sem实验报告
扫描电子显微镜实验报告

扫描电子显微镜实验报告扫描电子显微镜实验报告引言:扫描电子显微镜(Scanning Electron Microscope,SEM)是一种现代化的显微镜技术,可用于观察微观尺度的物体表面形貌和结构。
本实验旨在通过使用扫描电子显微镜,对不同样本进行观察和分析,以了解其微观结构和特征。
实验方法:本次实验使用的扫描电子显微镜为型号为SEM-1000,工作电压为10 kV。
首先,准备好待观察的样本,包括金属表面、植物细胞和昆虫翅膀等。
接下来,将样本放置在扫描电子显微镜的样品台上,并调整好位置。
然后,打开电子显微镜的电源,调节电压和放大倍数,以获得清晰的图像。
最后,通过控制显微镜上的控制杆,移动电子束和样品,以获取不同角度和放大倍数下的图像。
实验结果:1. 金属表面观察:在扫描电子显微镜下,金属表面的微观结构和特征得以清晰展现。
可以观察到金属表面的晶粒结构、颗粒大小和形态等信息。
通过调整电子束的角度和放大倍数,可以更加详细地观察到金属表面的纹理和缺陷。
这些观察结果对于研究材料的力学性能和表面处理等方面具有重要意义。
2. 植物细胞观察:通过扫描电子显微镜,我们可以深入研究植物细胞的微观结构。
观察到的细胞表面纹理、细胞壁的厚度和孔隙等特征,有助于理解植物细胞的生长和发育过程。
此外,通过显微镜的高分辨率成像,可以观察到细胞器如叶绿体、核糖体等的形态和分布情况,进一步揭示细胞的功能和代谢过程。
3. 昆虫翅膀观察:昆虫翅膀是自然界中一种独特的结构,通过扫描电子显微镜的观察,我们可以更好地了解其微观特征。
昆虫翅膀表面常常具有复杂的纹理、鳞片和毛发等结构,这些结构对于昆虫的飞行和保护具有重要作用。
通过扫描电子显微镜的高分辨率成像,我们可以观察到昆虫翅膀表面的微观结构,揭示其形成和功能机制。
讨论与结论:通过本次实验,我们深入了解了扫描电子显微镜的原理和应用。
扫描电子显微镜具有高分辨率、高放大倍数和广泛的适用范围等优点,对于研究材料科学、生物学和昆虫学等领域具有重要意义。
sem实训总结及心得体会

sem实训总结及心得体会在本学期的软件工程管理实训(Sem)项目中,我作为团队的一员,通过与团队成员的紧密合作和努力付出,成功完成了项目任务,并积累了宝贵的实践经验。
在这个过程中,我深刻体会到了团队合作的重要性和个人的成长。
以下是我对本次实训的总结和心得体会。
一、项目背景与目标本次Sem实训项目是一个软件开发项目,项目目标是开发一个在线学习管理系统。
为了完成这一目标,我们的团队需要协同工作,按照预定计划展开工作,分工明确并充分发挥各自的优势,以达到高效完成项目的目的。
二、团队合作与沟通团队合作是本次实训项目中的核心,通过有效的团队合作,我们成功地完成了项目的各项任务。
为了提高团队合作效率,我们进行了团队沟通和协作的常规性会议,定期评估和调整项目进展,并根据具体情况调整每个团队成员的工作任务。
此外,我们还通过在线协作工具,共享文件和信息,及时解决问题,提高了工作效率。
通过这次实训,我深刻认识到了团队合作的重要性,并提高了自己的团队协作能力。
三、项目管理与进展控制在本次实训项目中,项目管理起到了至关重要的作用。
为了确保项目能够按时完成,我们制定了详细的项目计划和进度安排,并在项目执行过程中进行了严格的监控。
通过合理的任务分配和进度控制,我们保证了项目进展的顺利进行。
此外,我们还采用了敏捷开发的方法,一方面能够更快地响应变化,另一方面也能够更好地适应客户需求的变化。
通过管理和控制项目进展,我对项目管理方法和技巧有了更深入的了解和实践。
四、技术应用与能力提升在本次实训项目中,我们充分运用了我们所学的技术知识,并借助各种开发工具和技术,提高了项目的开发效率和质量。
通过与团队成员的合作和交流,我不仅对所学的技术知识有了更深入的理解,也提升了自己的技术能力。
在项目的开发过程中,我学会了如何解决问题、调试代码和优化程序性能。
同时,我也发现了自己的不足之处,并在实践中不断提升自己的技术水平。
五、团队协作与个人成长通过这次Sem实训项目,我认识到了团队协作的重要性。
SEM总结

1号图:溶液浓度1mol/l ,采用正滴定法(将沉淀剂滴加到锌盐溶液中)2号图:溶液浓度1mol/l ,采用反滴定法(将锌盐溶液滴加到沉淀剂中)3号图:溶液浓度0.5mol/l ,采用正滴定法4号图:为3号图的(CDI+硬脂酸)改性2号图的颗粒明显比1号和3号图中颗粒团聚得厉害,说明正滴定比反滴定所得到的颗粒分散性要好。
(从左到右依次为1,2,3号图)1号图中颗粒的颗粒粘连在一起的情况比3好图略微严重。
有可能是因为浓度高时,成核的速度较快,这样就使得晶核在溶液中的浓度快速上升,就使得晶核发生碰撞然后粘接在一起的可能性增大。
所以在今后的实验中采用低浓度的溶液比较合适。
4号图4号图与3号图相比,以10um 的尺度观察,在分散性方面没有什么变化。
从图中根据标尺可以大致地看出,大部分的颗粒都是几百纳米,这就可能使得在接枝改性时不能简单地依靠搅拌所带来的机械力把颗粒分散在溶剂中,而在完成接枝前的ZnO 表面虽然接有硅烷偶联剂的一部分链段,但处于链端的是氨基,而且分子链极短,所以,此时的ZnO 表面亲油性并不强。
即使通过搅拌把ZnO 颗粒暂时分散开了,但由于接在ZnO 表面的分子链太短,空间位阻太弱,粉末也会再次团聚在一起。
因为在改性时的搅拌速度不高,1000r/min 左右,而且在图中还有微米级的大颗粒,所以我认为应该再提高搅拌时的转速,增大剪切力。
但是转速太高时很容易时混合液飞溅到整个烧瓶内部,而溶剂又不是时刻都能冲洗到烧瓶内任何区域,所以就有大量ZnO 粘满烧瓶内壁,随着时间延长和不断地加热,ZnO 就粘接在原地而不参与接枝反应。
这就会影响接枝率,也可能会再一次形成聚集成团的大颗粒,如出现下图中标出的版块状颗粒聚集体。
采用低浓度(NaOH溶液0.5mol/L,Zn(NO3)2溶液0.25mol/L)正滴定法制备纳米ZnO,并以聚乙二醇20000做分散剂。
离心分离得到固体沉淀,分别用乙醇和蒸馏水对沉淀进行多次洗涤,再在150℃下烘烤4h。
扫描电镜实验报告图像分析怎么写

扫描电镜实验报告图像分析怎么写一、引言扫描电镜(Scanning Electron Microscope, SEM)是一种常用的高分辨率表面形貌分析仪器,广泛应用于材料科学、生物学、纳米科技等领域。
本实验旨在利用扫描电镜对样品进行观察和分析,掌握图像分析技巧,并结合实际图像进行详细分析,从而深入了解样品的表面形貌和微观结构。
二、实验方法1. 样品制备:选择需要观察的样品,根据不同的要求进行制备,如金属材料可以进行抛光、腐蚀处理,生物样品可以进行固定和超薄切片等。
2. 仪器操作:将制备好的样品放入扫描电镜的样品台上,调节加速电压和放大倍数等参数,开始观察和拍摄图像。
3. 图像获取:通过扫描电镜获取样品的图像,并保存在电脑上,以备后续的图像分析工作。
三、图像分析1. 图像质量评估:首先对所获得的图像进行质量评估。
评估图像的对比度、噪声、清晰度等指标,确保图像的质量符合要求。
可以通过测量像素密度、区域灰度分布等方法进行评估。
2. 图像预处理:针对图像中存在的噪声、伪影等问题,可以对图像进行预处理。
例如,可以利用图像处理软件进行滤波、增强对比度等操作,以提高图像清晰度和可视化效果。
3. 形貌分析:通过对图像进行形貌分析,可以获得样品的表面形貌特征。
可以使用图像处理软件中的测量工具来计算样品的颗粒大小、距离、角度等参数。
同时,可以根据图像中的拓扑结构特征,推测样品的形成过程和相互关系。
4. 结构分析:通过图像分析,可以对样品的微观结构进行分析。
可以从图像中观察并描述样品的晶体结构、纤维形态等。
同时,可以对样品中存在的裂纹、孔洞等缺陷进行分析,评估样品的完整性和质量。
5. 成分分析:在图像分析的基础上,可以借助图谱分析和能谱分析等技术手段,对样品的成分进行分析。
通过识别元素的峰位和峰强,可以得到样品的成分组成,进一步了解样品的化学特性。
四、实验结果与讨论本次扫描电镜实验中,我们选择了一块金属样品,并进行了抛光和腐蚀处理。
电子显微镜实验报告

一、实验名称电子显微镜技术二、实验目的1. 了解扫描电子显微镜(SEM)和透射电子显微镜(TEM)的基本原理和结构。
2. 掌握电子显微镜的样品制备和操作方法。
3. 通过观察样品的微观结构,了解材料的形貌、内部组织结构和晶体缺陷。
三、实验仪器1. 扫描电子显微镜(SEM):型号为Hitachi S-4800。
2. 透射电子显微镜(TEM):型号为Hitachi H-7650。
3. 样品制备设备:离子溅射仪、真空镀膜机、切割机、研磨机等。
四、实验内容1. 扫描电子显微镜(SEM)实验(1)样品制备:将待观察的样品切割成薄片,用离子溅射仪去除表面污染层,然后用真空镀膜机镀上一层金属膜,以增强样品的导电性。
(2)操作步骤:① 开启扫描电子显微镜,调整真空度至10-6Pa。
② 将样品放置在样品台上,调整样品位置,使其位于物镜中心。
③ 设置合适的加速电压和束流,调整聚焦和偏转电压,使样品清晰成像。
④ 观察样品的表面形貌,记录图像。
(3)结果分析:通过观察样品的表面形貌,了解材料的微观结构,如晶粒大小、组织结构、缺陷等。
2. 透射电子显微镜(TEM)实验(1)样品制备:将待观察的样品切割成薄片,用离子溅射仪去除表面污染层,然后用真空镀膜机镀上一层金属膜,以增强样品的导电性。
(2)操作步骤:① 开启透射电子显微镜,调整真空度至10-7Pa。
② 将样品放置在样品台上,调整样品位置,使其位于物镜中心。
③ 设置合适的加速电压和束流,调整聚焦和偏转电压,使样品清晰成像。
④ 观察样品的内部结构,记录图像。
(3)结果分析:通过观察样品的内部结构,了解材料的微观结构,如晶粒大小、组织结构、缺陷等。
五、实验结果与讨论1. 扫描电子显微镜(SEM)实验结果:通过观察样品的表面形貌,发现样品表面存在大量晶粒,晶粒大小不一,且存在一定的组织结构。
在样品表面还观察到一些缺陷,如裂纹、孔洞等。
2. 透射电子显微镜(TEM)实验结果:通过观察样品的内部结构,发现样品内部晶粒较小,且存在一定的组织结构。
电子扫描显微镜实验报告

电子扫描显微镜实验报告一、实验目的本次实验的主要目的是熟悉电子扫描显微镜(SEM)的工作原理、操作方法,并通过实际观察样品,获取微观结构的图像和信息,为材料科学、生物学等领域的研究提供有力的支持。
二、实验原理电子扫描显微镜是利用聚焦的电子束在样品表面扫描,产生二次电子、背散射电子等信号,通过探测器收集这些信号并转化为图像。
其工作原理基于电子与物质的相互作用,电子束的能量和束斑大小决定了成像的分辨率和景深。
三、实验仪器与材料1、仪器:电子扫描显微镜(型号:_____)2、材料:金属样品(如铜、铝)、生物样品(如细胞切片)、半导体样品(如硅片)四、实验步骤1、样品制备金属样品:经过切割、研磨、抛光等处理,以获得平整光滑的表面。
生物样品:经过固定、脱水、切片、染色等处理,使其能够在电子束下保持结构稳定。
半导体样品:采用化学腐蚀或机械抛光的方法,去除表面损伤层。
2、仪器操作打开电子扫描显微镜的电源,等待仪器预热至稳定状态。
将制备好的样品放入样品室,使用样品台的调节装置,将样品准确地定位在电子束的照射区域。
选择合适的加速电压、工作距离、放大倍数等参数。
进行聚焦和像散校正,使图像清晰。
3、图像采集与处理启动图像采集系统,获取样品的扫描图像。
对采集到的图像进行亮度、对比度、色彩等方面的调整,以突出样品的特征。
五、实验结果与分析1、金属样品观察到金属表面的微观形貌,如晶粒大小、晶界分布等。
分析了表面的缺陷,如划痕、孔洞等。
2、生物样品清晰地看到细胞的结构,如细胞膜、细胞核、细胞器等。
能够观察到细胞之间的连接和相互作用。
3、半导体样品显示出半导体表面的晶格结构和缺陷。
对表面的杂质分布进行了初步分析。
六、实验注意事项1、样品制备过程中要避免引入污染和损伤,以保证观察结果的准确性。
2、操作电子扫描显微镜时,要严格按照操作规程进行,避免误操作导致仪器损坏。
3、在图像采集和处理过程中,要注意参数的选择和调整,避免过度处理导致图像失真。
扫描电镜实验报告doc

扫描电镜实验报告篇一:扫描电镜实验报告扫描电镜实验报告班级:材化11学号:姓名:李彦杰日期: XX 05 16一、实验目的1. 了解扫描电镜的构造及工作原理;2. 扫描电镜的样品制备;3. 利用二次电子像对纤维纵向形貌进行观察;4. 了解背散射电子像的应用。
二、实验仪器扫描电子显微镜(热发射扫描型号JSM-5610LV)、真空镀金装置。
扫描电镜原理是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频放大和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。
扫描电镜由下列五部分组成,主要作用简介如下:1.电子光学系统。
其由电子枪、电磁透镜、光阑、样品室等部件组成。
为了获得较高的信号强度和扫描像,由电子枪发射的扫描电子束应具有较高的亮度和尽可能小的束斑直径。
常用的电子枪有三种形式:普通热阴极三极电子枪、六硼化镧阴极电子枪和场发射电子枪。
前两种属于热发射电子枪;后一种则属于冷发射电子枪,也叫场发射电子枪,其亮度最高、电子源直径最小,是高分辨本领扫描电镜的理想电子源。
电磁透镜的功能是把电子枪的束斑逐级聚焦缩小,因照射到样品上的电子束斑越小,其分辨率就越高。
扫描电镜通常有三个磁透镜,前两个是强透镜,缩小束斑,第三个透镜是弱透镜,焦距长,便于在样品室和聚光镜之间装入各种信号探测器。
为了降低电子束的发散程度,每级磁透镜都装有光阑;为了消除像散,装有消像散器。
样品室中有样品台和信号探测器,样品台还能使样品做平移、倾斜、转动等运动。
2. 扫描系统。
扫描系统的作用是提供入射电子束在样品表面上以及阴极射线管电子束在荧光屏上的同步扫描信号。
3. 信号检测、放大系统。
样品在入射电子作用下会产生各种物理信号、有二次电子、背散射电子、特征X射线、阴极荧光和透射电子。
不同的物理信号要用不同类型的检测系统。
它大致可分为三大类,即电子检测器、阴极荧光检测器和X射线检测器。
4. 真空系统。
镜筒和样品室处于高真空下,它由机械泵和分子涡轮泵来实现。
扫描电镜能谱分析实验报告

扫描电镜能谱分析实验报告实验报告篇一:扫描电镜能谱分析实验能谱分析对于确定样品的结构与组成有着重要意义。
本实验通过探究硅片中磷原子的能级结构,得出结论。
具体实验方案如下: 1.扫描电镜分析:采用SPZ100型旋转扫描电子能谱仪,按国家标准,完成了对Z型和P型样品的能量分析。
2.测试分析:采用德国克劳斯特K40光谱仪测试待测样品,得出其成分分析值为:样品组成为:Si85%~91%、 Al2O31.5~3%、 Sn1.0~2.3%、 Fe0.6~0.7%、 S0.2~0.3%、 Cl0.4~0.8%、 Cu0.02~0.1%。
扫描电镜主要由真空系统、电子学系统和信号处理及图像采集系统组成。
与光学显微镜相比,电子显微镜具有极大的优越性,这是因为电子束具有极高的速度,可在瞬间获得数百万的信息,放大倍率一般在1万倍左右。
它是一种多功能的高分辨显微镜。
自从上世纪90年代以来,随着电子显微镜技术的发展,扫描电镜作为现代显微分析领域中研究生命科学和材料科学等方面的有力工具,已广泛应用于各个领域,而且,扫描电镜能谱分析技术也已被应用到众多领域。
例如:样品制备的表征,多元素同时分析,信号提取和图像重建,表面形貌和孔洞分析等。
对于石墨材料的扫描电镜能谱分析的目的主要是: 1、进行表面扫描电镜( SEM)和反射电镜( RIM)表面组成的表征; 2、确定石墨材料中的杂质类型及含量; 3、观察石墨层中二维或三维缺陷及结构缺陷; 4、确定石墨中裂纹的存在位置和走向。
扫描电镜(SEM)是当前应用最为广泛的表面结构研究手段之一。
扫描电镜能谱分析技术包括X射线光电子能谱和俄歇电子能谱,其中俄歇电子能谱又称“无损定量分析”。
俄歇电子能谱实际上是一种能量分析方法,它只分析特定能量的电子。
在原子吸收测量中,测量电子的能量范围约在0.1~0.45ev,此时单能态分辨能力较差,因此,采用双能级分析(即俄歇电子能谱),能够更好地对样品进行表征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子显微镜 一、 实验目的 1、了解并掌握电子显微镜的基本原理; 2、初步学会使用电子显微镜,并能够利用电子显微镜进行基本的材料表面分析。 二、 实验仪器 透射电镜一是由电子光学系统(照明系统)、成像放大系统、电源和真空系统三大部分组成。 本实验用S—4800冷场发射扫描电子显微镜。 实验原理 电子显微镜有两类:扫描电子显微镜、透射电子显微镜,该实验主要研究前者。 (一)扫描电子显微镜(SEM) 由电子枪发射的电子束,经会聚镜、物镜聚焦后,在样品表面形成一定能量和极细的(最小直径可以达到1-10nm)电子束。在扫描线圈磁场的作用下,作用在样品表面上的电子束将按一定时间、空间顺序作光栅扫描。电子束从样品中激发出来的二次电子,由二次电子收集极,经加速极加速至闪烁体,转变成光信号,此信号经光导管到达光电倍增管再转变成电信号。该电信号经视屏放大器放大,输送到显像管栅极,调制显像管亮度,使之在屏幕上呈现出亮暗程度不同的反映表面起伏的二次电子像。由于电子束在样品表面上的扫描和显像管中电子束在荧屏上的扫描由同一扫描电路控制,这就保证了它们之间完全同步,即保证了“物点”和“像点”在时间和空间上的一一对应。 扫描电镜的工作原理如图1。
图1 扫描电镜的工作原理 高能电子束轰击样品表面时,由于电子和样品的相互作用,产生很多信息,如图2所示,主要有以下信息: 图2 电子束与样品表面作用产生的信息示意图 1、二次电子:二次电子是指入射电子束从样品表面10nm左右
深度激发出的低能电子(<50eV)。二次电子的产额主要与样品表面的起伏状况有关,当电子束垂直照射表面,二次电子的量最少。因此二次电子象主要反映样品的表面形貌特征。 2、背散射电子象:背散射电子是指被样品散射回来的入射电子,能量接近入射电子能量。背散射电子的产额与样品中元素的原子序数有关,原子序数越大,背散射电子发射量越多(因散射能力强),因此背散射电子象兼具样品表面平均原子序数分布(也包括形貌)特征。 3、X射线显微分析:入射电子束激发样品时,不同元素的受激,发射出不同波长的特征X射线,其波长λ与元素原子序数Z有以下关系(即莫斯莱公式):ν=hc/λ=K(Z-σ)2 SEM主要特点 (1)景深长视野大 (2)样品制备简单 (3)分辨本领高 (4)样品信息丰富 SEM样品的制备 试样制备技术在电子显微术中占有重要的地位,它直接关系到电子显微图像的观察效果和对图像的正确解释。 扫描电镜的最大优点是样品制备方法简单,对金属和陶瓷等块状样品,只需将它们切割成大小合适的尺寸,用导电胶将其粘接在电镜的样品座上即可直接进行观察。 对于非导电样品如塑料、矿物等,在电子束作用下会产生电荷堆积,影响入射电子束斑和样品发射的二次电子运动轨迹,使图像质量下降。因此这类试样在观察前要喷镀导电层进行处理,通常采用二次电子发射系数较高的Au,Pt或碳膜做导电层,膜厚控制在几nm左右。 (二)透射电子显微镜(TEM) 透射电子显微镜结构包括两大部分:主体部分和辅助部分。主体部分包括照明系统、成像系统和像的观察和记录系统。辅助部分包括真空系统和电气系统。现代的高性能电镜一般有5个透镜组成:双聚光镜和3个成像透镜(物镜、中间镜和投影镜)。 1、照明系统:由电子枪和聚光镜组成,其功能为成像系统提供一个亮度大、尺寸小的照明光斑。亮度是由电子枪的发射强度及聚光镜的使用(相差十多倍)有关,而光斑的大小有电子枪和聚光镜性能决定。由于电子显微镜一般在万倍以上的高放大倍率下工作,而荧光屏的亮度与放大倍率的平方成反比,因此电子枪的照明亮度至少是光学显微镜的105倍。 在电子显微镜中,电子枪是发射电子的照明源,由阴极、栅极和阳极组成。阴极是灯丝,由-0.1mm的钨丝做成V型。栅极是控制电子束的形状和发射强度(通过加一个比阴极更低的负电位)。阳极是使阴极电子获得较高能量,形成高速定向电子流 。 2、成像系统:由物镜、中间镜和投影镜组成。其中物镜是最重要的,因为分辨率是由物镜决定,其他两个透镜的作用是把物镜所形成的一次象进一步放大。成像可分为两个过程:一是平行光束受到具有周期性特点物样的散射作用,形成各级衍射谱,即物的信息通过衍射谱呈现出来;二是各级衍射谱通过干涉重新在像平面上形成反映物的特征的像。从物样不同地点发出的同级平行衍射波经过透镜后,都聚焦到后焦面的同一点,参与成像的次级波越多,叠加的像与物越逼真,因此要形成传统意义上的像,除透射束外,至少需要一个次级衍射束参与。当中间镜的物平面与物镜的像平面重合,荧光屏上得到放大的像,若中间镜的物平面与物镜的后焦面重合,荧光屏上得到放大的衍射花样,中间镜在TEM中起到总的调节放大倍数的作用。 3、衍射花样和晶体的几何关系 晶体对电子的散射如图3所示,一束波长为l的单色平面电子波,被一组面间距为d的晶面散射的情况。相邻晶面的散射电子束的光程差为 d=SR+RT=2dsinθ (1) 散射束干涉加强的条件:光程差等于波长的整数倍,即 2dsinθ=nλ (2) d代表晶体的特征,l代表电子束的特征,q则表示他们之间的几何关系。
图3 晶体对电子的散射 倒易点阵:
设a、b、c为正空间单胞的三个初基矢量,相对应的倒空间的三个初基矢量为a*、b*、c*。 如果倒易点阵中的某一倒易点的倒易矢量为ghkl,表示为:ghkl = ha*+kb*+lc*。ghkl垂直于正空间点阵的(h k l)面,并且| ghkl |=1/dhkl,dhkl是(h k l)面的面间距。 产生衍射的条件:对面心立方晶体,h、k、l指数全奇或全偶;对体心立方晶体,h+k+l=偶数。 电子衍射的几何关系:晶体处于O1位置,倒易点G落在球面上,相应荧光屏上的衍射斑点为G’’,O’’是荧光屏上透射斑点。如图4所示。球心处的角为2(注意不是),L为样品到荧光屏的距离。则 r=Ltan2 式中r为荧光屏上衍射斑点到透射斑点的距离。又2dsin=l(一级衍射),由于很小,tan2»sin2»2。得到: rd=L 在恒定实验条件下,L是常数,称为仪器常数,因此在衍射谱上通过测得衍射斑点到透射斑点的距离,就能得到相应衍射点对应的面间距(注意衍射点对应于正空间中晶面族)。 电镜中使用的电子波长很短,因此反射球的半径(1/)很大,而产生电子衍射的很小,故可视反射球的有效部分为平面——反射面。电子衍射实际上将晶体的倒易点阵与反射面相截的部分投影到荧光屏上,L为其放大倍数。 立方系的电子衍射谱: 标定立方系的电子衍射谱:因为常见的金属及很多物质的晶体结构都是立方系结构,立方系中晶面指数与晶面间距的关系: 1/d2=(h2+k2+l2)/a2 选择三个衍射斑点P1、P2、P3与中心透射斑点O构成平行四边形,其对应的倒易矢量g1、g2是为不共方向最短和次短的倒易矢量,测量其长度ri。计算对应与这些斑点的d值,根据已知晶体的参数(由
图4 电子衍射的几何关系 PDF卡片查的),决定每个斑点的指数(注意,至此仅知斑点所属的晶面族)。用试探法选择一套指数,使其满足:(h3,k3,l3)=(h1,k1,l1)+(h2,k2,l2),也可以测量 OP1与OP2之间的夹角,计算导出P1、P2的指数。根据晶带定律得到晶带指数,也即为晶体的取向。 三、 实验内容 1、放入ZnO纳米棒样品,通过调节观察样品的二次电子像; 2、观察Cu的断口材料,并且对析出相进行成分分析; 3、标定电子衍射谱。 四、 实验数据及分析 1. 将制备好的ZnO纳米棒样品放入样品室,由于样品的半导体性质,为了避免电荷累积,设置较低的电压5 kV ,通过控制面板实现调节放大倍数,粗、微调焦等得到ZnO表面的较清晰形貌。如下图5 为 ZnO纳米棒的较清晰形貌。
图5 ZnO纳米棒二次电子像 2. 实验中李老师将一Cu导线剪切一小段制成金属Cu的断口样品,观测Cu断口表面的形貌图。大概过程如下:将样品放入样品室,设置电压为,工作距离15,通过控制面板实现调节放大倍数,通过控制面板实现调节放大倍数,粗、微调焦等得到Cu表面的较清晰形貌。如下图6为Cu断口表面的二次电子像。从图中我们可以看出一些杂质的析出相,其所含的元素见下面的实验内容。
图6 Cu断口表面的二次电子像
从上面的实验数据可以看出,样品铜中还含有Zn,O等杂质元素。 谱图处理 : 没有被忽略的峰 处理选项 : 所有经过分析的元素 (已归一化) 重复次数 = 1 标准样品 : O SiO2 1-Jun-1999 12:00 AM Cu Cu 1-Jun-1999 12:00 AM Zn Zn 1-Jun-1999 12:00 AM
元素 重量 原子 百分比 百分比 O K Cu K Zn K
总量 3 标定电子衍射谱 单晶硅的电子衍射图像见附图,从衍射图上测得:r1=1.5cm,r2=1.5cm,r3=2.2cm。实验中:L=80cm,加速电压为100Kv,可得电子波长λ=。 单晶硅为面心立方结构,晶格常数:a=。
由 LrdLdr 及 222adhkl, 得 222arhklL
代入相关数据后 222111
0.5431.52.750.003780hkl
, 2221118hkl (1)
222222
0.5431.52.750.003780hkl
,2222228hkl (2)
222333
0.5432.24.040.003780hkl
,22233316hkl (3)
单晶硅为面心立方,对面心立方晶体,(h,k,l)指数为全奇或全偶。又对于立方系有:(h3,k3,l3)=(h1,k1,l1)+(h2,k2,l2) 可得一组解为: (111,,hkl)=(2,2,0), (222,,hkl)=(2,2,0), (333,,hkl)=(4,0,0)。 标出的指数见后面附图。