边形PHQG是矩形,由此可以直接写出t.【解答】解:〔1〕Rt△ABC中,∠C=90°,AB=50,∵D,F是AC,BC的中点,∴DF为△ABC的中位线,∴DF=AB=25故答案为:25.〔2〕能.如图1,连接DF,过点F作FH⊥AB于点H,∵D,F是AC,BC的中点,∴DE∥BC,EF∥AC,四边形CDEF为矩形,∴QK过DF的中点O时,即过矩形CDEF的中点,QK把矩形CDEF分为面积相等的两局部此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.故t==.〔3〕①当点P在EF上〔2≤t≤5〕时,如图2,QB=4t,DE+EP=7t,由△PQE∽△BCA,得.∴t=4;②当点P在FC上〔5≤t≤7〕时,如图3,QB=4t,从而PB===5t,由PF=7t﹣35,BF=20,得5t=7t﹣35+20.解得t=7;〔4〕如图4,t=1;如图5,t=7.〔注:判断PG∥AB可分为以下几种情形:当0<t≤2时,点P下行,点G上行,可知其中存在PG∥AB的时刻,如图4;此后,点G继续上行到点F时,t=4,而点P却在下行到点E再沿EF上行,发现点P在EF上运动时不存在PG∥AB;5≤t≤7当时,点P,G均在FC上,也不存在PG∥AB;由于点P比点G先到达点C并继续沿CD下行,所以在7<t<8中存在PG∥AB的时刻,如图5当8≤t≤10时,点P,G均在CD上,不存在PG∥AB〕【点评】此题主要运用了相似三角形性质,对应边的比相等,正确找出题目中的相似三角形是解题的关键.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.【考点】相似三角形的判定;平行四边形的性质.【专题】压轴题;开放型.【分析】根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.【解答】解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.〔3分〕如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.〔6分〕∴△AEF∽△BEC.〔7分〕【点评】考察了平行线的性质及相似三角形的判定定理.。

判断图形相似练习题

判断图形相似练习题

判断图形相似练习题在几何学中,判断图形相似是一个非常重要的概念。

相似的图形具有相同的形状但尺寸不同,通过比较它们的边长比例可以得出它们是否相似。

下面,我们将提供一些图形相似的练习题,帮助你巩固对这一概念的理解。

练习题1:给定两个三角形ABC和DEF,已知∠A=∠D,∠B=∠E,边长比例为AB:DE=1:2。

判断这两个三角形是否相似。

解答1:根据题目已知条件可得∠A=∠D,∠B=∠E,以及边长比例AB:DE=1:2。

根据相似三角形的性质,如果两个三角形的对应角相等且相应边的比例相等,那么它们是相似的。

练习题2:给定两个矩形ABCD和EFGH,已知AB=3cm,DC=6cm,EF=4cm,判断这两个矩形是否相似。

解答2:根据矩形的性质,对角线相等的四边形是矩形。

所以我们可以先计算两个矩形的对角线长度:AC和EG。

根据勾股定理,AC的长度为√(AB^2+DC^2)=√(3^2+6^2)=√45≈6.71cm;EG的长度为√(EF^2+FG^2)=√(4^2+6^2)=√52≈7.21cm。

由于AC和EG的长度不相等,因此两个矩形并不相似。

练习题3:给定两个圆O和P,已知O的半径为4cm,P的半径为8cm,判断这两个圆是否相似。

解答3:由于圆没有边长之类的概念,我们不能直接用边长比例判断两个圆是否相似。

相似的圆是指半径相等或者半径的比例相等的圆。

在这个例子中,圆O的半径为4cm,圆P的半径为8cm。

它们的半径之比为4:8=1:2。

根据相似圆的定义,我们可以得出结论:圆O和圆P是相似的。

通过以上练习题的解答,我们对判断图形相似练习题有了更深入的理解。

相似的图形有着相同的形状,但尺寸可能不同。

通过比较对应角的相等性以及边长比例的关系,我们能够准确判断图形是否相似。

熟练掌握这些概念对于几何学的学习和实际应用非常重要。

图形的相似经典测试题

图形的相似经典测试题

图形的相似经典测试题一、选择题1.如图,点A,B是双曲线18yx=图象上的两点,连接AB,线段AB经过点O,点C 为双曲线kyx=在第二象限的分支上一点,当ABCV满足AC BC=且:13:24AC AB=时,k的值为().A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF =∠OAE ,∴△CFO ∽△OEA , ∴2()COF AOE S OCS OA∆∆=, ∵CA :AB =13:24,AO =OB ,∴CA :OA =13:12,∴CO :OA =5:12,∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0,∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.2.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且∠CDE =30°.设AD =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】C【解析】【分析】 根据题意可得出4,23,AB BC ==4,23,BD x CE y =-=-然后判断△CDE ∽△CBD ,继而利用相似三角形的性质可得出y 与x 的关系式,结合选项即可得出答案.【详解】解:∵∠A =60°,AC =2, ∴4,23,AB BC ==4,23,BD x CE y =-=-在△ACD 中,利用余弦定理可得CD 2=AC 2+AD 2﹣2AC •AD cos ∠A =4+x 2﹣2x ,故可得242CD x x =-+,又∵∠CDE =∠CBD =30°,∠ECD =∠DCB (同一个角),∴△CDE ∽△CBD ,即可得,CE CD CD CB= 即222342,2342yx x x x --+=-+ 故可得: 23343.633y x x =-++ 即呈二次函数关系,且开口朝下. 故选C .【点睛】考查解直角三角形,相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.3.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,则下列结论正确的是( )A .AD DE DB BC= B .BF EF BC AB = C .AE EC FC DE = D .EF BF AB BC= 【答案】C【解析】【分析】 根据相似三角形的判定与性质逐项分析即可.由△ADE ∽△ABC ,可判断A 的正误;由△CEF∽△CAB ,可判定B 错误;由△ADE ~△EFC ,可判定C 正确;由△CEF ∽△CAB ,可判定D 错误.【详解】解:如图所示:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∴△ADE ∽△ABC , ∴DE AD AD BC AB DB=≠, ∴答案A 错舍去;∵EF ∥AB ,∴△CEF ∽△CAB , CF EF BC A B B BF C=≠ ∴答案B 舍去∵∠ADE =∠B ,∠CFE =∠B ,∴∠ADE =∠CFE ,又∵∠AED =∠C ,∴△ADE ~△EFC , ∴AE DE EC FC=,C 正确; 又∵EF ∥AB , ∴∠CEF =∠A ,∠CFE =∠B ,∴△CEF ∽△CAB , ∴EF CE FC BF AB AC BC BC==≠, ∴答案D 错舍去;故选C .【点睛】 本题主要考查相似三角形的判定与性质,熟练掌握两平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似是解题的关键.4.如图,矩形ABCD 中,AB =8,AD =4,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连接CF ,则△CEF 面积的最小值是( )A .16B .15C .12D .11【答案】B【解析】【分析】 过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE== G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+=故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.5.如图,已知在平面直角坐标系中,点O 是坐标原点,AOB V 是直角三角形,90AOB ∠=︒,2OB OA =,点B 在反比例函数2y x =上,若点A 在反比例函数k y x=上,则k 的值为( )A .12B .12-C .14D .14- 【答案】B【解析】【分析】通过添加辅助线构造出相似三角形,再根据相似三角形的性质可求得1,2x A x ⎛⎫-⎪⎝⎭,然后由点的坐标即可求得答案.【详解】解:过点B 作BE x ⊥于点E ,过点A 作AF x ⊥于点F ,如图:∵点B 在反比例函数2y x =上 ∴设2,B x x ⎛⎫ ⎪⎝⎭∴OE x =,2BE x=∵90AOB ∠=︒ ∴90AOD BOD ∠+∠=︒∴90BOE AOF ∠+∠=︒∵BE x ⊥,AF x ⊥∴90BEO OFA ∠=∠=︒∴90OAF AOF ∠+∠=︒∴BOE OAF ∠=∠∴BOE OAF V V ∽∵2OB OA = ∴12OF AF OA BE OE BO === ∴121122OF BE x x =⋅=⋅=,11222x AF OE x =⋅=⋅= ∴1,2x A x ⎛⎫- ⎪⎝⎭ ∵点A 在反比例函数k y x=上 ∴12x k x=- ∴12k =-. 故选:B【点睛】本题考查了反比例函数与相似三角形的综合应用,点在函数图象上则点的坐标就满足函数解析式,结合已知条件能根据相似三角形的性质求得点A 的坐标是解决问题的关键.6.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90°得到ABF ∆,连接EF ,则cos EFC ∠的值是 ( )A 171365B 61365C 71525D .617【答案】A【解析】【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明AEH EMG V :V ,则有13EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF∠=即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则90AHG MGE ∠=∠=︒,∵四边形ABCD 是正方形,∴3,90AD AB ABC C D ==∠=∠=∠=︒ ,∴四边形AHGD,BHEN,ENCG 都是矩形.由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=︒====,90AEH MEG EMG MEG ∴∠+∠=∠+∠=︒ ,AEH EMG ∴∠=∠,AEH EMG ∴V :V ,13EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+在Rt AEH V 中,222AH EH AE +=Q ,222(1)(3)3x x ∴++= , 解得45x =或1x =-(舍去), 125EH BN ∴==,65CG CD DG EN =-== . 1BF DM ==Q 175FN BF BN ∴=+=. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=,17cos 1365FN EFC EF ∴∠==. 故选:A .【点睛】本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.7.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)【答案】D【解析】【分析】【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.8.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSSVV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°3∴13 BCOAODSSVV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.9.如果两个相似正五边形的边长比为1:10,则它们的面积比为()A.1:2 B.1:5 C.1:100 D.1:10【答案】C【解析】根据相似多边形的面积比等于相似比的平方,由两个相似正五边形的相似比是1:10,可知它们的面积为1:100.故选:C.点睛:此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.10.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)【答案】D【解析】试题分析:根据位似的性质,缩小后的点在原点的同侧,为(-2,1),然后求在另一侧为(2,-1).故选D考点:位似变换11.把Rt ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.扩大为原来的3倍B.缩小为原来的13C.扩大为原来的9倍D.不变【答案】D【解析】【分析】根据相似三角形的性质解答.【详解】三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:D.【点睛】此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.12.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则较大多边形的周长为 )A.48 cm B.54 cm C.56 cm D.64 cm【答案】A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=48.大多边形的周长为48cm.故选A.考点:相似多边形的性质.13.要做甲、乙两个形状相同(相似)的三角形框架,已知甲三角形框架三边的长分别为50 cm、60 cm、80 cm,乙三角形框架的一边长为20 cm,则符合条件的乙三角形框架共有().A.1种B.2种C.3种D.4种【答案】C【解析】试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.故选:C.点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.14.如图,四边形ABCD和四边形AEFG均为正方形,连接CF,DG,则DGCF=()A.23B.2C.33D.32【答案】B 【解析】【分析】连接AC和AF,证明△DAG∽△CAF可得DGCF的值.【详解】连接AC和AF,则2 AD AGAC AF==∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴2 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.15.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.16.已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于()A.(25+2)cm B.(25﹣2)cm C.(5+1)cm D.(5﹣1)cm 【答案】B【解析】【分析】根据黄金分割的定义进行作答.【详解】由黄金分割的定义知,51MPMN-=,又MN=4,所以,MP=25- 2. 所以答案选B.【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义是本题解题关键.17.如图,某河的同侧有A,B两个工厂,它们垂直于河边的小路的长度分别为2AC km=,3BD km=,这两条小路相距5km.现要在河边建立一个抽水站,把水送到A,B两个工厂去,若使供水管最短,抽水站应建立的位置为()A.距C点1km处B.距C点2km处C.距C点3km处D.CD的中点处【答案】B【解析】【分析】作出点A关于江边的对称点E,连接EB交CD于P,则PA PB PE PB EB+=+=,根据两点之间线段最短,可知当供水站在点P处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得 PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.18.如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A .∠AED =∠BB .∠BDE +∠C =180° C .AD •BC =AC •DED .AD •AB =AE •AC【答案】C【解析】【分析】 A 、根据有两组角对应相等的两个三角形相似,进行判断即可;B :根据题意可得到∠ADE=∠C ,根据有两组角对应相等的两个三角形相似,进行判断即可;C 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可;D 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可.【详解】解:A 、由∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ;B 、由∠BDE+∠C=180°,∠ADE+∠BDE=180°,得∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ;C 、由AD•BC=AC•DE ,得不能判断△ADE ∽△ACB,必须两组对应边的比相等且夹角对应相等的两个三角形相似.D 、由AD•AB=AE•AC 得,∠A=∠A ,故能确定△ADE ∽△ACB ,故选:C .【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角); 有两组角对应相等的两个三角形相似.19.如图,已知AOB ∆和11A OB ∆是以点O 为位似中心的位似图形,且AOB ∆和11A OB ∆的周长之比为1:2,点B 的坐标为()1,2-,则点1B 的坐标为( ).A .()2,4-B .()1,4-C .()1,4-D .()4,2-【答案】A【解析】【分析】 设位似比例为k ,先根据周长之比求出k 的值,再根据点B 的坐标即可得出答案.【详解】设位似图形的位似比例为k则1111,,OA kOA OB kOB A B kAB ===△AOB Q 和11A OB △的周长之比为1:2111112OA OB AB OA OB A B ++∴=++,即12OA OB AB kOA kOB kAB ++=++ 解得2k =又Q 点B 的坐标为(1,2)-∴点1B 的横坐标的绝对值为122-⨯=,纵坐标的绝对值为224⨯=Q 点1B 位于第四象限∴点1B 的坐标为(2,4)-故选:A .【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.20.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为()A.9 B.12 C.14 D.18【答案】A【解析】【分析】如图,BC=2m,CE=12m,AB=1.5m,利用题意得∠ACB=∠DCE,则可判断△ACB∽△DCE,然后利用相似比计算出DE的长.【详解】解:如图,BC=2m,CE=12m,AB=1.5m,由题意得∠ACB=∠DCE,∵∠ABC=∠DEC,∴△ACB∽△DCE,∴AB BCDE CE=,即1.5212DE=,∴DE=9.即旗杆的高度为9m.故选A.【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.。

相似测试题及答案

相似测试题及答案

相似测试题及答案一、选择题1. 下列哪项不是相似图形的特征?A. 形状相同B. 面积相等C. 边长成比例D. 角度相同答案:B2. 如果两个图形相似,那么它们的对应角:A. 相等B. 不相等C. 可能相等也可能不相等D. 无法确定答案:A二、填空题1. 相似图形的对应边的比值叫做________。

答案:相似比2. 两个相似多边形的面积比等于它们的相似比的________。

答案:平方三、判断题1. 两个图形相似,它们的周长比等于它们的相似比。

()答案:√2. 如果两个图形的对应边长比为2:3,那么它们的面积比为4:9。

()答案:√四、简答题1. 请简述相似图形的定义。

答案:相似图形是指两个图形的对应角相等,对应边的比值相等的图形。

2. 相似图形的性质有哪些?答案:相似图形的性质包括:对应角相等,对应边的比值相等,面积比等于相似比的平方,周长比等于相似比。

五、计算题1. 若两个相似三角形的相似比为3:4,求它们的面积比。

答案:面积比为9:16。

2. 已知一个三角形的边长为3, 4, 5,另一个相似三角形的边长为6, 8, 10,求这两个三角形的面积比。

答案:面积比为1:4。

六、论述题1. 论述相似图形在实际生活中的应用。

答案:相似图形在实际生活中有广泛的应用,例如在建筑设计中,设计师会使用相似图形来保持建筑的比例和风格;在地图制作中,相似图形用于表示不同比例尺的地图;在服装设计中,相似图形用于保持服装的款式和比例等。

2. 论述如何判断两个图形是否相似。

答案:判断两个图形是否相似,首先要检查它们的对应角是否相等,然后检查它们的对应边的比值是否相等。

如果这两个条件都满足,那么这两个图形就是相似的。

此外,还可以通过面积比来判断,如果两个图形的面积比等于它们边长比的平方,那么它们也是相似的。

相似图形练习题

相似图形练习题

相似图形练习题一、选择题1. 两个图形相似,下列说法正确的是:A. 它们的对应角相等B. 它们的对应边成比例B. 它们是全等图形D. 它们的形状相同,大小不同2. 相似图形的相似比是:A. 任意两个对应边的比例B. 对应高的比C. 对应角的比D. 对应边长的平方比3. 如果两个图形相似,那么它们的周长比为:A. 面积比B. 相似比C. 相似比的平方D. 相似比的立方4. 相似图形的面积比是:A. 周长比B. 相似比C. 相似比的平方D. 相似比的立方5. 下列哪个条件不能保证两个图形相似:A. 对应角相等B. 对应边成比例C. 面积相等D. 周长相等二、填空题6. 若两个图形的相似比为k,则它们的面积比为______。

7. 一个图形放大或缩小后,得到的新图形与原图形______。

8. 若两个三角形的对应角相等,且对应边的比相等,则这两个三角形______。

9. 在相似图形中,对应线段的长度比等于______。

10. 相似图形的周长比等于它们的______。

三、判断题11. 两个图形相似,它们的对应边长一定相等。

(对/错)12. 如果两个图形的周长比为2:3,则它们的面积比为4:9。

(对/错)13. 相似图形的对应角一定相等。

(对/错)14. 相似比为1的两个图形是全等图形。

(对/错)15. 两个图形相似,它们的面积比等于周长比的平方。

(对/错)四、简答题16. 描述如何判断两个三角形是否相似。

17. 解释相似比和面积比之间的关系。

18. 给出两个相似图形的周长比和面积比的例子,并解释它们之间的关系。

19. 如果一个图形的边长扩大了2倍,它的面积会如何变化?20. 为什么说相似图形的面积比是相似比的平方?五、计算题21. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,求三角形ABC的面积与三角形DEF的面积之比。

22. 已知两个相似圆形的半径分别为3cm和6cm,求它们的面积比。

23. 如果一个矩形的长和宽分别扩大了1.5倍,它的面积扩大了多少倍?24. 假设一个图形的周长扩大了2倍,求它的面积扩大了多少倍。

相似图形测试题及答案

相似图形测试题及答案

相似图形测试题及答案相似图形是几何学中一个重要的概念,它关注的是形状和大小之间的关系。

相似图形题目常出现在数学考试中,考察学生对比较形状以及计算比例的能力。

下面是一些常见的相似图形测试题及其答案,帮助大家更好地理解和应用相似图形的概念。

题目1:已知三角形ABC与三角形DEF相似,且AB:DE = 2:3,BC:EF = 4:5,AC:DF = 6:7。

如果三角形ABC的周长为30cm,求三角形DEF的周长。

解析:根据相似图形的定义,我们知道相似的两个三角形各边的对应边长之比相等。

假设三角形DEF的周长为x cm,则有:DE/AB = EF/BC = DF/AC根据已知比例关系,代入数值得:DE/2 = EF/4 = DF/6解方程得:DE = 2/3 * AB = 2/3 * 10cm = 6.67cmEF = 4/5 * BC = 4/5 * 20cm = 16cmDF = 6/7 * AC = 6/7 * 24cm = 20.57cm所以,三角形DEF的周长为6.67cm + 16cm + 20.57cm = 43.24cm。

答案:三角形DEF的周长为43.24cm。

题目2:已知矩形ABCD与矩形EFGH相似,且AB = 6cm,BC =8cm,EF = 9cm。

求矩形EFGH的周长和面积。

解析:根据相似图形的定义,我们知道相似的两个矩形各边的对应边长之比相等。

假设矩形EFGH的周长为x cm,则有:EF/AB = FG/BC = EH/CD代入已知数值得:9/6 = FG/8解方程得:FG = (9/6) * 8 = 12cm同理可得:EH = (9/6) * 6cm = 9cm根据矩形周长的计算公式,矩形EFGH的周长为两条边之和的两倍,即:周长 = 2 * (FG + EH) = 2 * (12cm + 9cm) = 2 * 21cm = 42cm另外,矩形的面积等于两条相邻边长的乘积,即:面积 = FG * EH = 12cm * 9cm = 108cm^2答案:矩形EFGH的周长为42cm,面积为108cm^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 在平行四边形ABCD中,过点B作BE⊥CD于E,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD;
(2)若AB=5,AD=3,∠BAE=30°,求BF的长.
2 (2005•绍兴)E、F为平行四边形ABCD的对角线DB上三等分点,连AE并延长交DC于P,连PF并延长交AB于Q,如图①
(1)在备用图中,画出满足上述条件的图形,记为图②,试用刻度尺在图①、②中量得AQ、
(长度单位:cm)
由上表可猜测AQ、BQ间的关系是AQ=3QB;
(2)上述(1)中的猜测AQ、BQ间的关系成立吗?为什么?
(3)若将平行四边形ABCD改为梯形(AB∥CD)其他条件不变,此时(1)中猜测AQ、BQ 间的关系是否成立?(不必说明理由)
3 如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,
(1)若AB=6,求线段BP的长;
(2)观察图形,是否有三角形与△ACQ全等?并证明你的结论.
4 AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,CF与AB交于点G,若CF=15cm,求GF之长.。

相关文档
最新文档