黑龙江省哈尔滨市2018届九年级数学上学期期中试题新人教版五四制含答案
2018黑龙江哈尔滨六十九中九年级上数学期中试卷

2018-2019学年黑龙江省哈尔滨六十九中九年级(上)期中数学试卷与答案(五四学制)一.选择题1.﹣的相反数是( A )A.B.﹣ C.﹣2 D.22.下列计算正确的是( A )A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+13.在下列图形中,既是轴对称图形,又是中心对称图形的是( C )A.B.C.D.4.反比例函数y=的图象经过点(﹣2,5),则k的值为( C )A.10 B.﹣10 C.4 D.﹣45.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是( B )A.10% B.20% C.25% D.40%6.已知抛物线的解析式为为y=(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是( A )A.增大 B.减小 C.先增大再减小 D.先减小再增大7.如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于( B )A.a•sinαB.a•tanαC.a•cosαD.8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( C )A.B.C.D.9.如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是( C )A.B.C.D.10.如图,在四边形ABCD中,动点P从点A开始沿ABCD的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是( B )A.B.C.D.二.填空题11.将38000用科学记数法表示为 3.8×104.12.函数y=中自变量x的取值范围是x≠﹣.13.计算:﹣= .14.把多项式xy2﹣4x分解因式的结果为x(y+2)(y﹣2).15.不等式组的整数解是 2 .16.方程=的解为x=5 .17.如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则= .18.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为4.19.在△ABC中,AC=6,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所夹锐角的正切值为,并且CD⊥AC,则BC的长为或15 .20.如图,在正方形ABCD中,E、F分别是AB、BC的中点,点G是线段DE上一点,且∠EGF=45°,若AB=10,则DG= .三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.先化简,再求代数式÷的值,其中m=tan60°﹣2sin30°.解:∵m=tan60°﹣2sin30°=﹣2×=﹣1,∴÷=×===.22.图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长为1,点A、B、D在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形顶点上),使△ABC是等腰三角形,且∠ABC=45°;(2)在图b中画出△DEF(E、F在小正方形顶点上),使△DEF∽ABC且相似比为1:.(1)解:如图a(2)如图b.23.南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?解:(1)由图可知,坐位体前摆的人数与仰卧起坐的人数是25+20=45人,这些人占班级参加测试总人数的百分数为(1﹣10%)=90%,所以这个班参加测试的学生有 45÷90%=50人,答:该学校九年级一班参加体育达标测试的学生有50人.(2)立定跳远的人数为50﹣25﹣20=5人,(3)用样本估计总体,全校参加仰卧起坐达标测试的人数有1200×(20÷50)=480人,答:估计参加仰卧起坐测试的有480人.24.在△ABC中,点D在AB边上,AD=CD,DE⊥AC于点E,CF∥AB,交DE的延长线于点F.(1)如图1,求证:四边形ADCF是菱形;(2)如图2,当∠ACB=90°,∠B=30°时,在不添加辅助线的情况下,请直接写出图中与线段AC 相等的线段(线段AC除外).解:(1)证明:如图1,∵AD=CD,DE⊥AC,∴∠DCA=∠ADC,CE=AE,∵CF∥AB,∴∠ECF=∠EAD,∴∠DCA=∠ECF,即CE平分∠DCF,而CE⊥DF,∴CD=CF,∴AD∥CF,∴四边形ADCF为平行四边形,而DA=DC,∴四边形ADCF是菱形;(2)如图2,∵∠ACB=90°,∠B=30°,∴∠BA C=60°,而DA=DC,∴△ADC为等边三角形,∴AC=AD=CD,∠ACD=60°,∵四边形ADCF为菱形,∴AC=AD=DC=CF=AF,∵∠B=∠DCB=30°,∴BD=CD,∴AC=AD=DC=CF=AF=BD.25.(10分)(2014•哈尔滨)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.26.已知,AB是半圆O的直径,弦CD∥AB,动点M、N分别在线段OC、CD上,AM的延长线与射线ON相交于点E,与弦CD相交于点F.(1)如图1,若DN=OM,求证:AM=ON;(2)如图2,点P是弦CD上一点,若AP=OP,∠APO=90°,求∠COP的度数;(3)在(1)的条件下,若AB=20,cos∠AOC=,当点E在ON的延长线上,且NE=NF时,求线段EF的长.解:(1)如图1,连接OD,∴OA=OD,∵CD∥AB,∴∠BOD=∠NDO,,∴∠AOC=∠BCD,∴∠AOC=∠CDO,在△AMO和△OND中,,∴△AMO≌△OND,∴AM=ON,(2)如图2,过点C作CG⊥AB,PH⊥AB,∴CG=PH,∵AP=OP,∠APO=90°,∴∠AOP=45°,PH=OA,∴CG=OA=OC,∴∠AOC=30°,∴∠COP=∠AOP﹣∠AOC=15°.(3)如图3,作OG⊥CD于G,连接OD,∵AB=20,∴OC=10CG=OC•cos∠C=OC•cos∠AOC=10×=8 ∴CD=2CG=16∵NE=NF,∴∠E=∠EFN∵CD∥AB,∴∠EFN=∠A∴∠E=∠A,∴OE=OA∵CD∥AB,∴∠BOD=∠D=∠C=∠AOC∴∠AOE=∠COD∴△AOE≌△COD,∴AE=CD=16∵△AOM≌△ODN,∴∠NOD=∠A=∠E∴AE∥OD,∴四边形AODF是平行四边形∴AF=OD=10∴EF=AE﹣AF=16﹣10=6,27.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,与y轴交于点C, =.(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.解:(1)对于抛物线y=mx2﹣6mx+5m,令y=0,得mx2﹣6mx+5m=0,解得x=1或5,∴A(1,0),B(5,0),∴AB=4,∵=,∴OC=5,∴5m=5,∴m=1.(2)如图2中,设P(t,t2﹣6t+5).∵OC=OB=5,∠AOB=90°,∴∠OCB=∠OBC=∠EBF=45°,∵PE⊥AB于F,∴△BEF是等腰直角三角形,∴BF=EF=t﹣5,∴点E坐标(t,5﹣t),∵A(1,0),P(t,t2﹣6t+5),设直线AP的解析式为y=kx+b,则有,解得,∴D(0,5﹣t),∴D、E两点纵坐标相同,∴DE∥AB.(3)如图3中,在DE上截取一点M,使得DM=MG.设P(t,t2﹣6t+5).则PE=t2﹣5t.∵EG=2PG,∴GE=(t2﹣5t),∵MD=MG,设DM=MG=a,∴∠MDG=∠MGD,∴∠GME=2∠MDG,∵∠DPE=2∠GDE,∴∠DPE=∠GME,∴tan∠DPE=tan∠GME,∴=,在Rt△MGE中,a2=(t﹣a)2+[(t2﹣5t)]2,∴a=t3﹣t2+t,∴EM=t﹣a=﹣t3+t2﹣t,∴=,整理得到16t2﹣160t+391=0,解得t=或(舍弃),∴点P坐标(,).。
黑龙江省哈尔滨市九年级上学期期中数学试卷

黑龙江省哈尔滨市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018九上·仁寿期中) 在二次根式① ,② ,③ ,④ 中,是同类二次根式的是()A . ①和③B . ②和③C . ①和④D . ③和④2. (2分)方程x2﹣2=0的解为()A . 2B .C . 2与﹣2D . 与﹣3. (2分)如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为()A .B .C .D .4. (2分)若关于的一元二次方程x2-2x+m=0有两个不相等的实数根,则的取值范围是()。
A . m<-1B . m<1C . m>-1D . m>15. (2分) (2020八下·莘县期末) 下列计算正确的是()A .B .C .D .6. (2分)(2017·天津) 估计的值在()A . 4和5之间B . 5和6之间C . 6和7之间D . 7和8之间7. (2分)学校组织足球比赛,赛制为单循环形式(每两队之间赛一场),计划安排21场比赛,应有多少队参加比赛?设应有x队参加比赛,则根据题意x满足的关系式为()A . x(x﹣1)=21B . x(x+1)=21C . x(x﹣1)=21D . x(x+1)=218. (2分) (2018九上·罗湖期末) 下列命题中,属于假命题的是()A . 有一个锐角相等的两个直角三角形一定相似B . 对角线相等的菱形是正方形C . 抛物线y=y2-20x+17的开口向上D . 在一次抛掷图钉的试验中,若钉尖朝上的频率为3/5,则钉尖朝上的概率也为3/5二、填空题 (共6题;共8分)9. (1分) (2018八上·南山期末) 函数表达式y= 自变量x取值范围是________.10. (1分)若将方程,化为,则m=________ .11. (3分) (2020八下·海原月考) 的相反数是________,︱︱= ________;________.12. (1分)若关于x的方程(a+3)x2﹣2x+a2﹣9=0有一个根为0,则a=________.13. (1分) (2018八上·天台期中) 已知一个等腰三角形一边长为3,周长为15,则它的腰长等于________.14. (1分) (2018八下·罗平期末) 如图,在边长为1的菱形ABCD中,∠ABC=120°连接对角线AC,以AC 为边作第二个菱形ACEF,使∠ACE=120°连接AE,再以AE为边作第三个菱形AEGH,使∠AEG=120°,…,按此规律所作的第n个菱形的边长是________.三、解答题 (共10题;共95分)15. (5分) (2017八下·明光期中) 计算:.16. (20分)解方程(1) x2﹣7x+6=0(2)(5x﹣2)2=3(5x﹣2)(3) 3x2+8x﹣3=0(用配方法)(4) x2﹣2 x+2=0(用公式法)17. (5分)如图,已知四边形ABCD相似于四边形A′B′C′D′,求∠A的度数及x的值.18. (5分) (2015九上·句容竞赛) 已知a、b、c都是整数,且a—2b=4,ab+c2—1=0,求a+b+c的值。
人教版2018年秋九年级数学上册期中试卷(含答案解析)

人教版2018年秋九年级数学上册期中试卷(含答案解析)2018年秋季九年级数学上册期中检测题,共120分,时间限制120分钟。
一、选择题(共30分)1.方程(x+2)^2=4的根是()A。
x1=4,x2=-4B。
x1=0,x2=-4C。
x1=0,x2=2D。
x1=0,x2=42.下列四个图形中,不是中心对称图形的是()A.B.C.D.3.将y=x^2+4x+1化为y=a(x-h)^2+k的形式,h,k的值分别为()A。
2,-3B。
-2,-3C。
2,-5D。
-2,-54.在同一坐标系中一次函数y=ax-b和二次函数y=ax^2+bx的图像可能为()A.B.C.D.5.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()无图,无法判断)6.用配方法解方程3x^2-6x+1=0,则方程可变形为()A。
(x-3)^2=0B。
3(x-1)^2=0C。
(x-1)^2=0D。
(3x-1)^2=17.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A。
800(1+a%)^2=578B。
800(1-a%)^2=578C。
800(1-2a%)=578D。
800(1-a^2%)=5788.将抛物线y=3x^2向右平移2个单位,再向上平移3个单位,得到抛物线的解析式是()A。
y=3(x+2)^2+3B。
y=3(x+2)^2-3C。
y=3(x-2)^2+3D。
y=3(x-2)^2-39.把一个物体以初速度v(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h=vt-gt^2(其中g是常数,取10米/秒^2)。
某时,XXX在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是()A。
2018年新人教版九年级上学期期中数学试题附解析

2018-2019学年九年级(上)期中试卷一.选择题(共10小题,满分30分)1.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A.B.C.D.2.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.D.y=(x﹣1)2﹣x23.已知点M在第一象限,若点N与点M关于原点O对称,则点N在()A.第一象限B.第二象限C.第三象限D.第四象限4.方程①;②3y2﹣2y=﹣1;③2x2﹣5xy+3y2=0;④中,是一元二次方程的为()A.①B.②C.③D.④5.关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定6.关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1B.2C.3D.47.已知一元二次方程1﹣(x﹣3)(x+2)=0,有两个实数根x1和x2,(x1<x2),则下列判断正确的是()A.﹣2<x1<x2<3B.x1<﹣2<3<x2C.﹣2<x1<3<x2D.x1<﹣2<x2<38.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.9.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.10.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1B.2C.22D.30二.填空题(共6小题,满分18分,每小题3分)11.将y=x2﹣2x+3化成y=a(x﹣h)2+k的形式,则y=.12.一元二次方程x2﹣4x+2=0的两根为x1,x2,则x12﹣4x1+2x1x2的值为.13.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=°.14.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.15.如果二次函数y=x2﹣8x+m﹣1的顶点在x轴上,那么m=.16.把抛物线y=x2﹣2x+3沿x轴向右平移2个单位,得到的抛物线解析式为.三.解答题(共8小题,满分47分)17.(8分)解方程:(1)2y2+5y=7.(公式法)(2)y2﹣4y+3=0(配方法)18.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.19.(7分)淮北市某中学七年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?20.(7分)某景区商店以2元的批发价进了一批纪念品.经调查发现,每个定价3元,每天可以能卖出500件,而且定价每上涨0.1元,其销售量将减少10件.根据规定:纪念品售价不能超过批发价的2.5倍.(1)当每个纪念品定价为3.5元时,商店每天能卖出件;(2)如果商店要实现每天800元的销售利润,那该如何定价?21.(8分)四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,(1)求DE的长度;(2)BE与DF的位置关系如何?22.(9分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,求AA′的长.23.如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为570米2,问小路应为多宽?24.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)求证:对任意实数m,点P(m,m2﹣5)都不在此抛物线上.参考答案一.选择题1.D.2.B.3.C.4.B.5.A.6.D.7.B.8.D.9.C.10.D.二.填空题11.(x﹣1)2+2.12.2.14.1.15.17.16.y=(x﹣3)2+2三.解答题17.解:(1)原方程整理成一般式可得2y2+5y﹣7=0,∵a=2,b=5,c=﹣7,∴△=25﹣4×2×(﹣7)=81>0,则y=,∴y=1或y=﹣;(2)∵y2﹣4y=﹣3,∴y2﹣4y+4=﹣3+4,即(y﹣2)2=1,则y﹣2=1或y﹣2=﹣1,解得:y=3或y=1.18.解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z ﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴==1.19.解:(1)捐款增长率为x,根据题意得:10000(1+x)2=12100,解得:x1=0.1,x2=﹣2.1(舍去).则x=0.1=10%.答:捐款的增长率为10%.(2)根据题意得:12100×(1+10%)=13310(元),答:第四天该校能收到的捐款是13310元.20.解:(1)∵每个定价3元,每天可以能卖出500件,而且定价每上涨0.1元,其销售量将减少10件,∴当每个纪念品定价为3.5元时,商店每天能卖出:500﹣10×=450(件);故答案为:450;(2)设实现每天800元利润的定价为x元/个,根据题意,得(x﹣2)(500﹣×10)=800.整理得:x2﹣10x+24=0.解之得:x1=4,x2=6.∵物价局规定,售价不能超过批发价的2.5倍.即2.5×2=5<6∴x2=6不合题意,舍去,得x=4.答:应定价4元/个,才可获得800元的利润.21.解:(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=4,∠EAF=90°,∠EBA=∠FDA;∴DE=AD﹣AE=7﹣4=3;(2)∵∠EAF=90°,∠EBA=∠FDA,∴延长BE与DF相交于点G,则∠GDE+∠DEG=90°,∴BE⊥DF,即BE与DF是垂直关系.22.解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2∴∠CAB=30°,AB=4,∵由已知可得:AB=A′B′=4,AC=A′C,∴∠A′AC=∠A′=30°,又∵∠A′B′C=∠B=60°∴∠A′AC=∠B′CA=30°,∴AB′=B′C=2,∴AA′=2+4=6.23.解:设小路宽为x米,则小路总面积为:20x+20x+32x﹣2•x2=32×20﹣570,整理,得2x2﹣72x+70=0,x2﹣36x+35=0,∴(x﹣35)(x﹣1)=0,∴x1=35(舍),x2=1,∴小路宽应为1米.24.(1)解:∵抛物线顶点在直线x=上,∴﹣=,解得b=﹣,∵抛物线y=x2+bx+c经过点B(0,4),∴c=4,∴抛物线对应的函数关系式为y=x2﹣x+4;(2)解:四边形ABCD是菱形时,点C、D在该抛物线上.理由如下:∵A(﹣3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∵四边形ABCD是菱形,∴AB=BC=AD=5,∴点C(5,4),D(2,0),当x=5时,y=×52﹣×5+4=﹣+4=4,当x=2时,y=×22﹣×2+4=﹣+4=0,∴点C、D在该抛物线上;(3)证明:若点P(m,m2﹣5)在抛物线上,则有m2﹣m+4=m2﹣5,整理,得m2﹣10m+27=0,∵△=102﹣4×27=﹣8<0,∴方程无实数根,∴对任意实数m,点P(m,m2﹣5)都不在这个二次函数的图象上.。
2018届九年级数学上学期期中试题(五四制)

2018届九年级数学上学期期中试题注意事项:1、答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目等内容填、写(涂)准确。
2、本试题分第I 卷和第II 卷两个部分,第I 卷为选择题共48分,第II 卷为非选择题共72分,共120分,考试时间为120分钟。
3、第I 卷每小题选出答案后,必须用2B 铅笔把答题卡上,对应题目的答案标号(AB-CD )涂黑,如需改动,须先用橡皮擦干净再改涂其它答案,第II 卷须用蓝黑钢笔或圆珠笔直接答在试卷上,考试时,不允许使用计算器。
4、考试结束后,由监考教师把第I 卷和第II 卷及答题卡一并收回。
第I 卷(选择题 共48分)一、选择题:(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上,每小题4分,错选、不选或选出的答案超过一个,均记0分) 1. 若二次函数26y x x c =-++的图像经过点1(1)A y -,,2(2)B y ,,3(5)C y ,,则123y y y 、、的大小关系正确的为( )A. 132y y y >>B. 231y y y >>C. 123y y y >>D. 312y y y >>2. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( )A. 3=b ,7=cB. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c3.在Rt △ABC 中,∠C =90°,tanA =43,BC =8,则△ABC 的面积为 ( ) A .12 B .18 C .24 D .484. 如图所示,是反比例函数1k y x =和2ky x=(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( ) A 、1 B 、2 C 、4 D 、8第4题图5. 在Rt △ABC 中 ,90C ∠=︒,4sin 5A =,则tan B 的值是( ) A .34 B .35 C .43 D.36. 若点A (﹣5,y 1),B (﹣3,y 2),C (2,y 3)在反比例函数y=的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 37. 如图所示,在平面直角坐标系系中,直线y=k 1x+2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y=在第一象限内的图象交于点B ,连接BO .若=∆OBC s 1,tan ∠BOC=,则k 2的值是( ) A. 3- B. 1 C. 2 D. 38. 如图所示,在高楼前D 点测得楼顶的仰角为30°,向高楼前进60米到C 点,又测得仰角为45°,则该高楼的高度大约为( ).A.82米 B.163米 C.52米D.70米9. 如图所示,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则tan EFC ∠的值为 ( )A.34 B.43C.35 D.45第7题图A D ECBF第9题图第8题图第10题图第8题图10. 如图所示,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠=,则AD 的长为( ) A.2 C .1 D.11.如图所示,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △O A C ﹣S △B A D 为( )A .36B .12C .6D .312. 如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1,其中正确的是( )A . ①②③B . ①③④C . ①③⑤D . ②④⑤二、填空题(本大题共5小题,每小题4分,共20分)13. . 函数y =2x 2– 4x – 1写成y = a (x –h)2+k 的形式是_________________. 14. 若函数2(3)21y m x x =--+的图像与x 轴只有一个公共点,则m 的值是__________.15. 如图,已知双曲线)0k (xky >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3, 则k =____________.16、如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N ,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角45°,则这间房子的宽AB 是 _米。
黑龙江省哈尔滨市九年级上学期数学期中考试试卷

黑龙江省哈尔滨市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·郑州期中) 下列各式中是一元二次方程的有()A . 3x2=1B . x2+y2=4C .D . xy=22. (2分) (2018九上·长兴月考) 抛物线y=(x-2)2的对称轴是()A . 直线x=-1B . 直线x=1C . 直线x=-2D . 直线x=23. (2分) (2020九下·滨湖月考) 若将抛物线y=x2平移,得到新抛物线,则下列平移方法中,正确的是()A . 向左平移3个单位B . 向右平移3个单位C . 向上平移3个单位D . 向下平移3个单位4. (2分) (2020九上·鹿城月考) 下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A .B .C .D .5. (2分)在如图直角坐标系内,四边形AOBC是边长为2的菱形,E为边OB的中点,连结AE与对角线OC 交于点D,且∠BCO=∠EAO,则点D坐标为()A . (,)B . (1,)C . (,)D . (1,)6. (2分)已知⊙O的半径为3,一点到圆心的距离是5,则这点在()A . 在⊙O内B . 在⊙O上C . 在⊙O外D . 不能确定7. (2分)如图,在宽为,长为的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为,求道路的宽.如果设小路宽为,根据题意,所列方程正确的是().A .B .C .D .8. (2分)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A . 只能是x=﹣1B . 可能是y轴C . 可能在y轴右侧且在直线x=2的左侧D . 可能在y轴左侧且在直线x=﹣2的右侧9. (2分)(2020·遵义模拟) 如图,以正方形的顶点为坐标原点,直线为轴建立直角坐标系,对角线与相交于点,为上一点,点坐标为,则点绕点顺时针旋转90°得到的对应点的坐标是()A .B .C .D .10. (2分)(2019·苏州模拟) 如图,⊙ 中,直径与弦相交于点,连接,过点的切线与的延长线交于点,若,则的度数等于()A . 30°B . 35°C . 40°D . 45°二、填空题 (共5题;共5分)11. (1分) (2020八下·柯桥期末) 将方程x(x﹣2)=x+3化成一般形式后,二次项系数为________.12. (1分) (2016九上·大石桥期中) 已知函数是关于x的二次函数,则m的值为________.13. (1分) (2019八上·深圳月考) 如图,在边长为4的正方形中,是边的中点,将沿对折至,延长交于点,连接,则的长为________.14. (1分) (2018九上·青海期中) 若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________.15. (1分)(2018·南充) 如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).三、解答题 (共8题;共60分)16. (10分) (2019九上·綦江月考) 解下列方程(1)(2)17. (2分)(2020·聊城) 如图,在 ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6 ,求此时DE的长.18. (5分)用反证法证明:若二次方程8x2﹣(k﹣1)x+k﹣7=0有两个不等实数根,则两根不可能互为倒数.19. (10分)如图所示,已知等边△ABC的两个顶点的坐标为A(﹣4,0),B(2,0).(1)用尺规作图作出点C,并求出点C的坐标;(2)求△ABC的面积.20. (11分) (2019九上·西城期中) 某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.(1)如果市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克这种水果涨了多少元?(2)设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元.若不考虑其他因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天销售这种水果盈利最多?最多盈利多少元?21. (2分) (2020九上·台州月考) 如图,在平面直角坐标系中,△ 的三个顶点坐标分别为,, .( 1 )画出将△ 向左平移4个单位得到的△ ,并写出的坐标;( 2 )画出将△ 绕点逆时针旋转得到的△ ,并写出的坐标.22. (10分) (2020九上·覃塘期末) 把一副三角板按如图1所示放置,其中点在边上,,斜边 .将三角板绕点顺时针旋转,记旋转角为 .(1)在图1中,设与的交点为,则线段AF的长为________;(2)当时,三角板旋转到,的位置(如图2所示),连接,请判断四边形的形状,并证明你的结论;(3)当三角板旋转到的位置(如图3所示)时,此时点恰好在的延长线上.①求旋转角的度数;②求线段的长.23. (10分)(2014·宿迁) 如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共60分)答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-2、考点:解析:。
黑龙江省哈尔滨市九年级数学上学期期中试题 新人教版五四制

黑龙江省哈尔滨市2018届九年级数学上学期期中试题考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题 卡上填写清楚。
3.请按照题号的顺序在答题卡各题目的答题区域内作答,超出答题区域书 写的答案无效;在草纸、试题纸上答题无效。
4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米的黑色字迹 的签字笔书写,字体工整、笔记清楚。
5.保持卡面整洁、不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修 正带、刮纸刀。
第Ⅰ卷 选择题(共30分)(涂卡)一、 选择题(每题3分,共计30分) 1.下列四个数中,绝对值最小的数是( )A.-3B.0C.1D.22.下列运算正确的是( )A.257()a a =B.642a a a =⋅C.22330a b ab -= D.2222a a ⎛⎫= ⎪⎝⎭3.下列的平面几何图形中,既是轴对称图形又是中心对称图形的是( )4.反比例函数y =k -3x的图象,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ) A.k <3 B.k ≤3 C.k >3 D.k ≥3 5.抛物线2)1(32+-=x y 的顶点坐标是( )A.(1,-2)B.(-1,2)C.(1,2)D.(-1,-2)6.已知:在△ABC 中,点D 为AB 上一点,过点D 作BC 的平行线交AC 于点E,过点EDE A作AB 的平行线交BC 于点F,连接CD,交EF 于点K.则下列说法不正确的是( ) A.FCBF FK BD =B.AC AE BC DE =C.AC AE AB AD =D.AB ADBC BF = 7.如图,将△ABC 绕点A 按逆时针方向旋转l20°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A.45°B.60°C.70°D.90°8.如图,AB 是⊙O 的直径,CD 为弦,连结AD 、AC 、BC ,若∠CAB=65°则∠D 的度数为( ) A.65° B.40° C.25° D.35°9.如图,有一轮船在A 处测得南偏东30°方向上有一小岛F ,轮船沿正南方向航行至B 处,测 得小岛F 在南偏东45°方向上,按原方向再航行10海里至C 处,测得小岛F 在正东方向上,则A ,B 之间距离是( ) A.10海里 B.(10-10)海里 C.10海里 D.(10-10)海里10.如图表示小亮从家出发步行到公交车站,等公交车最后到达学校,图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系,下列说法中正确的个数有( )①学校和小亮家的路程为8km ; ②小亮等公交车的时间为6min ;③小亮步行的速度是100m/min ;④公交车的速度是350m/min ; ⑤小亮从家出发到学校共用了24min. A.2个 B.3个 C.4个 D.5个第Ⅱ卷 非选择题(共90分)二、 填空题(每小题3分,共计30分)11.将1 027 000用科学记数法表示为 . 12.函数3-x 21x y +=中,自变量x 的取值范围是 . s /kmt /min30161081O第7题图CB′BA C′第8题图 第9题图13.计算313-48的结果是 . 14.把多项式22344ab b a a +-分解因式的结果是 .15.不等式组⎩⎪⎨⎪⎧3x -1<2-x -1<1的解集为 .16.方程13123x x =-+的解为 . 17.某商品经过连续两次降价,销售单价由原来的640元降到360元,则平均每次降价的百分率为 .18.如图,AB 为⊙O 的直径,弦CD⊥AB 于点E ,若AE=8,BE=2,则CD= . 19.已知:正方形ABCD 的边长为3,点P 是直线CD 上一点,若DP=1,则tan ∠BPC 的值是 .20.如图,△ABC 为等腰直角三角形,∠A BC =90°,过点B 作BQ ∥AC,在BQ 上取一点D ,连接CD 、AD,若AC=CD,BD=2,则AD= .三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分) 21.(本题7分) 先化简,再求代数式1112112+÷⎪⎭⎫ ⎝⎛---+a a a a 的值,其中︒+︒=45tan 60sin 2a .22.(本题7分)如图,网格中每个小正方形的边长均为1,线段AB 、线段EF 的端点均在小正方形的顶点上. (1)在图中画以EF 为直角边的等腰直角△DEF,点D 在小正方形的格点上;(2)在(1)的条件下,在图中画一个Rt△BAC,点C 在小正方形的格点上;使∠BAC=90°,且△BAC 的面积为2,连接CD ,直接写出线段CD 的长.DAQ BAE CDO第18题图BFA23.(本题8分)某校组织学生书法比赛,对参赛作品按A 、B 、C 、D 四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求本次调查共抽取了多少份书法作品? (2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B 级以上(即A 级和B 级)有多少份?24.(本题8分)四边形ABCD 为菱形,BD 为对角线,在对角线BD 上任取一点E ,连接CE ,把线段CE 绕点C 顺时针旋转得到线段CF ,使得∠ECF=∠BCD ,点E 的对应点为点F ,连接DF. (1)如图1,求证:BE=DF; (2)如图2,若DF=25CF=10, ∠DFC=2∠BDC,求菱形ABCD 的边长.25.(本题10分)某商品批发商场共用22000元同时购进A 、B 两种型号背包各400个,购进A 型号背包30个比购进B 型背包15个多用300元.(1)求A 、B 两种型号背包的进货单价各为多少元?(2)若商场把A 、B 两种型号背包均按每个50元定价进行零售,同时为扩大销售,拿出一部分背包按零售价的7折进行批发销售.商场在这批背包全部售完后,若总获利超过10500元,则商场用于批发ECB AF图1 EBCAF图2的背包数量最多为多少个? 26.(本题10分)已知:在⊙O 中,弦AC ⊥弦BD,垂足为H,连接BC,过点D 作DE ⊥BC 于点E ,DE 交AC 于点F. (1)如图1,求证:BD 平分∠ADF;(2)如图2,连接OC ,若OC 平分∠ACB,求证:AC=BC;(3)如图3,在(2)的条件下,连接AB,过点D 作DN ∥AC 交⊙O 于点N,若tan ∠ADB=43,AB=310,求DN 的长.27.(本题10分)如图,在平面直角坐标系中,点O 为坐标原点,抛物线y=-31x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C,直线y=x+6经过A 、C 两点. (1)求抛物线的解析式;(2)点P 是第二象限抛物线上的一个动点,过点P 作PQ ∥AC,PQ 交直线BC 于点Q ,设点P 的横坐标为t ,点Q 的横坐标为m,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);图1图2图3(3)在(2)的条件下,作点P 关于直线AC 的对称点点K,连接QK,当点K 落在直线 y=-512x 上时,求线段QK 的长.数学答案一、选择题1.B2.B3.D4.A5.C6.A7.D8.C9.D 10.B 二、填空题11.1.027×10612.x ≠23 13.33 14.a(a-2b)215.-2<x <1 16. x=6 17.25℅ 18.8 19.23或4320.2 三、解答题: 21.解:原式=11a ,a=3+1, 原式=3322.(1)略 (2)CD=1023.(1)120 (2)C:36 D:12 (3)45024. (2) 过点C 作CK ⊥BD 于点K,联立解△DEC 和△DBC,边长=74 25.解:(1)A:25元,B:30元(2)a <500,∵a 为正整数 ∴a 的最大正整数为499 26. (2)连接OA 、OB ,证△AOC ≌△BOC(3)连接BN ,过点O 作OP ⊥BD 于点P, 过点O 作OQ ⊥AC 于点Q,求得OP=HQ=29, ∴DN=2OP=9 27.解:(1) y=-31x 2-x+6 (2)过点P 作y 轴的平行线PK 交直线BC 于点K ,解△PQK 得m=91t 2+32t(3)连接CP 、CK 、PK,过点C 作CN ∥x 轴交过点P 平行于y 轴的直线于点N ,过点K 作KM ⊥y 轴于点M, 证△CNP ≌△CMK 可得K (-31t 2-t ,t+6),把K (-31t 2-t ,t+6)代入y=-512x 中,解得t 1=2(舍去),t 2=-415,∴K(-1615,49),Q(-1615,863),∴QK ∥y 轴,∴QK=863-49=845.。
【初三数学】哈尔滨市九年级数学上期中考试单元测试卷(含答案)

新九年级(上)数学期中考试题(答案)(1)一、选择题1.已知∠A=40°,则它的余角为( )A.40°B.50°C.130°D.140°答案 B2.如图,四个立体图形中,从左面看,所看到的图形为长方形的( )A.①③B.①④C.②③D.③④答案 B3.下面说法:①线段AC=BC,则C是线段AB的中点;②两点之间直线最短;③延长直线AB;④一个角既有余角又有补角,它的补角一定比它的余角大.其中正确的有( )A.0个B.1个C.2个D.3个答案 B4.如图,小于平角的角有( )A.9个B.8个C.7个D.6个答案 C5.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )A.3cmB.6cmC.11cmD.14cm答案 B6.小明由点A出发向正东方向走10m到达点B,再由点B向东南方向走10m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D7.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D8.在市委、市政府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图,原正方体中与“文”字所在的面相对的面上标的字应是( )A.全B.明C.城D.国答案 C9.若∠α与∠β互为补角,∠β的一半比∠α小30°,则∠α为( )A.30°B.80°C.100°D.140°答案 B10.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D11.用一副三角板不能画出的角为A.75°B.95°C.105°D.165°答案B12.如图所示,∠AOB=90°,∠AOC=40°,∠COD∶∠COB=1∶2,则∠BOD=A .40°B .50°C .25°D .60°答案C13.如图,C 、D 是线段AB 上的点,若AB =8,CD =2,则图中以A 、C 、D 、B 为端点的所有线段的长度之和为A .24B .22C .20D .26答案D14.角α和β互补,α>β,则β的余角为A .α–βB .180°–α–βC .D .答案C二、填空题15.如图,从A 到B 的最短的路线是 .答案 A →F →E →B16.如图所示,延长线段AB 到C,使BC=4,若AB=8,则线段AC 的长是BC 的 倍.答案 317.如图,已知M 、N 分别是AC 、CB 的中点,MN=6 cm,则AB= cm.1()2αβ-90αβ︒-答案1218.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于.答案2419.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.答案(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC20.如图,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.(1)∠MON= ;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”)答案(1)42°(2)不会三、解答题21.计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.答案(1)116°21'15″.(2)12°22'13″.22.如果一个角的余角是它的补角的,求这个角的度数.答案设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.画图并计算:已知线段AB=2cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.答案(1)如图.(2)点A是线段DC的中点,AB=CD.(3)BC=AB=×2=1(cm),因而AC=AB+BC=2+1=3(cm).而AD=AC=3cm,故BD=DA+AB=3+2=5(cm).24.如图,七年级小林同学在一张透明纸上画了一条长8cm的线段MN,并在线段MN上任意找了一个不同于M、N的点C,然后用折纸的方法找出了线段MC、NC的中点A和B,并求出了线段AB的长为4cm.回答:(1)小林是如何找到线段MC、NC的中点的?又是如何求出线段AB的长为4cm的?(2)在反思解题过程时,小林想到:如果点C在线段MN的延长线上,“AB=4cm”这一结论还成立吗?请你帮小林画出图形,并解决这一问题.答案(1)纸是透明的,小林将纸对折,依次使点M、C重合,点N、C重合,两个折痕与线段MN的交点就分别是中点A和B,AB=AC+BC=MC+NC=MN=×8=4(cm).(2)成立.理由:如图,若点C在线段MN的延长线上,AB=AC-BC=MC-NC=(MC-NC)=MN=×8=4(cm).25.如图所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC 的度数.答案因为OE平分∠AOB,∠AOB=90°,所以∠BOE=45°.又∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°.又因为OF平分∠BO新九年级(上)数学期中考试题(答案)(1)一、选择题1.已知∠A=40°,则它的余角为( )A.40°B.50°C.130°D.140°答案 B2.如图,四个立体图形中,从左面看,所看到的图形为长方形的( )A.①③B.①④C.②③D.③④答案 B3.下面说法:①线段AC=BC,则C是线段AB的中点;②两点之间直线最短;③延长直线AB;④一个角既有余角又有补角,它的补角一定比它的余角大.其中正确的有( )A.0个B.1个C.2个D.3个答案 B4.如图,小于平角的角有( )A.9个B.8个C.7个D.6个答案 C5.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )A.3cmB.6cmC.11cmD.14cm答案 B6.小明由点A出发向正东方向走10m到达点B,再由点B向东南方向走10m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D7.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D8.在市委、市政府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图,原正方体中与“文”字所在的面相对的面上标的字应是( )A.全B.明C.城D.国答案 C9.若∠α与∠β互为补角,∠β的一半比∠α小30°,则∠α为( )A.30°B.80°C.100°D.140°答案 B10.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D11.用一副三角板不能画出的角为A.75°B.95°C.105°D.165°答案B12.如图所示,∠AOB=90°,∠AOC=40°,∠COD∶∠COB=1∶2,则∠BOD=A .40°B .50°C .25°D .60°答案C13.如图,C 、D 是线段AB 上的点,若AB =8,CD =2,则图中以A 、C 、D 、B 为端点的所有线段的长度之和为A .24B .22C .20D .26答案D14.角α和β互补,α>β,则β的余角为A .α–βB .180°–α–βC .D .答案C二、填空题15.如图,从A 到B 的最短的路线是 .答案 A →F →E →B16.如图所示,延长线段AB 到C,使BC=4,若AB=8,则线段AC 的长是BC 的 倍.答案 317.如图,已知M 、N 分别是AC 、CB 的中点,MN=6 cm,则AB= cm.答案 1218.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于 .1()2αβ-90αβ︒-答案2419.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.答案(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC20.如图,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.(1)∠MON= ;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”) 答案(1)42°(2)不会三、解答题21.计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.答案(1)116°21'15″.(2)12°22'13″.22.如果一个角的余角是它的补角的,求这个角的度数.答案设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.画图并计算:已知线段AB=2cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.答案(1)如图.(2)点A是线段DC的中点,AB=CD.(3)BC=AB=×2=1(cm),因而AC=AB+BC=2+1=3(cm).而AD=AC=3cm,故BD=DA+AB=3+2=5(cm).24.如图,七年级小林同学在一张透明纸上画了一条长8cm的线段MN,并在线段MN上任意找了一个不同于M、N的点C,然后用折纸的方法找出了线段MC、NC的中点A和B,并求出了线段AB的长为4cm.回答:(1)小林是如何找到线段MC、NC的中点的?又是如何求出线段AB的长为4cm的?(2)在反思解题过程时,小林想到:如果点C在线段MN的延长线上,“AB=4cm”这一结论还成立吗?请你帮小林画出图形,并解决这一问题.答案(1)纸是透明的,小林将纸对折,依次使点M、C重合,点N、C重合,两个折痕与线段MN 的交点就分别是中点A和B,AB=AC+BC=MC+NC=MN=×8=4(cm).(2)成立.理由:如图,若点C在线段MN的延长线上,AB=AC-BC=MC-NC=(MC-NC)=MN=×8=4(cm).25.如图所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC 的度数.答案因为OE平分∠AOB,∠AOB=90°,所以∠BOE=45°.又∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°.又因为OF平分∠BO新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.抛物线y=2x2-1的顶点坐标是(A)A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)2.如果x=-1是方程x2-x+k=0的解,那么常数k的值为(D)A.2 B.1 C.-1 D.-23.将抛物线y=x2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是(B)A.y=(x+2)2+1 B.y=(x-2)2+1 C.y=(x+2)2-1 D.y=(x-2)2-1 4.小明在解方程x2-4x-15=0时,他是这样求解的:移项,得x2-4x=15,两边同时加4,得x2-4x+4=19,∴(x-2)2=19.∴x-2=±19.∴x1=2+19,x2=2-19.这种解方程的方法称为(B)A.待定系数法 B.配方法 C.公式法 D.因式分解法5.下列图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y=-2x2+x经过A(-1,y1)和B(3,y2)两点,那么下列关系式一定正确的是(C)A.0<y2<y1 B.y1<y2<0 C.y2<y1<0 D.y2<0<y17.已知a,b,c分别是三角形的三边长,则方程(a+b)x2+2cx+(a+b)=0的根的情况是(D)A.有两个不相等的实数根 B.有两个相等的实数根C.可能有且只有一个实数根 D.没有实数根8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(D)A.68° B.20° C.28° D.22°9.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是(D)A.a>b>c B.c>a>b C.c>b>a D.b>a>c10.如图,将△ABC 绕着点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD ,AC 与DB 交于点P ,DE 与CB 交于点Q ,连接PQ.若AD =5 cm ,PB AB =25,则PQ 的长为(A)A .2 cm B.52 cm C .3 cm D.72cm二、填空题(本大题共5个小题,每小题3分,共15分)11.在平面直角坐标系中,点A(0,1)关于原点对称的点是(0,-1). 12.方程x(x +1)=0的根为x 1=0,x 2=-1.13.某楼盘2016年房价为每平方米8 100元,经过两年连续降价后,2018年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为8__100(1-x)2=7__600. 14.二次函数y =ax 2+bx +c(a ≠0)中x ,y 的部分对应值如下表:则当x =-2时,y 的值为11.15.如图,射线OC 与x 轴正半轴的夹角为30°,点A 是OC 上一点,AH ⊥x 轴于H ,将△AOH 绕着点O 逆时针旋转90°后,到达△DOB 的位置,再将△DOB 沿着y 轴翻折到达△GOB 的位置.若点G 恰好在抛物线y =x 2(x >0)上,则点A三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(共题共2个小题,每小题5分,共10分)(1)解方程:x(x+5)=5x+25;解:x(x+5)=5(x+5),x(x+5)-5(x+5)=0,∴(x-5)(x+5)=0.∴x-5=0或x+5=0.∴x1=5,x2=-5.(2)已知点(5,0)在抛物线y=-x2+(k+1)x-k上,求出抛物线的对称轴.解:将点(5,0)代入y=-x2+(k+1)x-k,得0=-52+5×(k+1)-k,解得k=5.∴y=-x2+6x-5.∴该抛物线的对称轴为直线x=-62×(-1)=3.17.(本题6分)如图所示的是一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下面宽度为20米,拱顶距离水面4米,建立平面直角坐标系如图所示.求抛物线的解析式.解:设该抛物线的解析式为y=ax2.由图象可知,点B(10,-4)在函数图象上,代入y=ax2,得100a=-4,解得a=-125,∴该抛物线的解析式为y=-125x2.18.(本题7分)如图,在平面直角坐标系中,有一Rt△ABC,已知△A1AC1是由△ABC绕某点顺时针旋转90°得到的.(1)请你写出旋转中心的坐标是(0,0);(2)以(1)中的旋转中心为中心,画出△A1AC1顺时针旋转90°,180°后的三角形.解:如图,△B1A1C2,△BB1C3即为所求作图形.19.(本题7分)(1)求二次函数y =x 2+x -2与x 轴的交点坐标; (2)若二次函数y =-x 2+x +a 与x 轴只有一个交点,求a 的值. 解:(1)令y =0,则有x 2+x -2=0. 解得x 1=1,x 2=-2.∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴只有一个交点, ∴令y =0,即-x 2+x +a =0有两个相等的实数根. ∴Δ=1+4a =0,解得a =-14.20.(本题7分)如图,已知在Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H.(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连接CG ,求证:四边形CBEG 是正方形. 解:(1)FG ⊥DE ,理由如下:∵把△ABC 绕点B 顺时针旋转90°至△DBE ,∴∠DEB =∠ACB. ∵把△ABC 沿射线平移至△FEG ,∴∠GFE =∠A.∵∠ABC =90°,∴∠A +∠ACB =90°.∴∠DEB +∠GFE =90°.∴∠FHE =90°. ∴FG ⊥DE.(2)证明:根据旋转和平移可得∠GEF =90°,∠CBE =90°,CG ∥EB ,CB =BE , ∵CG ∥EB ,∴∠BCG =∠CBE =90°.∴四边形CBEG 是矩形. 又∵CB =BE ,∴四边形CBEG 是正方形.21.(本题12分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均每天可多售出2件.设每件童装降价x元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)根据(1)中你写出的函数关系式,解答下列问题:①当该专卖店每件童装降价5元时,平均每天盈利多少元?②当该专卖店每件童装降价多少元时,平均每天盈利400元?③该专卖店要想平均每天盈利600元,可能吗?请说明理由.解:(1)根据题意,得y=(20+2x)(60-40-x)=(20+2x)(20-x)=400+40x-20x-2x2=-2x2+20x+400.∴y=-2x2+20x+400.(2)①当x=5时,y=-2×52+20×5+400=450,∴当该专卖店每件童装降价5元时,平均每天盈利450元.②当y=400时,400=-2x2+20x+400,整理,得x2-10x=0,解得x1=10,x2=0(不合题意,舍去),∴当该专卖店每件童装降价10元时,平均每天盈利400元.③该专卖店平均每天盈利不可能为600元.理由:当y=600时,600=-2x2+20x+400,整理,得x2-10x+100=0,∵Δ=(-10)2-4×1×100=-300<0,∴方程没有实数根.故该专卖店平均每天盈利不可能为600元.22.(本题12分)综合与实践:问题情境:(1)如图1,两块等腰直角三角板△ABC和△ECD如图所示摆放,其中∠ACB=∠DCE=90°,点F,H,G分别是线段DE,AE,BD的中点,A,C,D和B,C,E分别共线,则FH和FG的数量关系是FH=FG,位置关系是FH⊥FG;合作探究:(2)如图2,若将图1中的△DEC 绕着点C 顺时针旋转至A ,C ,E 在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若将图1中的△DEC 绕着点C 顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.解:(2)(1)中的结论还成立.证明:延长AD 交BE 于点M.∵CD =CE ,AC =BC ,∠ACD =∠BCE =90°, ∴△ACD ≌△BCE(SAS).∴AD =BE ,∠CAD =∠CBE.∵∠CBE +∠CEB =90°,∴∠CAD +∠CEB =90°.∴∠AME =90°.∴AD ⊥BE. ∵F ,H ,G 分别是DE ,AE ,BD 的中点,∴FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∴FH =FG.∵AD ⊥BE ,∴FH ⊥FG.∴(1)中结论还成立. (3)(1)中的结论仍成立.证明:连接AD ,BE ,两线交于点Z ,AD 交BC 于点X. 同(2)可得FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∵△ECD ,△ACB 都是等腰直角三角形,∠ECD =∠ACB =90°,∴CE =CD ,AC =BC. ∴∠ACD =∠BCE.∴△ACD ≌△BCE(SAS).∴AD =BE ,∠EBC =∠DAC.∴FH =FG. ∵∠DAC +∠CXA =90°,∠CXA =∠DXB ,∴∠DXB +∠EBC =90°.∴∠BZA =180°-90°=90°.∴AD ⊥BE. ∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG.∴(1)中的结论仍成立.23.(本题14分)综合与探究:如图,二次函数y =-14x 2+32x +4的图象与x 轴交于点B新九年级上册数学期中考试试题(含答案)一、选择题(本题共16分,每小题2分)1.(2分)以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形A.B.C.D.2.(2分)二次函数y=(x+2)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(2分)如图,⊙O的直径为10,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()A.8B.6C.4D.104.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5.(2分)如图4×4的正方形网格中,△PMN绕某点旋转一定的角度,得到△P1M1N1,其旋转中心是()A.A点B.B点C.C点D.D点6.(2分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=6,阴影部分图形的A.4πB.3πC.2πD.π7.(2分)已知抛物线y=ax2+bx+c上部分点的横坐标x纵坐标y的对应值如下表:①物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2以上结论中其中的是()A.①④B.②④C.②③D.③④8.(2分)如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为()A.从D点出发,沿弧DA→弧AM→线段BM→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从A点出发,沿弧AM→线段BM→线段BC→线段CND.从C点出发,沿线段CN→弧ND→弧DA→线段AB二、填空题(本题共16分,每小题2分)9.(2分)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.10.(2分)平面直角坐标系xOy中,以原点O为圆心,5为半径作⊙O,则点A(4,3)在⊙O(填:“内”或“上“或“外”)11.(2分)如图所示,把一个直角三角尺ACB绕30°角的顶点B顺时计旋转,使得点A 落在CB的延长线上的点E处,则∠BCD的度数为.12.(2分)将抛物线y=x2﹣6x+5化成y=a(x﹣h)2﹣k的形式,则hk=.13.(2分)若正六边形的边长为2,则其外接圆的面积为.14.(2分)二次函数满足下列条件:①函数有最大值3;②对称轴为y轴,写出一个满足以上条件的二次函数解析式:15.(2分)圆锥底面半径为6,高为8,则圆锥的侧面积为.16.(2分)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本原共68分,第17-22题,每小题5分,第23、24、26、28题,每小题5分,第25,27题,每小题5分)17.(5分)如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,2)(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1.(2)求点B旋转到点B1所经过的路线长(结果保留π)18.(5分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示.(1)确定二次函数的解析式;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.(5分)如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.20.(5分)关于x一元二次方程x2+mx+n=0.(1)当m=n+2时,利用根的判别式判断方程根的情况.(2)若方程有实数根,写出一组满足条件的m,n的值,并求此时方程的根.21.(5分)如图,P A,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.22.(5分)某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w (双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?23.(6分)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.24.(6分)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE ⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为4,∠F=30°,求DE的长.25.(7分)如图,Q是弧AB与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交弧AB于点C,连接BC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,B,C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)确定自变量x的取值范围是.(2)按下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值.(3)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并面出函数y1,y2的图象.(4)结合函数图象,解决问题:当△BPC为等腰三角形时,AP的长度约为cm.26.(6分)在平面直角坐标系中xOy中,抛物线y=x2﹣4x+m+2的顶点在x轴上.(1)求抛物线的表达式;(2)点Q是x轴上一点,①若在抛物线上存在点P,使得∠POQ=45°,求点P的坐标.②抛物线与直线y=1交于点E,F(点E在点F的左侧),将此抛物线在点E,F(包含点E和点F)之间的部分沿x轴向左平移n个单位后得到的图象记为G,若在图象G上存在点P,使得∠POQ=45°,求n的取值范围.27.(7分)已知:在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°(1)如图①,若∠ACD=60°,BC=1,CD=3,则AC的长为;(2)如图②,若∠ACD=45°,BC=1,CD=3,求出AC的长;(3)如图③,若∠ACD=30°,BC=a,CD=b,直接写出AC的长.28.(6分)在平面直角坐标系xOy中,点A的坐标为(0,m),且m≠0,点B的坐标为(n,0),将线段AB绕点B顺时针旋转90°.得到线段BA1,称点A1为点A关于点B的“伴随点”,图1为点A关于点B的“伴随点”的示意图(1)已知点A(0,4),①当点B的坐标分别为(1,0),(﹣2,0)时,点A关于点B的“伴随点”的坐标分别为,;②点(x,y)是点A关于点B的“伴随点”,直接写出y与x之间的关系式;(2)如图2,点C的坐标为(﹣3,0),以C为圆心,为半径作圆,若在⊙C上存在点A关于点B的“伴随点”,直接写出点A的纵坐标m的取值范围.2018-2019学年北京市朝阳区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.2.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴二次函数y=(x+2)2+3的图象的顶点坐标是(﹣2,3).故选:A.3.【解答】解:连接OA,∵OA=5,OC=3,OC⊥AB,∴AC===4,∵OC⊥AB,∴AB=2AC=2×4=8.故选:A.4.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°.故选:B.5.【解答】解:如图,连接NN1,PP1,可得其垂直平分线相交于点B,故旋转中心是B点.故选:B.6.【解答】解:连接BC,OD,设CD交AB于E.∵∠BOC=2∠CDB,∠CDB=30°,∴∠COB=60°,∵OC=OB,∴△BOC是等边三角形,∴∠CBO=60°,∵CD⊥AB,CD=6,∴=,CE=ED=3,∴∠BOC=∠BOD=60°,EO=,OC=2,∴∠CBO=∠BOD,∴BC∥OD,∴S△BCD=S△BCO,∴S阴=S扇形OBC==2π.故选:C.7.【解答】解:从表格可以看出,函数的对称轴是x=1,顶点坐标为(1,﹣1),函数与x轴的交点为(0,0)、(2,0),①物线y=ax2+bx+c的开口向下.抛物线开口向上,错误;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1,错误;③方程ax2+bx+c=0的根为0和2,正确;④当y>0时,x的取值范围是x<0或x>2,正确.故选:D.8.【解答】解:根据画出的函数的图象,C符合,故选:C.二、填空题(本题共16分,每小题2分)9.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).故答案为:(﹣2,3).10.【解答】解:∵点A(新九年级上册数学期中考试试题(含答案)一、选择题(本题共16分,每小题2分)1.(2分)以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形的是()A.B.C.D.2.(2分)二次函数y=(x+2)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(2分)如图,⊙O的直径为10,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()A.8B.6C.4D.104.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5.(2分)如图4×4的正方形网格中,△PMN绕某点旋转一定的角度,得到△P1M1N1,其旋转中心是()A.A点B.B点C.C点D.D点6.(2分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=6,阴影部分图形的面积为()A.4πB.3πC.2πD.π7.(2分)已知抛物线y=ax2+bx+c上部分点的横坐标x纵坐标y的对应值如下表:①物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2以上结论中其中的是()A.①④B.②④C.②③D.③④8.(2分)如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为()A.从D点出发,沿弧DA→弧AM→线段BM→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从A点出发,沿弧AM→线段BM→线段BC→线段CND.从C点出发,沿线段CN→弧ND→弧DA→线段AB二、填空题(本题共16分,每小题2分)9.(2分)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.10.(2分)平面直角坐标系xOy中,以原点O为圆心,5为半径作⊙O,则点A(4,3)在⊙O(填:“内”或“上“或“外”)11.(2分)如图所示,把一个直角三角尺ACB绕30°角的顶点B顺时计旋转,使得点A 落在CB的延长线上的点E处,则∠BCD的度数为.12.(2分)将抛物线y=x2﹣6x+5化成y=a(x﹣h)2﹣k的形式,则hk=.13.(2分)若正六边形的边长为2,则其外接圆的面积为.14.(2分)二次函数满足下列条件:①函数有最大值3;②对称轴为y轴,写出一个满足以上条件的二次函数解析式:15.(2分)圆锥底面半径为6,高为8,则圆锥的侧面积为.16.(2分)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本原共68分,第17-22题,每小题5分,第23、24、26、28题,每小题5分,第25,27题,每小题5分)17.(5分)如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,2)(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1.(2)求点B旋转到点B1所经过的路线长(结果保留π)18.(5分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示.(1)确定二次函数的解析式;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.(5分)如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.20.(5分)关于x一元二次方程x2+mx+n=0.(1)当m=n+2时,利用根的判别式判断方程根的情况.(2)若方程有实数根,写出一组满足条件的m,n的值,并求此时方程的根.21.(5分)如图,P A,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.22.(5分)某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w (双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?23.(6分)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.24.(6分)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE ⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为4,∠F=30°,求DE的长.25.(7分)如图,Q是弧AB与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交弧AB于点C,连接BC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,B,C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)确定自变量x的取值范围是.(2)按下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值.(3)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并面出函数y1,y2的图象.(4)结合函数图象,解决问题:当△BPC为等腰三角形时,AP的长度约为cm.26.(6分)在平面直角坐标系中xOy中,抛物线y=x2﹣4x+m+2的顶点在x轴上.(1)求抛物线的表达式;(2)点Q是x轴上一点,①若在抛物线上存在点P,使得∠POQ=45°,求点P的坐标.②抛物线与直线y=1交于点E,F(点E在点F的左侧),将此抛物线在点E,F(包含点E和点F)之间的部分沿x轴向左平移n个单位后得到的图象记为G,若在图象G上存在点P,使得∠POQ=45°,求n的取值范围.27.(7分)已知:在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°(1)如图①,若∠ACD=60°,BC=1,CD=3,则AC的长为;(2)如图②,若∠ACD=45°,BC=1,CD=3,求出AC的长;(3)如图③,若∠ACD=30°,BC=a,CD=b,直接写出AC的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省哈尔滨市2018届九年级数学上学期期中试题
考生须知:
1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题 卡上填写清楚。
3.请按照题号的顺序在答题卡各题目的答题区域内作答,超出答题区域书 写的答案无效;在草纸、试题纸上答题无效。
4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米的黑色字迹 的签字笔书写,字体工整、笔记清楚。
5.保持卡面整洁、不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修 正带、刮纸刀。
第Ⅰ卷 选择题(共30分)(涂卡)
一、 选择题(每题3分,共计30分) 1.下列四个数中,绝对值最小的数是( )
A.-3
B.0
C.1
D.2
2.下列运算正确的是( )
A.257
()a a = B.642a a a =⋅ C.22330a b ab -= D.2
222a a ⎛⎫= ⎪⎝⎭
3.下列的平面几何图形中,既是轴对称图形又是中心对称图形的是( )
4.反比例函数y =
k -3
x
的图象,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ) A.k <3 B.k ≤3 C.k >3 D.k ≥3 5.抛物线2)1(32
+-=x y 的顶点坐标是( )
A.(1,-2)
B.(-1,2)
C.(1,2)
D.(-1,-2)
6.已知:在△ABC 中,点D 为AB 上一点,过点D 作BC 的平行线交AC 于点E,过点E
B
A
第6题图
作AB 的平行线交BC 于点F,连接CD,交EF 于点K.则下列说法不正确的是( ) A.
FC
BF
FK BD = B.AC AE BC DE = C.AC AE AB AD = D.AB AD BC BF = 7.如图,将△ABC 绕点A 按逆时针方向旋转l20°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )
A.45°
B.60°
C.70°
D.90°
8.如图,AB 是⊙O 的直径,CD 为弦,连结AD 、AC 、BC ,若∠CAB=65°则∠D 的度数为( ) A.65° B.40° C.25° D.35°
9.如图,有一轮船在A 处测得南偏东30°方向上有一小岛F ,轮船沿正南方向航行至B 处,测 得小岛F 在南偏东45°方向上,按原方向再航行10海里至C 处,测得小岛F 在正东方向上,则A ,B 之间距离是( ) A.10
海里 B.(10
-10)海里 C.10海里 D.(10
-10)海里
10.如图表示小亮从家出发步行到公交车站,等公交车最后到达学校,图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系,下列
说法中正确的个数有( )
①学校和小亮家的路程为8km ; ②小亮等公交车的时间为6min ;
③小亮步行的速度是100m/min ;④公交车的速度是350m/min ; ⑤小亮从家出发到学校共用了24min. A.2个 B.3个 C.4个 D.5个
第Ⅱ卷 非选择题(共90分)
二、 填空题(每小题3分,共计30分)
11.将1 027 000用科学记数法表示为 . 12.函数3
-x 21
x y +=
中,自变量x 的取值范围是 .
第7题图
第8题图 第9题图
13.计算3
1
3
-48的结果是 . 14.把多项式2
2
3
44ab b a a +-分解因式的结果是 .
15.不等式组⎩
⎪⎨⎪⎧3x -1<2
-x -1<1的解集为 .
16.方程
13123
x x =-+的解为 . 17.某商品经过连续两次降价,销售单价由原来的640元降到360元,则平均每次降价的百分率为 .
18.如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=8,BE=2,则CD= . 19.已知:正方形ABCD 的边长为3,点P 是直线CD 上一点,若DP=1,则tan ∠BPC 的值是 .
20.如图,△ABC为等腰直角三角形,∠A BC =90°,过点B作BQ∥AC,在BQ上取一点D,连接CD、AD,若AC=CD,BD=2,则
AD= .
三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分) 21.(本题7分) 先化简,再求代数式111211
2+÷
⎪⎭
⎫ ⎝⎛---+a a a a 的值,其中︒+︒=45tan 60sin 2a .
22.(本题7分)
如图,网格中每个小正方形的边长均为1,线段AB 、线段EF 的端点均在小正方形的顶点上.
(1)在图中画以EF 为直角边的等腰直角△DEF,点D 在小正方形的格点上;
(2)在(1)的条件下,在图中画一个Rt△BAC,点C 在小正方形的格点上;使∠BAC=90°,且△BAC 的面积为2,连接CD ,直接写出线段CD 的长.
A
(第22题图)
23.(本题8分)
某校组织学生书法比赛,对参赛作品按A 、B 、C 、D 四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:
根据上述信息完成下列问题:
(1)求本次调查共抽取了多少份书法作品? (2)请在图②中把条形统计图补充完整;
(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B 级以上(即A
级和B 级)有多少份?
24.(本题8分)
四边形ABCD 为菱形,BD 为对角线,在对角线BD 上任取一点E ,连接CE ,把线段CE 绕点C 顺时针旋转得到线段CF ,使得∠ECF=∠BCD ,点E 的对应点为点F ,连接DF. (1)如图1,求证:BE=DF; (2)如图2,若DF=2
5
CF=10, ∠DFC=2∠BDC,求菱形ABCD 的边长.
25.
某商品批发商场共用
22000元同时购进A 、B
30个比购进B 型背包15个多用300元.
(1)求A 、B 两种型号背包的进货单价各为多少元?
(2)若商场把A 、B 两种型号背包均按每个50元定价进行零售,同时为扩大销售,拿出一部
B 图1
分背包按零售价的7折进行批发销售.商场在这批背包全部售完后,若总获利超过10500元,则商场用于批发的背包数量最多为多少个? 26.(本题10分)
已知:在⊙O 中,弦AC ⊥弦BD,垂足为H,连接BC,过点D 作DE ⊥BC 于点E ,DE 交AC 于点F.
(1)如图1,求证:BD 平分∠ADF;
(2)如图2,连接OC ,若OC 平分∠ACB,求证:AC=BC;
(3)如图3,在(2)的条件下,连接AB,过点D 作DN ∥AC 交⊙O 于点N,若tan ∠ADB=4
3
,AB=310,求DN 的长.
27.(本题10分)
如图,在平面直角坐标系中,点O为坐标原点,抛物线y=-3
1x 2
+bx+c 交x轴于A、B两点,交y轴于点C,直线y=x+6经过A、C两点. (1)求抛物线的解析式;
图1
图2
图3
(2)点P是第二象限抛物线上的一个动点,过点P作PQ∥AC,PQ交直线BC于点Q,设点P的横坐标为t,点Q 的横坐标为m,求m 与t之间的函数关系式(不要求写出自变量t的取值范围); (3)在(2)的条件下,作点P关于直线AC的对称点点K,连接QK,当点K落在直线 y=-5
12
x 上时,求线段QK的长.
数学答案
一、选择题
1.B
2.B
3.D
4.A
5.C
6.A
7.D
8.C
9.D 10.B 二、填空题
11.1.027×106
12.x ≠2
3 13.33 14.a(a-2b)2
15.-2<x <1 16. x=6 17.25℅ 18.8 19.
23或4
3
20.2
21.解:原式=
11 a ,a=3+1, 原式=3
3
22.(1)
(2)CD=10
23.(1)120 (2)C:36 D:12 (3)450
24. (2) 过点C 作CK ⊥BD 于点K,联立解△DEC 和△DBC,边长=74 25.解:(1)A:25元,B:30元
(2)a <500,∵a 为正整数 ∴a 的最大正整数为499 26. (2)连接OA 、OB ,证△AOC ≌△BOC
(3)连接BN ,过点O 作OP ⊥BD 于点P, 过点O 作OQ ⊥AC 于点Q,求得OP=HQ=2
9
, ∴DN=2OP=9 27.解:(1) y=-
3
1x 2
-x+6 (2)过点P作y轴的平行线PK交直线BC于点K,解△PQK得m=9
1t 2+3
2t(3)连接CP、CK、PK,过点
C作CN∥x轴交过点P平行于y轴的直线于点N,过点K作KM⊥y轴于点M, 证△CNP≌△CMK可得K(-31t 2-t,t+6),把K(-3
1t 2-t,t+6)代入y=-
5
12
x 中,解得t 1=2(舍去),t 2=-4
15,∴K(-1615,49),Q(-1615,8
63),∴QK∥y轴,
∴QK=863-49=8
45.。