全国2017年中考数学真题分类汇编 4 一元一次方程及其应用

合集下载

2017年全国中考数学真题汇编:一次函数专题练习(含详细解析)

2017年全国中考数学真题汇编:一次函数专题练习(含详细解析)

y 1=0.7[120x+100 ( 2x﹣ 100) ]+2200=224x ﹣ 4800,
y 2=0.8[100 ( 3x﹣ 100) ]=240x ﹣ 8000 ;
( 2)由题意,得 当 y1 >y 2 时,即 224x﹣ 4800> 240x ﹣ 8000,解得: x < 200 当 y1 =y2 时,即 224x﹣ 4800=240x ﹣ 8000,解得: x=200 当 y1 <y 2 时,即 224x﹣ 4800< 240x ﹣ 8000,解得: x > 200 即当参演男生少于 200 人时,购买 B 公司的服装比较合算; 来源:Z_xx_ kCom] 当参演男生等于 200 人时,购买两家公司的服装总费用相同,可任一家公司购买;
1
(﹣ 2, 1) (﹣ 1, 1)
( 2, 1)
2
(﹣ 2, 2) (﹣ 1, 2) (1, 2)
所有等可能的情况数有 12 种,其中直线 y=ax+b 不经过第四象限情况数有 2 种,
则 P= = .
故答案为:
点评:此 题考查了列表法与树状图法,以及一次函数图象与系数的关系,用到的知识点为:
概率 =所求情况数与总情况数之比.
∴k > 0,
∵2> 0,
∴此函数的图象经过一、二、三象限,不经过第四象限. 故答案为:四.
点评:本题考查的是一次函数的图象与系数的关系,即一次函数
y=kx+b ( k≠0)中,当 k>
0, b> 0 时,函数的图象经过一、二、三象限.
( ?大连) 如图,一次函数 y = - x + 4 的图象与 x 轴、 y 轴分别相交于点 A、B。P是射线 BO上的一个动点(点P不与点B重合),过点P作 PC⊥ AB,垂 足为C,在射线 CA上截取 CD=CP,连接 PD。设 BP= t 。

2017年中考数学全国真题解析分类汇编目录

2017年中考数学全国真题解析分类汇编目录

目录1、2017年中考数学解析分类汇编分类01 有理数(含解析)2、2017年中考数学解析分类汇编分类02 实数(含解析)3、2017年中考数学解析分类汇编分类03 整式与因式分解(含解析)4、2017年中考数学解析分类汇编分类04 一元一次方程及其应用(含解析)5、2017年中考数学解析分类汇编分类05 二元一次方程(组)及其应用(含解析)6、2017年中考数学解析分类汇编分类06 不等式(组)及其应用(含解析)7、2017年中考数学解析分类汇编分类07 分式与分式方程(含解析)8、2017年中考数学解析分类汇编分类08 二次根式(含解析)9、2017年中考数学解析分类汇编分类09 一元二次方程及其应用(含解析)10、2017年中考数学解析分类汇编分类10 平面直角坐标系与点的坐标(含解析)11、2017年中考数学解析分类汇编分类11 函数与一次函数(含解析)12、2017年中考数学解析分类汇编分类12 反比例函数(含解析)13、2017年中考数学解析分类汇编分类13 二次函数(含解析)14、2017年中考数学解析分类汇编分类14 统计(含解析)15、2017年中考数学解析分类汇编分类15 频数与频率(含解析)16、2017年中考数学解析分类汇编分类16 概率(含解析)17、2017年中考数学解析分类汇编分类17 点、线、面、角(含解析)18、2017年中考数学解析分类汇编分类18 图形的展开与叠折(含解析)19、2017年中考数学解析分类汇编分类19 相交线与平行线(含解析)20、2017年中考数学解析分类汇编分类20 三角形的边与角(含解析)21、2017年中考数学解析分类汇编分类21 全等三角形(含解析)22、2017年中考数学解析分类汇编分类22 等腰三角形(含解析)23、2017年中考数学解析分类汇编分类23 直角三角形与勾股定理(含解析)24、2017年中考数学解析分类汇编分类24 多边形与平行四边形(含解析)25、2017年中考数学解析分类汇编分类25 矩形菱形与正方形(含解析)26、2017年中考数学解析分类汇编分类26 图形的相似与位似(含解析)27、2017年中考数学解析分类汇编分类27 锐角三角函数与特殊角(含解析)28、2017年中考数学解析分类汇编分类28 解直角三角形(含解析)29、2017年中考数学解析分类汇编分类29 平移旋转与对称(含解析)30、2017年中考数学解析分类汇编分类30 圆的有关性质(含解析)31、2017年中考数学解析分类汇编分类31 点直线与圆的位置关系(含解析)32、2017年中考数学解析分类汇编分类32 正多边形与圆(含解析)33、2017年中考数学解析分类汇编分类33 弧长与扇形面积(含解析)34、2017年中考数学解析分类汇编分类34 投影与视图(含解析)35、2017年中考数学解析分类汇编分类35 命题与证明(含解析)36、2017年中考数学解析分类汇编分类36 尺规作图(含解析)37、2017年中考数学解析分类汇编分类37 规律探索(含解析)38、2017年中考数学解析分类汇编分类38 操作探究(含解析)39、2017年中考数学解析分类汇编分类39 方案设计(含解析)40、2017年中考数学解析分类汇编分类40 开放探究(含解析)41、2017年中考数学解析分类汇编分类41 动态问题(含解析)42、2017年中考数学解析分类汇编分类42 阅读理解(含解析)43、2017年中考数学解析分类汇编分类43 图表信息(含解析)44、2017年中考数学解析分类汇编分类44 思想方法(含解析)45、2017年中考数学解析分类汇编分类45 跨学科结合与高中衔接问题(含解析)。

2017年全国中考数学真题《函数与一次函数》分类汇编解析

2017年全国中考数学真题《函数与一次函数》分类汇编解析

2017年全国中考数学真题《函数与一次函数》分类汇编解析函数与一次函数考点一、平面直角坐标系 (3分) 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

考点二、不同位置的点的坐标的特征 (3分) 1、各象限内点的坐标的特征 点P(x ,y )在第一象限0,0>>⇔y x点P(x ,y )在第二象限0,0><⇔y x 点P(x ,y )在第三象限0,0<<⇔y x 点P(x ,y )在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x ,y )在x 轴上0=⇔y ,x 为任意实数 点P(x ,y )在y 轴上0=⇔x ,y 为任意实数点P(x ,y )既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征点P(x ,y )在第一、三象限夹角平分线上⇔x 与y 相等 点P(x ,y )在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离点P(x ,y )到坐标轴及原点的距离: (1)点P(x ,y )到x 轴的距离等于y(2)点P(x ,y )到y 轴的距离等于x(3)点P(x ,y )到原点的距离等于22y x +考点三、函数及其相关概念 (3~8分) 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

2017年中考数学试题汇编---- 解分式方程及其应用

2017年中考数学试题汇编---- 解分式方程及其应用

解分式方程及其应用一.选择题1.方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣52.已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.23.已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤14.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5 B.﹣=5C.+5=D.﹣=55.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=6.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.167.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=8.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.﹣10=B.+10=C.﹣10=D.+10=9.分式方程﹣1=的解为()A.x=1 B.x=﹣1 C.无解D.x=﹣210.关于x的分式方程+5=有增根,则m的值为()A.1 B.3 C.4 D.511.某市从今年1月1日起调整居民用水价格,每立方米水费上涨.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.设去年居民用水价格为x元/m3,根据题意列方程,正确的是()A.B.C.D.12.某服装专卖店销售的A款品牌西服去年销售总额为50000元,今年该款西服每件售价比去年便宜400元,若售出的件数相同,则该款西服销售总额将比去年降低20%,求今年该款西服的每件售价.若设今年该款西服的每件售价为x元,那么可列方程为()A.=B.=C.=D.13.已知:关于x方程+=有且仅有一个实数根,则k的值为()A.B.或1 C.或5或1 D.或5或﹣2二.填空题14.分式方程=的解是.15.关于x的分式方程=的解是.16.若关于x的分式方程+3=无解,则实数m=.17.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.18.若关于x的分式方程=﹣3有增根,则实数m的值是.19.若关于x的分式方程+=3的解为正实数,则实数m的取值范围是.20.分式方程=﹣2的解为.21.分式方程=1﹣的解是.22.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程.23.关于x的方程无解,则a的值是.三.解答题24.解方程:﹣=1.25.解方程:+=1.26.解方程:.27.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?28.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为cm/s(用含x的代数式表示).(2)求点P原来的速度.29.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.30.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.31.政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.32.某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?33.某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.34.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?35.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?36.“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,某公司生产A,B两种机械设备,每台B种设备的成本是A种设备的1.5倍,公司若投入16万元生产A种设备,36万元生产B种设备,则可生产两种设备共10台.请解答下列问题:(1)A、B两种设备每台的成本分别是多少万元?(2)若A,B两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A种设备至少生产53台,求该公司有几种生产方案;(3)在(2)的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”沿线的甲国,剩余设备全部售出,公司仍获利44万元,赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台A种设备,航空运输每次运2台B种设备(运输过程中产生的费用由甲国承担).直接写出水路运输的次数.37.在“母亲节”前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来可购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?38.为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.39.甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.40.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.参考答案与解析一.选择题1.(2017•哈尔滨)方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣5【分析】根据分式方程的解法即可求出答案.【解答】解:2(x﹣1)=x+3,2x﹣2=x+3,x=5,令x=5代入(x+3)(x﹣1)≠0,故选(C)【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.2.(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.3.(2017•黑龙江)已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤1【分析】根据分式方程的解法即可求出a的取值范围;【解答】解:3(3x﹣a)=x﹣3,9x﹣3a=x﹣3,8x=3a﹣3∴x=,由于该分式方程有解,令x=代入x﹣3≠0,∴a≠9,∵该方程的解是非负数解,∴≥0,∴a≥1,∴a的范围为:a≥1且a≠9,故选(C)【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.4.(2017•乌鲁木齐)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5 B.﹣=5C.+5= D.﹣=5【分析】根据题意给出的等量关系即可列出方程.【解答】解:设原计划每天植树x万棵,需要天完成,∴实际每天植树(x+0.2x)万棵,需要天完成,∵提前5天完成任务,∴﹣=5,故选(A)【点评】本题考查分式方程的应用,解题的关键是利用题目中的等量关系,本题属于基础题型.5.(2017•临沂)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等.求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=【分析】根据甲乙的工作时间,可列方程.【解答】解:设乙每小时做x个,甲每小时做(x+6)个,根据甲做90个所用时间与乙做60个所用时间相等,得=,故选:B.【点评】本题考查了分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.6.(2017•重庆)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16【分析】根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<﹣2,即可得出a≥﹣2,找出﹣2≤a<6且a≠2中所有的整数,将其相加即可得出结论.【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.【点评】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<﹣2,找出﹣2≤a<6且a≠2是解题的关键.7.(2017•南宁)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.= B.=C.=D.=【分析】根据题意可得顺水速度为(35+v)km/h,逆水速度为(35﹣v)km/h,根据题意可得等量关系:以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等,根据等量关系列出方程即可.【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出顺水和逆水行驶速度,找出题目中等量关系,然后列出方程.8.(2017•泰安)某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.﹣10=B.+10=C.﹣10=D.+10=【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【解答】解:设第一批购进x件衬衫,则所列方程为:+10=.故选:B.【点评】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.9.(2017•滨州)分式方程﹣1=的解为()A.x=1 B.x=﹣1 C.无解D.x=﹣2【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程的无解.故选C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.(2017•毕节市)关于x的分式方程+5=有增根,则m的值为()A.1 B.3 C.4 D.5【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣1),得7x+5(x﹣1)=2m﹣1,∵原方程有增根,∴最简公分母(x﹣1)=0,解得x=1,当x=1时,7=2m﹣1,解得m=4,所以m的值为4.故选C.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.11.(2017•达州)某市从今年1月1日起调整居民用水价格,每立方米水费上涨.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.设去年居民用水价格为x元/m3,根据题意列方程,正确的是()A.B.C.D.【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【解答】解:设去年居民用水价格为x元/m3,根据题意列方程:﹣=5,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.12.某服装专卖店销售的A款品牌西服去年销售总额为50000元,今年该款西服每件售价比去年便宜400元,若售出的件数相同,则该款西服销售总额将比去年降低20%,求今年该款西服的每件售价.若设今年该款西服的每件售价为x元,那么可列方程为()A.=B.=C.=D.【分析】设今年该款西服的每件售价为x元,则去年的售价为x+400,再利用售出的件数相同,得出等式.【解答】解:设今年该款西服的每件售价为x元,那么可列方程为:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.13.已知:关于x方程+=有且仅有一个实数根,则k的值为()A.B.或1 C.或5或1 D.或5或﹣2【分析】分式方程去分母转化为整式方程,由分式方程有且仅有一个实数根,分情况讨论,即可确定出k的值即可.【解答】解:分式方程去分母得:x2+x2+2x+1=4x+k,即2x2﹣2x+1﹣k=0,由分式方程有且仅有一个实数根,可得整式方程中△=4﹣8(1﹣k)=0,解得:k=;若整式方程中△>0,则当增根为x=0时,代入整式方程可得:1﹣k=0,即k=1,此时,方程2x2﹣2x=0的解为x1=1,x2=0(不合题意);当增根为x=﹣1时,代入整式方程可得:5﹣k=0,即k=5,此时,方程2x2﹣2x﹣4=0的解为x1=2,x2=﹣1(不合题意);综上所述,k的值为或5或1,故选:C.【点评】此题考查了分式方程的解,解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.二.填空题14.(2017•襄阳)分式方程=的解是x=9.【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.【点评】本题考查了解分式方程,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.(2017•绵阳)关于x的分式方程=的解是x=﹣2.【分析】把分式方程转化为整式方程即可解决问题.【解答】解:两边乘(x+1)(x﹣1)得到,2x+2﹣(x﹣1)=﹣(x+1),解得x=﹣2,经检验,x=﹣2是分式方程的解.∴x=﹣2.故答案为x=﹣2.【点评】本题考查分式方程的解,记住即为分式方程的步骤,注意解分式方程必须检验.16.(2017•攀枝花)若关于x的分式方程+3=无解,则实数m=3或7.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:7+3(x﹣1)=mx,整理,得(m﹣3)x=4,当整式方程无解时,m﹣3=0,m=3;当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7,∴m的值为3或7.故答案为3或7.【点评】本题考查了分式方程无解的条件,是需要识记的内容.17.(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.18.(2017•宿迁)若关于x的分式方程=﹣3有增根,则实数m的值是1.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母,得:m=x﹣1﹣3(x﹣2),由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程可得:m=1,故答案为:1.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.19.(2017•泸州)若关于x的分式方程+=3的解为正实数,则实数m的取值范围是m<6且m≠2.【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【解答】解:+=3,方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,解得,x=,∵≠2,∴m≠2,由题意得,>0,解得,m<6,故答案为:m<6且m≠2.【点评】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.20.(2017•黄石)分式方程=﹣2的解为x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3﹣4x+4,解得:x=,经检验x=是分式方程的解,故答案为:x=【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.分式方程=1﹣的解是x=﹣1.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=2x﹣1+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:x=﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程.【分析】求的是原计划的工效,工作总量为2400,一定是根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间﹣实际用的时间=8.【解答】解:原计划用的时间为:,实际用的时间为:.所列方程为:,故答案为:.【点评】本题考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.23.关于x的方程无解,则a的值是1或0.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:2a=(a﹣1)(x﹣1),整理得:(a﹣1)x=3a﹣1,当a﹣1=0,即a=1时,方程无解,当x﹣1=0时,即x=1,方程也无解,∴2a=(a﹣1)(1﹣1)解得:a=0故答案为:1或0.【点评】本题考查了分式方程的解,弄清分式方程无解的条件是解本题的关键.三.解答题24.(2017•宁夏)解方程:﹣=1.【分析】根据分式方程的解法即可求出答案.【解答】解:(x+3)2﹣4(x﹣3)=(x﹣3)(x+3)x2+6x+9﹣4x+12=x2﹣9,x=﹣15,检验:x=﹣15代入(x﹣3)(x+3)≠0,∴原分式方程的解为:x=﹣15,【点评】本题考查分式的方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.25.(2017•大庆)解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+x+2=x2+2x,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.26.(2017•遂宁)解方程:.【分析】去分母化为整式方程即可解决问题.【解答】解:两边乘x﹣2得到,1+3(x﹣2)=x﹣1,1+3x﹣6=x﹣1,x=2,∵x=2时,x﹣2=0,∴x=2是分式方程的增根,原方程无解.【点评】本题考查分式方程的解,解题的关键是掌握解分式方程的步骤,注意解分式方程必须检验.27.(2017•安顺)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根。

【精品】2017年全国中考数学真题《分式与分式方程》分类汇编解析

【精品】2017年全国中考数学真题《分式与分式方程》分类汇编解析

2017年全国中考数学真题《分式与分式方程》分类汇编解析分式与分式方程考点一、分式 (8~10分)1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是( )A .B .C .D .2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )C.﹣=D.+=304.(2017·广西桂林·3分)当x=6,y=3时,代数式()•的值是()A.2 B.3 C.6 D.95. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=6. (2017·重庆市A卷·4分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣27.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.8.(2017海南3分)解分式方程,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解10. (2017·湖北武汉·3分)若代数式在31-x实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3D.x=312.(2017·四川攀枝花)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n13.(2017·四川内江)甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地,已知A,C两地间的距离为110千米,B,C两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x千米/时,由题意列出方程,其中正确的是( )A.1102x+=100xB.1100x=1002x+C.1102x-=100xD.1100x=1002x-14.(2017·四川内江)在函数y x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4驶100km,设提速前列车的平均速度为xkm/h,下列方程正确的是()A.=B.=C.=D.=16. (2017·黑龙江龙东·3分)关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣317.(2017·黑龙江齐齐哈尔·3分)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m 的值为()A.1,2,3 B.1,2 C.1,3 D.2,318.(2017·湖北荆门·3分)化简的结果是()A.B.C.x+1 D.x﹣119.(2017·内蒙古包头·3分)化简()•ab,其结果是()A.B.C.D.20. (2017·山东潍坊·3分)计算:20•2﹣3=()A.﹣B.C.0 D.821. (2017·山东潍坊·3分)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣22. (2017·四川眉山·3分)已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C.D.二、填空题1.(2017·山东省济宁市·3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.2. (云南省昆明市·3分)计算:﹣=.4.(2017·贵州安顺·4分)在函数中,自变量x的取值范围是.5.(2017贵州毕节5分)若a2+5ab﹣b2=0,则的值为.6.(2017·四川南充)计算:=.7.(2017·四川攀枝花)已知关于x的分式方程+=1的解为负数,则k的取值范围是.8.(2017·四川泸州)分式方程﹣=0的根是.9.(2017·四川内江)化简:(2a+93a-)÷3aa+=______.10. (2017·湖北荆州·3分)当a=﹣1时,代数式的值是.三、解答题1.(2017·湖北随州·6分)先化简,再求值:(﹣x+1)÷,其中x=﹣2.2. (2017·湖北随州·6分)某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.3. (2017·吉林·5分)解方程:=.4. (2017·江西·6分)先化简,再求值:(+)÷,其中x=6.5. (2017·辽宁丹东·10分)某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?6.(2017·四川泸州)化简:(a+1﹣)•.7.(2017·四川宜宾)2017年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?8.(2017·四川宜宾)化简:÷(1﹣)9.(2017·黑龙江龙东·6分)先化简,再求值:(1+)÷,其中x=4﹣tan45°.10.(2017·黑龙江齐齐哈尔·5分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.11.(2017·湖北黄石·6分)先化简,再求值:÷•,其中a=2017.12.(2017·湖北荆州·12分)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n =0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.13.(2017·青海西宁·7分)化简:,然后在不等式x≤2的非负整数解中选择一个适14. (2017·陕西)化简:(x﹣5+)÷.15. (2017·四川眉山)先化简,再求值:,其中a=3.16. (2017·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:17.(2017·山东省滨州市·4分)先化简,再求值:÷(﹣),其中a =.18.(2017·山东省东营市·4分)化简,再求值:(a +1-4a -5a -1)÷(1a -1a 2-a ),其中a =2+3.19.(2017·山东省东营市·8分)东营市某学校2015年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?20.(2017·山东省菏泽市·3分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)21. (2017·重庆市A卷·5分)(+x﹣1)÷.22. (2017·重庆市B卷·5分)÷(2x﹣)23. (2017·浙江省绍兴市·4分))解分式方程:+=4.24.(2017·福建龙岩·6分)先化简再求值:,其中x=2+.25.(2017·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同 (1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?26.(2017·贵州安顺·10分)先化简,再求值:1211)1(+-+÷-x x x ),从﹣1,2,3中选择一个适当的数作为x 值代入.27.(2017·黑龙江哈尔滨·7分)先化简,再求代数式(﹣)÷的值,其中a =2sin 60°+tan 45°.28.(2017·黑龙江哈尔滨·10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?29.(2017广西南宁)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?30.(2017河南)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.答案分式与分式方程一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是()A.B.C.D.【考点】最简分式.【专题】计算题;分式.【分析】利用最简分式的定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣【考点】分式的加减法. 【专题】计算题;分式.【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==,故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30 B .﹣=C .﹣= D .+=30【考点】由实际问题抽象出分式方程.【分析】设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.【解答】解:设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据题意得,﹣=.故选B .4.(2017·广西桂林·3分)当x =6,y =3时,代数式()•的值是( )A .2B .3C .6D .9 【考点】分式的化简求值.【分析】先对所求的式子化简,然后将x =6,y =3代入化简后的式子即可解答本题.【解答】解:()•==,当x=6,y=3时,原式=,故选C.5. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.6. (2017·重庆市A卷·4分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣2【分析】由分式有意义的条件得出不等式,解不等式即可.【解答】解:根据题意得:x+2≠0,解得x≠﹣2.故选:D.【点评】本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.7.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据题意,可列方程: =,故选:A .8.(2017海南3分)解分式方程,正确的结果是( )A .x =0B .x =1C .x =2D .无解 【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【解答】解:去分母得:1+x ﹣1=0, 解得:x =0, 故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验. 9.(2017河北3分)下列运算结果为x -1的是( )A .11x-B .211x x x x -∙+ C .111x x x +÷- D .2211x x x +++ 答案:B解析:挨个算就可以了,A 项结果为—— , B 项的结果为x -1,C 项的结果为—— D 项的结果为x +1。

2017年中考数学复习-一元一次方程及应用(22张ppt) (共21张ppt)

2017年中考数学复习-一元一次方程及应用(22张ppt) (共21张ppt)

中考冲刺
一、选择题 1.(2016•梧州)方程3x﹣3=0的解是( A ) A.x=1 B.x=-1 C.x= 1 D.x=0
3
2.(2016•宁夏)已知x,y满足方程组 则x+y的值为( C ) A.9 B.7 C.5 D.3
版权所有-
ì ï x + 6 y = 12 í ï î 3x - 2 y = 8
版权所有-
首页
末页
知识清单 知识点一 一元一次方程及解法
版权所有-
首页
末页
知识点二
二元一次方程组及解法
版权所有-
首页
末页
课前小测
1.(2015•大连)方程3x+2(1﹣x)=4的解是 ( C 2) 6 A.x= 5 B.x= 5 C.x=2 D.x=1 ì ï a + 5b = 12 í 2.(2015•广州)已知a,b满足方程组 ïî 3a - b = 4 , 则a+b的值为( B ) A.﹣4 B.4 C.﹣2 D.2
版权所有-
首页
末页
5.(2015•荆门)王大爷用280元买了甲、乙两种 药材,甲种药材每千克20元,乙种药材每千克60 元,且甲种药材比乙种药材多买了2千克,则甲种 5 药材买了 千克.
版权所有-
首页
末页
经典回顾
考点一 一元一次方程的解法
解:设中型车有x辆,小型车有y辆,根据题意 ì x + y = 50 ï ,得 í
ï î 12 x + 8 y = 480
ì ï x = 20 解得 í ï î y = 30
答:中型车有20辆,小型车有30辆.
版权所有-
首页
末页
【变式5】(2014•广东)某商场销售的一款空调机每台的 标价是1635元,在一次促销活动中,按标价的八折销售, 仍可盈利9%.求这款空调每台的进价.

2017年全国中考数学真题《一元二次方程及其应用》分类汇编解析

2017年全国中考数学真题《一元二次方程及其应用》分类汇编解析

一元二次方程及其应用;;考点一、 一元二次方程的解法 (10分) 1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点二、一元二次方程根的判别式 (3分)根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆考点三、一元二次方程根与系数的关系 (3分)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,ac x x =21。

也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

考点四、分式方程 (8分)1、分式方程分母里含有未知数的方程叫做分式方程。

2017年中考数学模拟试题汇编 一次函数及其运用(含解析)

2017年中考数学模拟试题汇编 一次函数及其运用(含解析)

一次函数及其运用一、单选题1、若(2,k)是双曲线y=上的一点,则函数y=(k-1)x的图象经过()A、第一、三象限B、第二、四象限C、第一、二象限D、第三、四象限2、次函数y=mx+|m-1|的图象过点(0,2),且y随x的增大而增大,则m=()A、-1B、3C、1D、-1或33、若函数y=(a-5)x1-b+b是一次函数,则a、b应满足的条件是().A、a=5且b≠0B、a=5且b=0C、a≠5且b≠0D、a≠5且b=04、下列函数中,满足y的值随x的值增大而增大的是()A、y=﹣2xB、y=3x﹣1C、y=D、y=x25、一次函数的图象如图所示,当-3<y<3时的取值范围是()A、x>4B、0<x<2C、0<x<4D、2<x<46、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A、y=-x+2B、y=x+2C、y=x-2D、y=-x-27、如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A、x=2B、x=0C、x=﹣1D、x=﹣38、二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b 与反比例函数y= 的图象可能是()A、B、C、D、9、一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A、B、C、D、10、矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A、(3,1)B、(3,)C、(3,)D、(3,2)11、(2016•荆门)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A、B、C、D、12、如图,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动,设∠APB=y(单位:度),点P运动的时间为x(单位:秒),那么表示y与x关系的图象是( )A、B、C、D、二、填空题(共5题;共5分)13、已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第________象限.14、若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是________(写出一个即可).15、如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为________ .16、如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为________.17、如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y= x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y= x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是________.三、解答题(共2题;共10分)18、如图,直线x-2y=-5和x+y=1分别与x轴交于A、B两点,这两条线的交点为P.(1)求点P的坐标.(2)求△APB的面积.19、已知一次函数y=(m﹣2)x﹣3m2+12,问:(1)m为何值时,函数图象过原点?(2)m为何值时,函数图象平行于直线y=2x?(3)m为何值时,函数图象过点(0,﹣15),且y随x的增大而减小?四、综合题(共5题;共55分)20、某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元.(1)分别求出0≤x≤200和x>200时,y与x的函数表达式;(2)小明家5月份交纳电费117元,小明家这个月用电多少度?21、根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.22、对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A 的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C.①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.23、随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;24、(2016•枣庄)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.答案解析部分一、单选题【答案】B【考点】一次函数与系数的关系,反比例函数图象上点的坐标特征【解析】【解答】把(2,k)代入双曲线y=得,k=,把k=代入函数y=(k-1)x得,y=-x,故此函数的图象过二、四象限.故选B.【分析】此题利用的规律:在直线y=kx(k≠0)中,当k>0时,函数图象过一、三象限;当k<0时,函数图象过二、四象限.先把(2,k)代入双曲线y=求出k的值,再把k的值代入函数y=(k-1)x求出此函数的解析式,再根据正比例函数的特点解答即可.【答案】B【考点】一次函数与一元一次方程,一次函数的性质,一次函数与系数的关系【解析】【解答】∵一次函数y=mx+|m-1|的图象过点(0,2),∴|m-1|=2,∴m-1=2或m-1=-2,解得m=3或m=-1,∵y随x的增大而增大,∴m>0,∴m=3.故选B.【分析】把点的坐标代入函数解析式求出m的值,再根据y随x的增大而增大判断出m>0,从而得解.【答案】D【考点】一次函数的定义【解析】【解答】∵函数y=(a-5)x1-b+b是一次函数,∴1-b=1且a-5≠0,解得b=0,a≠5选D.【分析】根据一次函数的定义,令未知数的指数为1,系数不为0【答案】B【考点】反比例函数的性质,二次函数的性质,一次函数的性质【解析】【解答】解:A、在y=﹣2x中,k=﹣2<0,∴y的值随x的值增大而减小;B、在y=3x﹣1中,k=3>0,∴y的值随x的值增大而增大;C、在y= 中,k=1>0,∴y的值随x的值增大而减小;D、二次函数y=x2,当x<0时,y的值随x的值增大而减小;当x>0时,y的值随x的值增大而增大.故选B.【分析】根据一次函数、反比例函数、二次函数的性质考虑4个选项的单调性,由此即可得出结论.本题考查了一次函数的性质、反比例函数的性质以及二次函数的性质,解题的关键是根据函数的性质考虑其单调性.本题属于基础题,难度不大,解决该题型题目时,熟悉各类函数的性质及其图象是解题的关键.【答案】C【考点】一次函数与一元一次不等式,一次函数与系数的关系【解析】【解答】函数经过点(0,3)和(4,-3),则当-3<y<3时,x的取值范围是:0<x<4.故选C.【分析】函数经过点(0,3)和(4,-3),根据一次函数是直线,且这个函数y随x的增大而减小,即可确定.【答案】B【考点】正比例函数的图象和性质,待定系数法求一次函数解析式,两条直线相交或平行问题【解析】【解答】设一次函数的解析式y=kx+b(k≠0),一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:,解得,该一次函数的表达式为y=x+2.故选B.【分析】首先设出一次函数的解析式y=kx+b(k≠0),根据图象确定A和B的坐标,代入求出k和b的值即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国2017年中考数学真题分类汇编4一元一次方程及其应用考点一、一元一次方程的概念(6分)1、方程含有未知数的等式叫做方程。

2、方程的解能使方程两边相等的未知数的值叫做方程的解。

3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程x=+bax叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

0≠a为未知数,)(0一.选择题1.(2017·广西桂林·3分)如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣32.(2017广西南宁3分)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90C.90﹣0.8x=10 D.x﹣0.8x﹣10=903.(2017海南3分)若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣34.(2017·湖北荆州·3分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元 B.100元 C.80元 D.60元5.(2017·内蒙古包头·3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣ C.﹣5 D.二.填空题1. (2017·浙江省绍兴市·5分)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.2.(2017·黑龙江龙东·3分)一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是180 元.3.(2017·湖北荆门·3分)为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有台.三、解答题1. (2017·湖北武汉·8分)解方程:5x+2=3(x+2) .2. (2017·江西·8分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.3.(2017·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?4.(2017海南)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.答案一元一次方程及其应用一.选择题1.(2017·广西桂林·3分)如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3【考点】一次函数与一元一次方程.【分析】所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.【解答】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故选D2.(2017广西南宁3分)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.3.(2017海南3分)若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣3【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x+2=1,解得:x=﹣1,故选B【点评】此题考查了解一元一次方程方程,根据题意列出方程是解本题的关键.4.(2017·湖北荆州·3分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元 B.100元 C.80元 D.60元【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷=200.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.5.(2017·内蒙古包头·3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣ C.﹣5 D.【考点】解一元一次方程;相反数.【分析】先根据相反数的意义列出方程,解方程即可.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C.二.填空题1. (2017·浙江省绍兴市·5分)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296 元.【考点】一元一次方程的应用.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296.综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.2.(2017·黑龙江龙东·3分)一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是180 元.【考点】一元一次方程的应用.【分析】设该件服装的成本价是x元.根据“利润=标价×折扣﹣进价”即可得出关于x的一元一次方程,解方程即可得出结论.【解答】解:设该件服装的成本价是x元,依题意得:300×﹣x=60,解得:x=180.∴该件服装的成本价是180元.故答案为:180.3.(2017·湖北荆门·3分)为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有16 台.【考点】一元一次方程的应用.【分析】设购置的笔记本电脑有x台,则购置的台式电脑为台.根据笔记本电脑的台数比台式电脑的台数的还少5台,可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设购置的笔记本电脑有x台,则购置的台式电脑为台,依题意得:x=﹣5,即20﹣x=0,解得:x=16.∴购置的笔记本电脑有16台.故答案为:16.三、解答题1. (2017·湖北武汉·8分)解方程:5x+2=3(x+2) .【考点】解一元一次方程【答案】x=2【解析】解:去括号得5x+2=3x+6,移项合并得2x=4,∴x=2.2. (2017·江西·8分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即: 320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.3.(2017·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?【考点】分式方程的应用;一元一次方程的应用.【分析】(1)设每件乙种物品的价格是x 元,则每件甲种物品的价格是(x +10)元,根据用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同列出方程,求解即可;(2)设甲种物品件数为m 件,则乙种物品件数为3m 件,根据该爱心组织按照此需求的比例购买这2000件物品列出方程,求解即可.【解答】解:(1)设每件乙种物品的价格是x 元,则每件甲种物品的价格是(x +10)元,根据题意得, xx 30010350=+ 解得:x =60.经检验,x =60是原方程的解.答:甲、乙两种救灾物品每件的价格各是70元、60元;(2)设甲种物品件数为m 件,则乙种物品件数为3m 件,根据题意得,m +3m =2000,解得m =500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元). 答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.4.(2017海南)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.【考点】一元一次方程的应用.【分析】设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元.根据“购书价格=《汉语成语大词典》的标价×折率+《中华上下五千年》的标价×折率”可列出关于x 的一元一次方程,解方程即可得出结论.【解答】解:设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元,依题意得:50%x +60%(150﹣x )=80,解得:x =100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【点评】本题考查了一元一次方程的应用,解题的关键是列出50%x+60%(150﹣x)=80.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.。

相关文档
最新文档