相似的图形练习题及答案

合集下载

图形的相似经典测试题及答案解析

图形的相似经典测试题及答案解析

∵四边形 ABCD 是正方形
∴AE=BF,AD=AB,∠EAD=∠B= 90
∴△ADE≌△BAF
∴∠ADE=∠BAF,∠AED=∠BFA
∵∠DAO+∠FAB= 90 ,∠FAB+∠BFA= 90 ,
∴∠DAO=∠BFA,
∴∠DAO=∠AED
∴△AOD∽△EAD
∴ AO AE 1 DO AD 2
故选:D
A.1.5cm 【答案】B 【解析】 【分析】 【详解】
B.1.2cm
C.1.8cm
D.2cm
由图 2 知,点 P 在 AC、CB 上的运动时间时间分别是 3 秒和 4 秒,
∵点 P 的运动速度是每秒 1cm ,
∴AC=3,BC=4.
∵在 Rt△ABC 中,∠ACB=90°,
∴根据勾股定理得:AB=5.
AE / / AB,
DAE DAB ,

AD 2 AD
SADE SABD
,即
AD 2 AD 1
2
9 8
9 16

解得 AD 3 或 AD 3 (舍), 7
故选: B . 【点睛】 本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的 性质、相似三角形的判定与性质等知识点.
3.如图,将 ABC 沿 BC 边上的中线 AD 平移到 ABC 的位置.已知 ABC 的面积为 16,阴影部分三角形的面积 9.若 AA 1,则 AD 等于( )
A.2
【答案】B 【解析】
B.3
C.4
D. 3 2
【分析】
由 S△ABC=16、S△A′EF=9 且 AD 为 BC 边的中线知
SADE
解得:{
5.

图形的相似专题练习含答案解析

图形的相似专题练习含答案解析

图形的相似1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于()A.B.C.D.2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.544.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.6.计算:|3﹣|+()0+(cos230°)2﹣4sin60°.7.计算:﹣2sin45°+(2﹣π)0﹣.8.计算:|﹣|﹣+(π﹣4)0﹣sin30°.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732.)12.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.13.我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.(精确到0.1米)14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED.(1)求经过A,E,D三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.16.某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q 也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.图形的相似参考答案与试题解析1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于()A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,=MN•AC=AM•MC,又S△AMC∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:点P在对应点M和点N所在直线上,故选A.【点评】位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.考查位似图形的概念.3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【考点】相似三角形的性质.【专题】压轴题.【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【解答】解:∵△ABC∽△DEF,相似比为3:1∴△ABC的周长:△DEF的周长=3:1∵△ABC的周长为18∴△DEF的周长为6.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:∠B=∠1或,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)【考点】相似三角形的判定.【专题】压轴题;开放型.【分析】此题属于开放题,答案不唯一.注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【解答】解:此题答案不唯一,如∠C=∠2或∠B=∠1或.【点评】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似.要注意正确找出两三角形的对应边、对应角,根据判定定理解题.5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】几何综合题.【分析】此题的图形比较复杂,需要仔细分析图形.(1)根据平行四边形的性质,可得到角相等.∠BPC=∠BRE,∠BCP=∠E,可得△BCP ∽△BER;(2)根据AB∥CD、AC∥DE,可得出△PCQ∽△PAB,△PCQ∽△RDQ,△PAB∽△RDQ.根据相似三角形的性质,对应边成比例即可得出所求线段的比例关系.【解答】解:(1)∵四边形ACED是平行四边形,∴∠BPC=∠BRE,∠BCP=∠E,∴△BCP∽△BER;同理可得∠CDE=∠ACD,∠PQC=∠DQR,∴△PCQ∽△RDQ;∵四边形ABCD是平行四边形,∴∠BAP=∠PCQ,∵∠APB=∠CPQ,∴△PCQ∽△PAB;∵△PCQ∽△RDQ,△PCQ∽△PAB,∴△PAB∽△RDQ.(2)∵四边形ABCD和四边形ACED都是平行四边形,∴BC=AD=CE,∵AC∥DE,∴BC:CE=BP:PR,∴BP=PR,∴PC是△BER的中位线,∴BP=PR,又∵PC∥DR,∴△PCQ∽△RDQ.又∵点R是DE中点,∴DR=RE.,∴QR=2PQ.又∵BP=PR=PQ+QR=3PQ,∴BP:PQ:QR=3:1:2【点评】此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.6.计算:|3﹣|+()0+(cos230°)2﹣4sin60°.【考点】实数的运算;零指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题.【分析】根据实数的有关运算法则计算.【解答】解:原式==﹣.【点评】本题考查实数的基本运算,难度适中.7.(2012•遂宁)计算:﹣2sin45°+(2﹣π)0﹣.【考点】实数的运算;零指数幂;负整数指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题;压轴题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;二次根式的化简是根号下不能含有分母和能开方的数.8.计算:|﹣|﹣+(π﹣4)0﹣sin30°.【考点】特殊角的三角函数值;绝对值;零指数幂;二次根式的性质与化简.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣3+1﹣=﹣2.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式、绝对值等考点的运算.注意:任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】计算题;压轴题.【分析】由题可知,在直角三角形中,知道已知角以及斜边,求对边,可以用正弦值进行解答.【解答】解:在Rt△BCD中,CD=BC×sin60°=20×=10又DE=AB=1.5,∴CE=CD+DE=CD+AB=10+1.5≈18.8答:此时风筝离地面的高度约是18.8米.【点评】本题考查直角三角形知识在解决实际问题中的应用.10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732.)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形Rt△BCD、Rt△ACD,应利用其公共边DC构造方程关系式,进而可解即可求出答案.【解答】解:在Rt△BCD中,tan45°==1,∴CD=BC.在Rt△ACD中,tan30°=,∴.∴.∴3CD=CD+10.∴CD=+5≈13.66(米)∴条幅顶端D点距离地面的高度为13.66+1.44=15.1(米).【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.12.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:皮尺,标杆;(2)请在图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.【考点】相似三角形的应用.【专题】方案型;开放型.【分析】树比较高不易直接到达,因而可以利用三角形相似解决,利用树在阳光下出现的影子来解决.【解答】解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.【点评】本题运用相似三角形的知识测量高度及考查学生的实践操作能力,应用所学知识解决问题的能力.本题答案有多种,测量方案也有多种,如(1)皮尺、标杆、平面镜;(2)皮尺、三角尺、标杆.13.我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.(精确到0.1米)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形,据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:作BD⊥AC于D.在Rt△ADB中,sin∠ABD=.∴AD=AB•sin∠ABD=15×sin21°≈5.38米.(3分)∵cos∠ABD=.∴BD=AB•cos∠ABD=15×cos21°≈14.00米.(5分)在Rt△BDC中,tan∠CBD=.∴CD=BD•tan∠CBD≈14.00×tan38°≈10.94米.(8分)∵cos∠CBD=.∴BC=≈≈17.77米(10分)∴AD+CD+BC≈5.38+10.94+17.77=34.09≈34.1米(11分)答:折断前发射塔的高约为34.1米.(12分)注意:按以下方法进行近似计算视为正确,请相应评分.①若到最后再进行近似计算结果为:AD+CD+BC=34.1;②若解题过程中所有三角函数值均先精确到0.01,则近似计算的结果为:AD+CD+BC≈5.40+10.88+17.66=33.94≈33.9.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【专题】计算题;压轴题.【分析】(1)由圆O的圆周角∠ACB=90°,根据90°的圆周角所对的弦为圆的直径得到AD为圆O的直径,再根据直径所对的圆周角为直角可得三角形ADE为直角三角形,又AD是△ABC的角平分线,可得一对角相等,而这对角都为圆O的圆周角,根据同圆或等圆中,相等的圆周角所对的弦相等可得CD=ED,利用HL可证明直角三角形ACD与AED 全等,根据全等三角形的对应边相等即可得证;(2)由三角形ABC为直角三角形,根据AC及CB的长,利用勾股定理求出AB的长,由第一问的结论AE=AC,用AB﹣AE可求出EB的长,再由(1)∠AED=90°,得到DE与AB垂直,可得三角形BDE为直角三角形,设DE=CD=x,用CB﹣CD表示出BD=12﹣x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为CD的长,在直角三角形ACD中,由AC及CD的长,利用勾股定理即可求出AD的长.【解答】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的∠BAC的平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);(2)∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==.【点评】此题考查了圆周角定理,勾股定理,以及全等三角形的判定与性质,利用了转化的思想,本题的思路为:根据圆周角定理得出直角,利用勾股定理构造方程来求解,从而得到解决问题的目的.灵活运用圆周角定理及勾股定理是解本题的关键.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED.(1)求经过A,E,D三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.【考点】作图﹣位似变换;二次函数图象与几何变换;待定系数法求二次函数解析式;矩形的性质.【专题】压轴题;网格型.【分析】(1)A,E,D三点坐标已知,可用一般式来求解;(2)延长OA到A′,使OA′=3OA,同理可得到其余各点;(3)根据二次项系数是否相同即可判断两个函数是否由平移得到.【解答】解:(1)设经过A,E,D三点的抛物线的表达式为y=ax2+bx+c∵A(1,),E(,2),D(2,)(1分)∴,解之,得∴过A,E,D三点的抛物线的表达式为y=﹣2x2+6x﹣.(4分)(2)如图.(7分)(3)不能,理由如下:(8分)设经过A′,E′,D′三点的抛物线的表达式为y=a′x2+b′x+c′∵A′(3,),E′(,6),D′(6,)∴,解之,得a=﹣2,,∴a≠a′∴经过A′,E′,D′三点的抛物线不能由(1)中的抛物线平移得到.(8分)【点评】一般用待定系数法来求函数解析式;位似变化的方法应熟练掌握;抛物线平移不改变a的值.16.某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?【考点】作图—应用与设计作图.【专题】压轴题;方案型.【分析】(1)由题意可得,供水站建在点M处,根据垂线段最短、两点之间线段最短,可知铺设到甲村某处和乙村某处的管道长度之和的最小值为MB+MD,求值即可;(2)作点M关于射线OE的对称点M',则MM'=2ME,连接AM'交OE于点P,且证明P点与D点重合,即AM'过D点.求出AM'的值即是铺设到点A和点M处的管道长度之和最小的值;(3)作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM于点H,连接GM,则GM=GM',可证得N,D两点重合,即M'N过D点.求GM+GD=M'D 的值就是最小值.【解答】解:方案一:由题意可得:∵A在M的正西方向,∴AM∥OE,∠BAM=∠BOE=30°,又∵∠BMA=60°∴MB⊥OB,∴点M到甲村的最短距离为MB,(1分)∵点M到乙村的最短距离为MD,∴将供水站建在点M处时,管道沿MD,MB线路铺设的长度之和最小,即最小值为MB+MD=3+(km);(3分)方案二:如图①,作点M关于射线OE的对称点M',则MM'=2ME,连接AM'交OE于点P,PE∥AM,PE=AM,∵AM=2BM=6,∴PE=3,(4分)在Rt△DME中,∵DE=DM•sin60°=×=3,ME=DM=×,∴PE=DE,∴P点与D点重合,即AM'过D点,(6分)在线段CD上任取一点P',连接P'A,P′M,P'M',则P'M=P′M',∵AP'+P'M'>AM',∴把供水站建在乙村的D点处,管道沿DA,DM线路铺设的长度之和最小,即最小值为AD+DM=AM'=;(7分)方案三:作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM 于点H,连接GM,则GM=GM',∴M'N为点M'到OE的最短距离,即M'N=GM+GN在Rt△M'HM中,∠MM'N=30°,MM'=6,∴MH=3,∴NE=MH=3,∵DE=3,∴N,D两点重合,即M'N过D点,在Rt△M'DM中,DM=,∴M'D=(10分)在线段AB上任取一点G',过G'作G'N'⊥OE于N'点,连接G'M',G'M,显然G'M+G'N'=G'M'+G'N'>M'D,∴把供水站建在甲村的G处,管道沿GM,GD线路铺设的长度之和最小,即最小值为GM+GD=M'D=,(11分)综上,∵3+<,∴供水站建在M处,所需铺设的管道长度最短.(12分)【点评】此题主要考查线路最短问题的作图和求值问题,有一定的难度.17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q 也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是25;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.【考点】相似三角形的判定与性质;三角形中位线定理;矩形的判定与性质.【专题】压轴题.【分析】(1)由中位线定理即可求出DF的长;(2)连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF分为面积相等的两部分,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值;(3)①当点P在EF上(2≤t≤5时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值;②当点P在FC上(5≤t≤7)时,PB=PF+BF就可以得到;(4)当PG∥AB时四边形PHQG是矩形,由此可以直接写出t.【解答】解:(1)Rt△ABC中,∠C=90°,AB=50,∵D,F是AC,BC的中点,∴DF为△ABC的中位线,∴DF=AB=25故答案为:25.(2)能.如图1,连接DF,过点F作FH⊥AB于点H,∵D,F是AC,BC的中点,∴DE∥BC,EF∥AC,四边形CDEF为矩形,∴QK过DF的中点O时,即过矩形CDEF的中点,QK把矩形CDEF分为面积相等的两部分此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.故t==.(3)①当点P在EF上(2≤t≤5)时,如图2,QB=4t,DE+EP=7t,由△PQE∽△BCA,得.∴t=4;②当点P在FC上(5≤t≤7)时,如图3,已知QB=4t,从而PB===5t,由PF=7t﹣35,BF=20,得5t=7t﹣35+20.解得t=7;(4)如图4,t=1;如图5,t=7.(注:判断PG∥AB可分为以下几种情形:当0<t≤2时,点P下行,点G上行,可知其中存在PG∥AB的时刻,如图4;此后,点G继续上行到点F时,t=4,而点P却在下行到点E再沿EF上行,发现点P在EF上运动时不存在PG∥AB;5≤t≤7当时,点P,G均在FC上,也不存在PG∥AB;由于点P比点G先到达点C并继续沿CD下行,所以在7<t<8中存在PG ∥AB的时刻,如图5当8≤t≤10时,点P,G均在CD上,不存在PG∥AB)【点评】本题主要运用了相似三角形性质,对应边的比相等,正确找出题目中的相似三角形是解题的关键.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.【考点】相似三角形的判定;平行四边形的性质.【专题】压轴题;开放型.【分析】根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.【解答】解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)【点评】考查了平行线的性质及相似三角形的判定定理.。

九年级数学上学期第三章《图形的相似》综合测试题(含答案)

九年级数学上学期第三章《图形的相似》综合测试题(含答案)

九年级数学上学期第三章《图形的相似》综合测试题(含答案)一、选择题(本大题共8小题,每小题4分,共32分) 1.已知5a=6b (a ≠0),则下列变形正确的是 ( )A .b 6=5aB .b 5=6a C .ab =56D .a -b b=152.如图1,已知AB ∥CD ∥EF ,BD ∶DF=1∶2,那么下列结论中正确的是 ( )图1A .AC ∶AE=1∶3B .CE ∶EA=1∶3C .CD ∶EF=1∶2 D .AB ∶EF=1∶2 3.C 是线段AB 的黄金分割点,且AB=6cm,则BC 的长为 ( ) A .(3√5-3)cm B .(9-3√5)cmC .(3√5-3)cm 或(9-3√5)cmD .(9-3√5)cm 或(6√5-6)cm4.如图2,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,AD=1,BC=4,则△AOD 与△BOC 的面积之比为( )A.12 B.14 C.18D.116图2 图35.如图3,已知△ABC 与△BDE 都是等边三角形,点D 在边AC 上(不与点A ,C 重合),DE 与AB 相交于点F ,那么与△BFD 相似的三角形是 ( )A .△BFEB .△BDCC .△BDAD .△AFD6.已知△ABC 与△A 1B 1C 1是关于原点为中心的位似图形,且点A 的坐标为(2,1),△ABC 与△A 1B 1C 1的位似比为12,则点A 的对应点A 1的坐标是 ( )A .(4,2)B .(-4,-2)C .(4,2)或(-4,-2)D .(6,3)7.如图4,在△ABC 中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE =AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF图4 图58.如图5,在△ABC中,中线BE,CD相交于点O,连接DE,有下列结论:①DEBC =12;②S△DOES△COB=12;③AD AB =OEOB;④S△DOES△ADE=13.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分)9.若△ABC∽△DEF,相似比为3∶2,则对应周长的比值是.10.在比例尺为1∶40000的地图上,某条道路的长为7cm,则该道路的实际长度是_______km.11.若a,b,c,d是成比例线段,其中a=2cm,b=6cm,c=5cm,则线段d= cm.12.如图6,在△ABC中,MN∥BC分别交AB,AC于点M,N.若AM=1,MB=2,BC=3,则MN的长为.图613.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A,D,E为顶点的三角形与△ABC相似.14.如图7,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高m.(杆的宽度忽略不计)图7三、解答题(本大题共5小题,共44分)15.(6分)如图8所示,AD,BE分别是钝角三角形ABC的边BC,AC上的高.求证:ADBE =AC BC.图816.(6分)如图9,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=12CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.图917.(6分)如图10,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB'C'D',使它与四边形ABCD位似,且位似比为2.(1)在图中画出四边形AB'C'D';(2)试说明△AC'D'是等腰直角三角形.图1018.(12分)为测量操场上旗杆的高度,设计的测量方案如图11所示,标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛距地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,E,C,A三点共线,求旗杆AB的高度.图1119.(14分)如图12,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于点M,连接CM 交DB于点N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.图12参考答案1.D [解析] 选项A,b 6=5a ⇒ab=30,故此选项错误;选项B,b 5=6a ⇒ab=30,故此选项错误;选项C,ab =56⇒6a=5b ,故此选项错误;选项D,a -b b=15⇒5(a-b )=b ,即5a=6b ,故此选项正确.故选D .2.A [解析]∵AB ∥CD ∥EF ,BD ∶DF=1∶2,∴AC ∶AE=1∶3,故A 选项正确;CE ∶EA=2∶3,故B 选项错误;CD ∶EF 的值无法确定,故C 选项错误;AB ∶EF 的值无法确定,故D 选项错误.故选A .3.C [解析]∵C 是线段AB 的黄金分割点,且AB=6cm,∴BC=√5-12AB=(3√5-3)cm 或BC=3−√52AB=(9-3√5)cm .故选C .4.D [解析] 在四边形ABCD 中,AD ∥BC ,所以△AOD ∽△COB.又由AD=1,BC=4,根据相似三角形的面积比等于相似比的平方,即可求得△AOD 与△BOC 的面积之比.5.C [解析]∵△ABC 与△BDE 都是等边三角形,∴∠A=∠BDF=60°.又∵∠ABD=∠DBF ,∴△BFD ∽△BDA ,∴与△BFD 相似的三角形是△BDA.6.A [解析]∵△ABC 与△A 1B 1C 1是关于原点为中心的位似图形,A (2,1),△ABC 与△A 1B 1C 1的位似比为12,∴点A 的对应点A 1的坐标是(2×2,1×2),即(4,2). 7.D8.C [解析] 由BE ,CD 均为△ABC 的中线可知,DE 为△ABC 的中位线,所以DE=12BC ,DE ∥BC ,所以DE BC =12,故①正确;由DE ∥BC 可得△DOE ∽△COB ,所以S △DOE S △COB=DE BC2=14,故②错误;由DE ∥BC 可得△ADE ∽△ABC ,△DOE ∽△COB ,所以AD AB =DE BC ,DE BC =OEOB ,所以AD AB =OEOB ,故③正确; 因为DE ∥BC ,所以△ADE ∽△ABC ,所以S △ADE S △ABC=DE BC2=14,设△DOE 的高为h ,DE=a ,则BC=2a ,△BOC 的高为2h ,所以△ABC 的高为6h ,所以△ADE 的高为3h ,所以S △DOES△ADE =12a ℎ12·a ·3ℎ=13,故④正确.故选C .9.3∶2 [解析] 根据相似三角形的周长比等于相似比求解.10.2.8 [解析] 设这条道路的实际长度为x cm,则140000=7x ,解得x=280000,280000cm =2.8km .11.15 [解析]∵a ,b ,c ,d 是成比例线段,∴a b=c d.∵a=2cm,b=6cm,c=5cm,∴26=5d,解得d=15(cm).12.1 [解析]∵MN ∥BC ,∴△AMN ∽△ABC ,∴AM AB =MNBC ,即11+2=MN 3,∴MN=1.13.125或53 [解析] 当AE AD =ABAC 时,∵∠A=∠A ,∴△AED ∽△ABC ,此时AE=AB ·AD AC=6×25=125;当AD AE =ABAC 时,∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=AC ·AD AB =5×26=53.故答案为125或53. 14.815.证明:∵AD ,BE 是钝角三角形ABC 的高,∴∠ADC=∠BEC=90°.又∵∠DCA=∠BCE ,∴△DAC ∽△EBC , ∴AD BE =ACBC .16.解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C ,AB ∥CD ,∴∠ABF=∠CEB ,∴△ABF ∽△CEB.(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB=CD , ∴△DEF ∽△CEB ,△DEF ∽△ABF. ∵DE=12CD ,∴EC=3DE ,AB=2DE ,∴S △DEFS△CEB=DE EC2=19,S △DEF S △ABF=DE AB2=14.∵S △DEF =2,∴S △CEB =18,S △ABF =8, ∴S 四边形BCDF =S △CEB -S △DEF =16,∴S 平行四边形ABCD =S 四边形BCDF +S △ABF =16+8=24.17.解:(1)如图,四边形AB'C'D'即为所求作图形.(2)根据网格的特点,利用勾股定理可以求出AD'=C'D'=2√10,AC'=4√5.利用勾股定理的逆定理可以得出∠AD'C'=90°, 故△AC'D'是等腰直角三角形.18.解:如图,过点E 作EH ⊥AB 于点H ,交CD 于点G ,则EF=DG=BH=1.6m,GH=BD=15m,EG=DF=2m,∴CG=CD-DG=3-1.6=1.4(m). ∵CG ∥AH , ∴△ECG ∽△EAH , ∴CG AH =EGEH ,即1.4AH =22+15,解得AH=11.9(m),∴AB=AH+BH=11.9+1.6=13.5(m).答:旗杆AB 的高度为13.5m . 19.解:(1)证明:∵DB 平分∠ADC ,∴∠ADB=∠BDC.又∵∠ABD=∠BCD=90°, ∴△ABD∽△BCD,∴ADBD =BD CD,∴BD2=AD·CD.(2)∵BM∥CD,∴∠MBD=∠BDC, ∴∠ADB=∠MBD,∴BM=MD.∵∠ABD=90°,∴∠MAB+∠ADB=90°,∠MBA+∠MBD=90°,∴∠MAB=∠MBA,∴BM=AM,∴AM=BM=MD=4.∵BD2=AD·CD,且CD=6,AD=8, ∴BD2=48,∴BC2=BD2-CD2=12,∴MC2=BM2+BC2=28,∴MC=2√7.∵BM∥CD,∴△MNB∽△CND,∴BMCD =MNCN=23,∴MN=4√75.。

完整版相似图形测试题及答案

完整版相似图形测试题及答案

《相似图形》水平测试二一、试试你的身手(每小题3分,共30分)1在比例尺为1 : 50 0000的福建省地图上,量得省会福州到漳州的距离约为46厘米,则福州到漳州实际距离约为__________ 千米.2.若线段a , b , c , d成比例,其中a 5cm, b 7cm, c 4cm,则d _________________3.已知4x 5y 0,则(x y): (x y)的值为9: 25,其中一个三角形的周长为36cm,则另一个三角形的周长是(如图1),如果把各边中点连线所围成三角形铺成黑色大理石,其余部分铺成白色大理石,则黑色大理石的面积与白色大理石的面积之比为4•两个相似三角形面积比是5.把一个矩形的各边都扩大4倍,则对角线扩大到________ 倍,其面积扩大到 _______ 倍. 6•厨房角柜的台面是三角形7•顶角为36。

的等腰三角形称为黄金三角形,如图黄金三角形,已知AB 1,贝U DE的长_________2, △ ABC, △ BDC , △ DEC 都是&在同一时刻,高为 1.5m的标杆的影长为2.5m,一古塔在地面上影长为50m,那么古塔的高为_________ .9•如图3, △ ABC 中,DE // BC , AD 2 , AE 3, BD 4,贝U AC(:10.如图4,在△ ABC和厶EBD中EB之差为10cm,则△ ABC的周长是_________二、相信你的选择(每小题3分,共30分)1 .在下列说法中,正确的是()A .两个钝角三角形一定相似B. 两个等腰三角形一定相似C. 两个直角三角形一定相似D .两个等边三角形一定相似BD ED 32.如图5,在厶ABC中,D , E分别是AB、AC边上的点,DE // BC , / ADE 30°,Z C 120°,则/ A ( )3.如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角()A.都扩大为原来的5倍B.都扩大为原来的10倍C.都扩大为原来的25倍D.都与原来相等4•如图6,在Rt A ABC 中,z ACB 90°, CD AB 于D,若AD 1 , BDCD (6.如图8,点E是Y ABCD的边BC延长线上的一点,AE与CD相交于点G ,Y ABCD的对角线,则图中相似三角形共有()A . 2对B . 3对C . 4对D . 5对7.如图9,小正方形的边长均为1,则下列图中的三角形(阴影部分)与厶ABC相似的是B . 45 C. 30°4,则C. 2 D . 35.如图7, BC 6 , E , F分别是线段AB和线段AC的中点,那么线段EF的长是C. 4.5 D . 3AC是7777/7/A.1!. 2itD .20°/;图6图R&如图10,梯形ABCD的对角线交于点0,有以下四个结论:①△ A0B C0D ; ②△ AOD ACB ;其中始终正确的有()A . 1个B . 2个C. 3个9•用作相似图形的方法,可以将一个图形放大或缩小,相似中心位置可选在(同,我们就把它们叫做相似图形•比如两个正方形,它们的边长, 成比例,就可以称它们为相似图形.现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形•请指出其中哪几对是相似图形,哪几对不是相似图形,并简单地说明理由.2 . (8 分)如图12,梯形ABCD 中,AB // DC,/ B 90°,E 为BC 上一点,且AE ED .若BC 12,DC 7,BE : EC=1 : 2,求AB 的长.③ S A DOC:S A AOD DC : AB :④ S A AOD S A BOC•A •原图形的外部B •原图形的内部这支蜡烛在暗盒中所成的像CD的长是()111A . - cmB . cm C. cm D. 1cm632三、挑战你的选择(本大题共60分):如果两个几何图形形状相同而大小不一定相对角线等所有元素都对应D . 4个C.原图形的边上 D •任意位置10•如图11是小孔成像原理的示意图,根据图中所标注的尺寸,1. (8分)我们已经学习了相似三角形,也知道4. (8分)某中学平整的操场上有一根旗杆(如图 14),一数学兴趣小组欲测量其高度,现有 测量工具(皮尺、标杆)可供选用,请你用所学的知识,帮助他们设计测量方案. 要求:(1)画出你设计的测量平面图; (2)简述测量方法,并写出测量的数据2.7米宽的光亮区,如图 15,已知亮区一 1.8米,那么窗口底边离地面的高 BC 是多6. (14分)如图16,在一个长40m 、宽30m 的长方形小操场上,王刚从 A 点出发,沿着 A T B T C 的路线以3m/s 的速度跑向C 地.当他出发4s 后,张华有东西需要交给他,就从 A2地出发沿王刚走的路线追赶,当张华跑到距 B 地2-m 的D 处时,他和王刚在阳光下的影3子恰好重叠在同一条直线上•此时, A 处一根电线杆在阳光下的影子也恰好落在对角线 AC上.(1) 求他们的影子重叠时,两人相距多少米 (DE 的长)?3. ( 8分)如图13,已知△ ABC 中,点F 是BC 的中点, 样的关系?请你说明理由.DE // BC ,贝V DG 和GE 有怎(长度用a , b , c …表示).5. (14分)阳光通过窗户照到室内,在地面上留下 边到窗下墙脚的距离 CE 8.7米,窗口高 AB 少米?[R f| 16(2)求张华追赶王刚的速度是多少(精确到0.1m/s)?《相似图形》水平测试二参考答案一、1. 230282.cm53.9卡1084.60 或 -55.4, 1616.-33 「57.2& 30m9. 910. 25cm二、1. D 2. C 3. D 4. A 5. D 6. B 7. A 8. C 9. D 10. D三、1.①、④是相似图形,②、③不一定是相似图形理由:两个圆和两个正六边形分别为相似图形,因为它们的对应元素都成比例;两个菱形和两个长方形都不是,因为它们的对应元素不一定都成比例(或举出具体的反例)2.解:因为AB // DC,且/ B 90°,所以Z AEB Z BAE所以Z AEB Z CED 90°.故Z BAE Z CED .又Z B Z C 90°,所以△EAB DEC . 所以AB BEEC CD又BE: EC 1:2,且BC 12及DC7 ,故AB-.所以873.解:DG GE.因为DE // BC,所以Z ADG ZB :,Z AGD Z AFB ,所以△ ADG ABF,所以DG AGBF AFGE AG DG GE同样△ AGE AFC,所以,所以FC AF BF FC '又F是BC的中点,所以DG GE .4.解:(1)如图,沿着旗杆的影竖立标杆,使标杆影子的顶端正好与旗杆影子顶端重合.(2)用皮尺测量旗杆的影长BE 标杆CD c米. AB327a米,标杆CD的影长DE b米,fi D90°及Z C 90°.CD 根据△EDC EBA,得—AB巨,2 b,所以ABEB AB a ac b米. 即旗杆 AB 的高为 ac 米 5•解: 由已知可得 CB BD // AE ,所以A CBDCAE ,所以— CACDCE又CE 8.7, CD CB ()8.7 2.7 6, CA CB —,解得CB 4 •1.8,所以 CB 1.8 8.7即窗口底边离地面的高 BC 是4米. 6. (1)根据投影的特征可知 AC //DE ,所以 所以DE BD DE AC BA ' AC △ BDE BAC ,BE 又 AB CF 40, AC BC 、402—302 50, BD2| •所以 DE 22 3 50 (2) 因为 40 DE 所以DE 10 (m )• 3 所以 BE 所以 所以王刚从 所以张华从 AB ACDEgBC AC BE 40 匹,BC AF 30, BC 10 “ 30 ,即 BE 2,50 2 42 (m ), A 到E 的时间为42十3=14 (s ), A 到D 的时间为14- 4=10 (s ), 2 所以张华的速度为(40- 2-)十10~ 3.7 ( m/s ).3。

图形的相似单元测试【含答案】

图形的相似单元测试【含答案】

DC B A 图形的相似 单元测试(时间:60分钟,共100分)一、选择题(每小传统3分,共30分) 1.下列语句正确的是 ( )A .在△ABC 和△A′B′C′中,∠B=∠B′=90°,∠A=30°,∠C′=60°, 则△ABC 和△A′B′C′不相似B .在△ABC 和△A′B′C′中,AB=5,BC=7,AC=8,A′C′=16,B′C′=14,A′B ′=10,则△ABC ∽△A′B′C′C .两个全等三角形不一定相似D .所有的菱形都相似2.如图所示,△ABC ∽△ADE ,AE=30cm ,EC=15cm ,BC=60cm ,则DE 的长为 ( ) A .40cm B .50cm C .45cm D .35cm 3.如图所示,能保证△ACD ∽△ABC 的条件是 ( ) A .AB:BC=AC:CD B .CD:AD=BC:AC C .CD 2=AD .DC D .AC 2=AB .AD 4.如果两个相似多边形的面积比为9:4,那么这两个相似多边形的相似比为 ( ) A .9:4 B .2:3 C .3:2 D .81:16 5.小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,如图 所示给出的四个图案中,符合图示胶滚图案的是 ( )6.语句:“①所有度数相等的角都相似;②所有边长相等的菱形都相似;③所有的正方形都相似;④所有的圆都相似”中准确的有 ( )A .4句B .3句C .2句D .1句 7.下列语句中不正确的是 ( )A .求两条线段的比值,必需采用相同的长度单位B .求两条线段的比值,只需采用相同的长度单位,与选用何种长度单位无关C .两个相似三角形中,任意两组边对应成比例D .不相似的两个三角形中,也有可能两组边对应成比例 8.下列各组图形有可能不相似的是 ( ) A .各有一个角是50°的两个等腰三角形 B .各有一个角是100°的两个等腰三角形 C .各有一个角是50°的两个直角三角形 D .两个等腰直角三角形9.一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,其最短边长为6,则最长边长为( )A .12B .18C .24D .301250800xy ╯ ╮ 650 536╭α ╰ ╯ 803 10. 已知cba b a c a c b +=+=+=k ,则k=( ) A .2 B .-1 C .2或-1 D .0二、填空题(每小题3分,共24分)11.如果一个三角形的面积扩大9倍,那么它的边长扩大_____________倍.12.如图所示,有一块呈三角形的草坪,其一边长为20m ,在这个草坪的图纸上,若这条边的长为5cm ,其他两边的长都是3.5cm ,则该草坪其他两边的实际长度为______________.13.如图所示的两个三角形是相似的x=_________,m=___________,n=____________.x2a 55︒m ︒45︒103a n ︒80︒45︒14. 已知如图,两个矩形相似, 则x= ,y= ,α= .15. 在相同时刻的物高与影长成比例,如果一古塔在地面上影长为50m ,同时,高为1.5m 的测竿的影长为2.5m ,那么,古塔的高是___米.16.如图中的两个矩形相似,则x=___________.17. 请把下列各组图形是否相似的结论写在下面的括号里.18.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是 .三、解答题(19小题6分,其余各小题8分,共46分) 19.把上下对应的相似图形用线连起来20.如图所示,写出多边形ABCDEF 各个顶点的坐标,并画出多边形ABCDEF 关于y 轴的轴对称图形,它们相应的对称点的坐标有什么变化?-3 -2 -1 32 1 O -1 -212 3 xy21.学生会举办一个校园摄影艺术展览会,小华和小刚准备将矩形的作品四周镶上一圈等宽的纸边,如图所示.两人在设计时发生了争执:小华要使内外两个矩形相似,感到这样视觉效果较好;小刚试了几次不能办到,表示这是不可能的.小红和小莉了解情况后,小红说这一要求只有当矩形是黄金矩形时才能做到,小莉则坚持只有当矩形是正方形时才能做到.请你动手试一试,说一说你的看法.222.以下列正方形网络的交点为顶点,分别画出两个相似比不为1的相似三角形,使它们:(1)都是直角三角形;(2)都是锐角三角形;(3)都是钝角三角形.23.如果一个图形经过分割,能成为若干个与自身相似的图形,我们称它为“能相似分割的图形”,如图所示的等腰三角形和矩形就是能相似分割的图形. (1)你能否再各举出一个 “能相似分割”的三角形和四边形?(2)一般的三角形是否“能相似分割的图形”?如果是的话给出一种分割方案,否则说明原因.24.我们通常用到的一种复印纸,整张称为A 1纸,对折一分为二裁开成为A 2纸,再一分为二成为A 3纸,…,它们都是相似的矩形.求这种纸的长与宽的比值(精确到千分位).参考答案1.B ;对应边成比例 2.A ;根据对应边成比例 3.D ;比例性质 4.C ;相似形的性质 5.C ;图形的相似 6.B ;②③④ 7.C ;注意对应 8.A ;不符合对应关系 9. 由相似多边形对应边成比例,设最长边为x .∴x662 ,∴2x=36,x=18.答案:B 10.C .2或-1二、11.3倍 12.14m 13.20314.根据相似形的性质,得x=2.5,y=1.5,α=900;⑵x=22.5. 15.在相同时刻的物高与影长成比例,设古塔的高为xm ,则505.25.1x=,解得x=30(m ) 16.已知两个矩形相似,根据相似形的性质,有x201530=,∴30x =15×20,解得x =10;又152030=x ,∴x =22.5 17. ①相似,②不相似,③不相似,④相似,⑤不相似,⑥不相似 18. 由左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),不难发现左右眼睛之间的距离2个单位;平移后的图形右图中左眼的坐标是(3,4),则右图案中右眼的坐标的纵坐标不变,横坐标为3+2=5,即右图案中右眼的坐标是(5,3). 三、19.相似形连线如(1)-(a ),(2)-(d),(3)-(g)20.提示:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3),A′(2,0),B′(0, 3),C′(-3,-3),D′(-4,0),E′(-3,3),F′(0,3).21.只有正方形才能做到,设矩形的一边为a ,另一边为b ,等宽的纸边宽为c ,按小华的要求,应有cb ca b a 22--=,化简得a=b . 22.作图如下23.例如直角三角形,一组底角是60°、三边相等的等腰梯形. 三角形都是“能相似分割的图形”(提示:顺次连结三角形三边中点,将三角形分成的四个三角形都和原三角形相似)24. 1.414(提示:设 A 1纸的长为a ,观为b ,由A 1,A 2纸的长余观对应成比例,得a:b=b:21a )。

相似图形单元测试题(含答案)

相似图形单元测试题(含答案)

第四章相似图形单元测试题时间120分钟,满分120分一.选择题(每小题3分,共30分)1、如图,在Rt ABC △内有边长分别为a ,b ,c 的三个正方形.则a ,b ,c 满足的关系式是( )A .b a c =+B .b ac =C .222b ac =+ D .22b a c ==2、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )3、如下左图,五边形ABCDE和五边形A 1B 1C 1D 1E 1是位似图形,且PA 1=32PA ,则AB ׃A 1B 1等于( ) A .32 B .23 C . 53 D .354、如上中图,在大小为4×4的正方形网格中,是相似三角形的是( ).A.①和② B.②和③ C.①和③ D.②和④5、厨房角柜的台面是三角形,如上右图,如果把各边中点的连线所围成的三角形铺成黑色大理石.(图中阴影部分)其余部分铺成白色大理石,那么黑色大理石的面积与白色大理石面积的比是( )A .14B .41C .13D .346、在△MBN 中,BM =6,点A ,C,D 分别在MB 、NB 、MN 上,四边形ABCD 为平行四边形,∠NDC =∠MDA 则□ABCD 的周长是( )A .24B .18C .16D .127、下列说法“①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1∶2;④两个相似多边形的面积比为4∶9,则周长的比为16∶81.”中,正确的有()A .1个B .2个C .3个D .4个8、如图,点M 在BC 上,点N 在AM 上,CM=CN ,CMBMAN AM =,下列结论正确的是( ) A .∆ABM ∽∆ACB B .∆ANC ∽∆AMB C .∆ANC ∽∆ACM D .∆CMN ∽∆BCA9、已知:如图,小明在打网球时,要使球恰好能打过而且落在离网5米的位置上(网球运行轨迹为直线),则球拍击球的高度h 应为( ).A.0.9m B.1.8m C.2.7m D.6m10、如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )20米的点A 处,沿OA 所在的直线行走14米到点B 时,人影的长度A .增大1.5米B .减小1.5米C .增大3.5米D .减小3.5米BA C第8题图ABCN ME 1D1C 1B 1A 1BDACEP二、填空题:(30分)11、如图,在平行四边形ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交AC 于P 、Q 两点,则AP :PQ :QC= .12、如图,将①∠BAD = ∠C ;②∠ADB = ∠CAB ; ③BC BD AB ⋅=2;④DBABAD CA =;⑤DA AC BA BC =; ⑥ACDABA BC =中的一个作为条件,另一个作为结论,组成一个真命题,则条件是__________,结论是_______.(注:填序号)13、如图,Rt ∆ABC 中,AC ⊥BC ,CD ⊥AB 于D ,AC=8,BC=6,则AD=_________。

中考数学《图形的相似》专项练习题及答案

中考数学《图形的相似》专项练习题及答案

中考数学《图形的相似》专项练习题及答案一、单选题1.一块含30°角的直角三角板(如图),它的斜边AB=8cm,里面空心△DEF的各边与△ABC的对应边平行,且各对应边的距离都是1cm,那么△DEF的周长是()A.5cm B.6cm C.(6-√3)cm D.(3+√3)cm2.如图,DE△BC,EF△AB,现得到下列结论:AEEC=BFFC,ADBF=ABBC,EFAB=DEBC,CECF=EABF其中正确的比例式的个数有()A.4个B.3个C.2个D.1个3.如图,△ABC与△ADE成位似图形,位似中心为点A,若AD:AB=1:3,则△ADE与△ABC面积之比为()A.1:2B.1:3C.1:9D.1:164.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()A.5条B.4条C.3条D.2条5.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的位似比为1:2,△ABC面积为2,则△EDC的面积是()A.2B.8C.16D.326.如图,△ADE△△ABC,若AD=2,BD=4,则△ADE与△ABC的相似比是()A.1:2B.1:3C.2:3D.3:27.如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若s1表示△ADE的面积,s2表示四边形DBCE的面积,则s1:s2=()A.1︰2B.1︰3C.1︰4D.2︰38.如图,按如下方法,将△ABC的三边缩小到原来的12,任取一点O,连AO、BO、CO,并取它们的中点D、E、F得△DEF,则下列说法正确的是()①△ABC与△DEF是相似图形;②△ABC与△DEF的周长比为2:1;③△ABC与△DEF的面积比为4:1.A.①、②B.②、③C.①、③D.①、②、③9.如图,已知AB是半圆O的直径,弦AD,CB相交于点P,若∠DPB=45°,则S△CDP:S△ABP 的值()A.25B.23C.13D.1210.如图,AD△BE△CF,直线l1、l2这与三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.811.一个三角形的三边长分别为3,4,5,另一个与它相似的三角形中有一条边长为6.则这个三角形的周长不可能是()A.725B.18C.48D.2412.如图,小正方形的边长为均为1,下列各图(图中小正方形的边长均为1)阴影部分所示的三角形中,与△ABC相似的三角形是()A.B.C.D.二、填空题13.勾股定理是一个基本的几何定理,有数百种证明方法.“青朱出入图”是我国古代数学家证明勾股定理的几何证明法.刘徽描述此图“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,加就其余不动也,合成弦方之幂,开方除之,即弦也”.若图中BF=4,DF=2,则AE=.14.如图,矩形ABCD中,AB=3,BC=4,E是BC上一点,BE=1,AE与BD交于点F.则DF的长为.15.如图,点D在△ABC的边BC的延长线上,AD为△ABC的外角的平分线,AB=2BC,AC=3,CD=4,则AB的长为.16.如图,在△ABC中,△BAC=90°,AD△BC于D,BD=3,CD=12,则AD的长为17.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.18.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.三、综合题19.如图,已知△BAC=90°,AD△BC于D,E是AC的中点,ED的延长线交AB的延长线于点F.求证:(1)△DFB△△AFD;(2)AB:AC=DF:AF.20.一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E、A、D在同一条直线上).(1)发现BE与DG数量关系是,BE与DG的位置关系是.(2)将正方形AEFG绕点A按逆时针方向旋转(如图2),(1)中的结论还成立吗?若能,请给出证明;若不能,请说明理由.(3)把图1中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=2,AB=4,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请直接写出这个定值.21.如图,已知点D在△ABC的外部,AD△BC,点E在边AB上,AB•AD=BC•AE.(1)求证:△BAC=△AED;(2)在边AC取一点F,如果△AFE=△D,求证:ADBC=AFAC.22.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF。

第六章《图形的相似》单元测试题(含答案)

第六章《图形的相似》单元测试题(含答案)

第六章《图形的相似》单元测试题一、选择题:(本题共10小题,每小题3分,共30分)1.若34yx=,则x yx+的值为()A. 1B. 47C.54D.742.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长为()A. 18cm;B. 5cm;C. 6cm;D. ±6cm;3.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A. 252-B. 25- C. 251- D.52-4. 如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A. ∠ABP=∠CB. ∠APB=∠ABCC. AP ABAB AC= D.AB ACBP CB=5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A. 1:16B. 1:6C. 1:4D. 1:26. 如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A. 4B. 7C. 3D. 127.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A. (1,2)B. (1,1)C. 22)D. (2,1)8.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A. 1B. 2C. 3D. 49.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )A. 4.5米B. 6米C. 7.2米D. 8米10. 如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为A.2B. 2.5或3.5C. 3.5或4.5D. 2或3.5或4.5二、填空题:(本题共8小题,每小题3分,共24分) 11.如果在比例尺为1:1 000 000地图上,A 、B 两地的图上距离是3.4cm ,那么A 、B 两地的实际距离是____km .12.如图,已知:l 1∥l 2∥l 3,AB=6,DE=5,EF=7.5,则AC=__.13.如图,△ABC 与△A ′B ′C ′是位似图形,且顶点都在格点上,则位似中心的坐标是__.14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为_____.15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲.16.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为__时,△ADP和△ABC相似.17.如图,双曲线y=kx经过Rt△BOC斜边上的点A,且满足23AOAB,与BC交于点D,S△BOD=21,求k=__.18.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF =FG.其中正确的是_____.(把所有正确结论的序号都选上)三、解答题:(本大题共10大题,共76分)19.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.20.如图,在△ABC中,DE∥BC,EF∥AB,若S△ADE=4cm2,S△EFC=9cm2,求S△ABC.21.如图,△ABC中,CD是边AB上的高,且AD CD CD BD.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.22.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.23.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为0.9米,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为1.2米,又测得地面部分的影长(BD)为2.7米,则他测得的树高应为多少米?24.如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的49,若AB=2,求△ABC移动的距离BE的长.25.如图,点A(1,4)、B(2,a)在函数y=mx(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.26.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O . M 为AD 中点,连接CM 交BD 于点N ,且1ON =.(1)求BD 的长;(2)若DCN ∆的面积为2,求四边形ABNM 的面积.27.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 为边CB 上的一个动点(点D 不与点B 重合),过D 作DO ⊥AB ,垂足为O ,点B ′在边AB 上,且与点B 关于直线DO 对称,连接DB ′,AD . (1)求证:△DOB ∽△ACB ;(2)若AD 平分∠CAB ,求线段BD 的长; (3)当△AB ′D 为等腰三角形时,求线段BD 的长.28.已知:如图,在矩形ABCD 中,AB=6cm ,BC=8cm ,对角线AC ,BD 交于点0.点P 从点A 出发,沿方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式; (3)在运动过程中,是否存在某一时刻t ,使S 五边形S 五边形OECQF :S △ACD =9:16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 的值;若不存在,请说明理由.一、选择题:(本题共10小题,每小题3分,共30分)1.若34y x =,则x yx+的值为( ) A. 1 B. 47C.54D.74【答案】D 【解析】【详解】∵34y x =, ∴x y x +=434+=74,故选D2.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a=9cm ,b=4cm ,则线段c 长为( ) A. 18cm ; B. 5cm ;C. 6cm ;D. ±6cm ;【答案】C 【解析】根据比例中项的概念,当两个比例内项相同时,就叫比例中项,再列出比例式即可得出c . 解:根据比例中项的概念,得c 2=ab=36,c=±6, 又线段不能是负数,-6应舍去,取c=6, 故选C .“点睛”考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.3.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A. 252B. 25C. 51D.52【答案】A 【解析】根据黄金比的定义得:51AP AB -=,得514252AP -== .故选A. 4. 如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A. ∠ABP=∠CB. ∠APB=∠ABCC. AP ABAB AC= D.AB ACBP CB=【答案】D【解析】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A. 1:16B. 1:6C. 1:4D. 1:2 【答案】D【解析】【分析】根据相似三角形面积的比等于相似比的平方求出相似比,根据相似三角形周长的比等于相似比解答即可.【详解】解:Q两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选D.【点睛】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.6. 如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A. 4B. 7C. 3D. 12 【答案】B【解析】试题分析:∵DE:EA=3:4,∴DE:DA=3:7,∵EF∥AB,∴DE EFDA AB=,∵EF=3,∴337AB=,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选B.考点:1.相似三角形的判定与性质;2.平行四边形的性质.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A. (1,2)B. (1,1)C. (2,2)D. (2,1)【答案】B【解析】【详解】∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=22,∴A(12,12),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选B.【点睛】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.【此处有视频,请去附件查看】8.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A. 1B. 2C. 3D. 4【答案】B【解析】试题分析:∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.故选B.考点:1.相似三角形的判定与性质;2.等边三角形的性质.9.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )A. 4.5米B. 6米C. 7.2米D. 8米【答案】B 【解析】 试题分析:如图:根据题意可得:Rt △DCG ∽Rt △DBA ,Rt △FEH ∽Rt △FBA ,所以CD CG BD AB =,EF EH CGBF AB AB==,∴CD EFBD BF=,∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,设AB=x ,BC=y ,∴1 1.51y x =+,2 1.55y x =+,∴2151y y =++,∴y=3m ,∴1.514x =,解得:x=6米.即路灯A 的高度AB=6米.考点:相似三角形的判定与性质.10. 如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为A. 2B. 2.5或3.5C. 3.5或4.5D. 2或3.5或4.5【答案】D【解析】 试题分析:∵Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,∴AB=2BC=4(cm ). ∵BC=2cm ,D 为BC 的中点,动点E 以1cm/s 的速度从A 点出发,∴BD=12BC=1(cm ),BE=AB ﹣AE=4﹣t (cm ), 若∠DBE=90°,∵∠ABC=60°,∴∠BDE=30°.∴BE=12BD=12(cm ). 当A →B 时,t=4﹣0.5=3.5;当B →A 时,t=4+0.5=4.5.若∠EDB=90°时,∵∠ABC=60°,∴∠BED=30°.∴BE=2BD=2(cm ).当A →B 时,∴t=4﹣2=2;当B →A 时,t=4+2=6(舍去).综上可得:t 的值为2或3.5或4.5.故选D .二、填空题:(本题共8小题,每小题3分,共24分)11.如果在比例尺为1:1 000 000的地图上,A 、B 两地的图上距离是3.4cm ,那么A 、B 两地的实际距离是____km .【答案】34【解析】【分析】根据比例尺的定义:实际距离=图上距离:比例尺,由题意代入数据可直接得出实际距离.【详解】根据题意,13.434000001000000÷=厘米=34千米. 即实际距离是34千米.故答案为:34.【点睛】本题考查了比例尺的定义,熟练掌握实际距离、图上距离和比例尺的关系是解决本题的关键. 12.如图,已知:l 1∥l 2∥l 3,AB=6,DE=5,EF=7.5,则AC=__.【答案】15【解析】l 1∥l 2∥l 3,AB DE AB BC EF DE=++,所以6512.5AC,所以AC=15.13.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.【答案】(9,0)【解析】【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为_____.【答案】9【解析】设BC的中线是AD,BC的高是AE,由重心性质可知:AD:GD=3:1,∵GH⊥BC,∴△ADE∽△GDH,∴AD:GD=AE:GH=3:1,∴AE=3GH=3×3=9,故答案为9.点睛:证明相似三角形:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似.(2)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似(3)两边成比例且夹角相等的两个三角形相似. (4)三边成比例的两个三角形相似. (5)证明两个对应角相等的过程中,经常使用等腰三角形,等边三角形,特殊矩形,菱形,平行四边形构成的等角作为桥梁,成为解题的关键.15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB ,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm ,EF=20cm ,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲.【答案】5.5【解析】【详解】试题分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m考点:相似三角形【此处有视频,请去附件查看】16.如图,已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,AB=12,AC=8,AD=6,当AP 的长度为__时,△ADP 和△ABC 相似.【答案】4或9.【解析】当△ADP ∽△ACB 时,需有AP AD AB AC =,∴6128AP =,解得AP =9.当△ADP ∽△ABC 时,需有AP AD AC AB=,∴6812AP =,解得AP =4.∴当AP 的长为4或9时,△ADP 和△ABC 相似. 17.如图,双曲线y=k x 经过Rt △BOC 斜边上的点A ,且满足23AO AB =,与BC 交于点D ,S △BOD =21,求k=__.【答案】8 【解析】 试题分析:解:过A 作AE ⊥x 轴于点E .因为S △OAE =S △OCD ,所以S 四边形AECB =S △BOD =21,因为AE ∥BC ,所以△OAE ∽△OBC ,所以==()2=,所以S △OAE =4,则k=8.考点:1.相似三角形的判定与性质;2.反比例函数的性质.【此处有视频,请去附件查看】18.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF =FG.其中正确的是_____.(把所有正确结论的序号都选上)【答案】①③④【解析】试题解析:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF=22106=8,∴DF=AD-AF=10-8=2,设EF=x,则CE=x,DE=CD-CE=6-x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6-x)2+22=x2,解得x=103,∴ED= 83,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=12∠ABC=45°,所以①正确;HF=BF-BH=10-6=4,设AG=y,则GH=y,GF=8-y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8-y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,69843ABDE==,32AGDF=,∴AB AGDE DF≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=12•6•3=9,S△FGH=12•GH•HF=12×3×4=6,∴S△ABG=32S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.∴①③④正确.【此处有视频,请去附件查看】三、解答题:(本大题共10大题,共76分)19.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.【答案】(1)证明见解析;(2)245.【解析】试题分析:利用矩形角相等的性质证明△DAE∽△AMB.试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=245.20.如图,在△ABC中,DE∥BC,EF∥AB,若S△ADE=4cm2,S△EFC=9cm2,求S△ABC.【答案】25cm2.【解析】试题分析:利用平行证明三角形相似,再利用相似的性质求三角形面积.试题解析:解:∵DE∥BC,EF∥AB,∴∠A=∠FEC,∠AED=∠C,∴△ADE∽△ECF;∴S△ADE:S△ECF=(AE:EC)2,∵S△ADE=4cm2,S△EFC=9cm2,∴(AE:EC)2=4:9,∴AE:EC=2:3,即EC:AE=3:2,∴(EC+AE):AE=5:2,即AC:AE=5:2.∵DE∥BC,∴∠C=∠AED,又∵∠A=∠A,∴△ABC∽△ADE,∴S△ABC:S△ADE=(AC:AE)2,∴S△ABC:4=(5:2)2,∴S△ABC=25cm2.21.如图,△ABC中,CD是边AB上的高,且AD CD CD BD.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【答案】(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵AD CD CD BD.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.【此处有视频,请去附件查看】22.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.【答案】(1)作图见解析;(2)作图见解析;A2坐标(﹣2,﹣2).【解析】试题分析(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点的位置进而得出.试题解析:⑴如图所示: △A1B1C1,即为所求;⑵如图所示△A2B2C2,即为所求;A2坐标(-2,-2)23.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为0.9米,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为1.2米,又测得地面部分的影长(BD)为2.7米,则他测得的树高应为多少米?【答案】测得的树高为4.2米.【解析】先求出墙上的影高CD落在地面上时的长度,再设树高为h,根据同一时刻物高与影长成正比列出关系式求出h的值即可24.如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的49,若AB=2,求△ABC移动的距离BE的长.【答案】4 3【解析】试题分析:证明平移前后图象的相似,再根据相似的性质定理求BE长. 试题解析:解:∵把△ABC沿边BA平移到△DEF的位置,∴E F∥AC,∴△BEG∽△BAC,∴BEABBEGABCSSnn23,∵AB=2,∴BE=43.25.如图,点A(1,4)、B(2,a)在函数y=mx(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.【答案】(1)4;(2)C的坐标为(3,0);(3)(﹣2,0).【解析】试题分析:(1)把点代入求值.(2)先利用反比例函数求出A,B,点坐标,再利用待定系数法求直线方程.(3)假设存在E点,因为n ACD是直角三角形,假设n ABE也是直角三角形,利用勾股定理分别计算A,B,C,是直角时AB长度,均与已知矛盾,所以不存在.试题解析:解:(1)∵点A(1,4)在反比例函数y=mx(x>0)的图象上,∴m=1×4=4,故答案为4.(2)∵点B(2,a)在反比例函数y=4x的图象上,∴a==2,∴B(2,2).设过点A、B的直线的解析式为y=kx+b,∴422k bk b=+⎧⎨=+⎩,解得:26kb=-⎧⎨=⎩,∴过点A、B的直线的解析式为y=﹣2x+6.当y=0时,有﹣2x+6=0,解得:x=3,∴点C的坐标为(3,0).(3)假设存在,设点E的坐标为(n,0).①当∠ABE=90°时(如图1所示),∵A(1,4),B(2,2),C(3,0),∴B是AC的中点,∴EB垂直平分AC,EA=EC=n+3.由勾股定理得:AD2+DE2=AE2,即42+(x+1)2=(x+3)2,解得:x=﹣2,此时点E的坐标为(﹣2,0);②当∠BAE=90°时,∠ABE>∠ACD,故△EBA与△ACD不可能相似;③当∠AEB=90°时,∵A(1,4),B(2,2),∴AB=5,2>5,2∴以AB为直径作圆与x轴无交点(如图3),∴不存在∠AEB=90°.综上可知:在x轴上存在点E,使以A、B、E为顶点的三角形与△ACD相似,点E的坐标为(﹣2,0).26.如图,在平行四边形ABCD中,对角线AC,BD交于点O. M为AD中点,连接CMON=.交BD于点N,且1(1)求BD的长;∆的面积为2,求四边形ABNM的面积.(2)若DCN【答案】(1)6;(2)5.【解析】【分析】(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到S△MND:S△CND=1:4,可得到△MND面积为1,△MCD面积为3,由S平行四边形ABCD=AD•h,S△MCD=MD•h=AD•h,=4S△MCD,即可求得答案.【详解】(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴MD DN BC BN,∵M为AD中点,所以BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得:x=3, ∴BD=2x=6;(2)、∵△MND∽△CNB,且相似比为1:2,∴MN:CN=1:2,∴S△MND:S△CND=1:4,∵△DCN的面积为2,∴△MND面积为1,∴△MCD面积为3,设平行四边形AD边上的高为h,∵S平行四边形ABCD=AD•h,S△MCD=12MD•h=14AD•h,∴S平行四边形ABCD=4S△MCD=12,∴S△ABD=6,∴S四边形ABNM= S△ABD- S△MND =6-1=5.【点睛】本题考查相似三角形的性质与判定,解题的关键是熟悉相似三角形的判定与性质与平行四边形的性质.27. 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO 对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.【答案】(1)证明见试题解析;(2)5;(3)50 13.【解析】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD =x,CD,BD,BO用x表示出来,所以可得BD长.(3)同(2)原理,BD=B′D=x, AB′,B′O,BO用x表示,利用等腰三角形求BD长.试题解析:(1)证明:∵DO ⊥AB ,∴∠DOB =90°,∴∠ACB =∠DOB =90°,又∵∠B =∠B .∴△DOB ∽△ACB .(2)∵AD 平分∠CAB ,DC ⊥AC,DO ⊥AB,∴DO =DC ,在 Rt △ABC 中,AC =6,BC =,8,∴AB =10,∵△DOB ∽△ACB,∴DO ∶BO ∶BD =AC ∶BC ∶AB =3∶4∶5,设BD =x ,则DO =DC =35x ,BO =45x , ∵CD +BD =8,∴35x +x =8,解得x =,5,即:BD =5. (3)∵点B 与点B ′关于直线DO 对称,∴∠B =∠OB ′D ,BO =B ′O =45x ,BD =B ′D =x , ∵∠B 为锐角,∴∠OB ′D 也为锐角,∴∠AB ′D 为钝角,∴当△AB ′D 是等腰三角形时,AB ′=DB ′,∵AB ′+B ′O +BO =10,∴x +45x +45x =10,解得x =5013,即BD =5013, ∴当△AB ′D 为等腰三角形时,BD =5013. 点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知BP 平分ABC ∠,过点P 作PA AB ⊥,PC BC ⊥,则PA PC =. ②截两边:如图(2),已知BP 平分MBN ∠,点A BM 上,在BN 上截取BC BA =,则ABP ∆≌CBP ∆.③角平分线+平行线→等腰三角形:如图(3),已知BP 平分ABC ∠,//PA AC ,则AB AP =;如图(4),已知BP 平分ABC ∠,//EF PB ,则BE BF =.(1) (2) (3) (4) ④三线合一(利用角平分线+垂线→等腰三角形):如图(5),已知AD 平分BAC ∠,且AD BC ⊥,则AB AC =,BD CD =.(5)【此处有视频,请去附件查看】28.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P 从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【答案】(1)258或5;(2)213=1232S t t-++;(3)92;(4)2.88.【解析】试题分析:(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=258,②当AP=AO=t=5,于是得到结论;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,根据全等三角形的性质得到CE=AP=t,根据相似三角形的性质表示出EH,根据相似三角形的性质表示出QM,FQ,根据图形的面积即可得到结论;(3)根据题意列方程得到t的值,于是得到结论;(4)由角平分线的性质得到DM的长,根据勾股定理得到ON的长,由三角形的面积公式表示出OP,根据勾股定理列方程即可得到结论.试题解析:(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP =PO =t ,如图1,过P 作PM ⊥AO ,∴AM =12AO =52, ∵∠PMA =∠ADC =90°,∠PAM =∠CAD ,∴△APM ∽△ADC , ∴AP AM AC AD=, ∴AP =t =258, ②当AP =AO =t =5,∴当t 为258或5时,△AOP 是等腰三角形; (2)作EH ⊥AC 于H ,QM ⊥AC 于M ,DN ⊥AC 于N ,交QF 于G ,在△APO 与△CEO 中,∵∠PAO =∠ECO ,AO =OC ,∠AOP =∠COE ,∴△AOP ≌△COE ,∴CE =AP =t ,∵△CEH ∽△ABC , ∴EH CE AB AC=, ∴EH =35t , ∵DN =AD CD AC ⋅=245, ∵QM ∥DN ,∴△CQM ∽△CDN , ∴QM CQ DN CD =,即62465QM t -=, ∴QM =2445t -, ∴DG =2424455t --=45t , ∵FQ ∥AC ,∴△DFQ ∽△DOC , ∴FQ DG OC DN=, ∴FQ =56t , ∴S 五边形OECQF =S △OEC +S 四边形OCQF =13152445(5)25265t t t -⨯⨯++⋅=2131232t t -++,∴S 与t 的函数关系式为2131232S t t =-++; (3)存在,∵S △ACD =12×6×8=24, ∴S 五边形OECQF :S △ACD =(2131232t t -++):24=9:16,解得t =92,t =0,(不合题意,舍去),∴t =92时,S 五边形S 五边形OECQF :S △ACD =9:16; (4)如图3,过D 作DM ⊥AC 于M ,DN ⊥AC 于N , ∵∠POD =∠COD ,∴DM =DN =245, ∴ON =OM =22OD DN -=75, ∵OP •DM =3PD ,∴OP =558t -, ∴PM =18558t -, ∵222PD PM DM =+,∴22218524(8)()()585t t -=-+,解得:t ≈15(不合题意,舍去),t ≈2.88, ∴当t =2.88时,OD 平分∠COP .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档