人教版高中物理选修知识点——第三章《磁场》

合集下载

人教版高中物理选修3-1第3章《第三章磁场》章末总结(教案)

人教版高中物理选修3-1第3章《第三章磁场》章末总结(教案)
★知识结构★
《第三章 磁场》章末总结
【教学过程】 ★重难点一、有关安培力问题的分析与计算★
有关安培力问题的分析与计算
安培力是一种性质力, 既可以使通电导体静止、 运动或转动, 又可以对通电导体做功, 因此,
有关安培力问题的分析与计算的基本思路和方法与力学问题一样,
先取研究对象进行受力分
析,判断通电导体的运动情况,然后根据题目中的条件由牛顿定律或动能定理等规律求解。
具体求解应从以下几个方面着手分析。
1.安培力的大小 当通电导体与磁场方向垂直时,
F= ILB;当通电导体与磁场方向平行时,
F= 0;当通电导体
和磁场方向的夹角为 θ 时, F= ILBsinθ 。
2.安培力的方向 由左手定则判断, 安培力垂直于磁场的方向, 也垂直于导线的方向, 即安培力垂直于磁场和 导线所决定的平面,但磁场与导线可以不垂直。
mv0 2 Bq
t=( T1+T2)/2=7 π m/4Bq, 得: v=2v0/7 π (3)则在每 4 周期刚结束时粒子第二次经过 符合要求的点。
x1 2r1 的这一点,以后每过一周期将会出现
故 xk
2r1 (k 1)r1
k3 r1
(k 3)m0v
2
2
2 Bq
(式中 k 取 1、 2、3……)
★重难点三、带电粒子在复合场中运动规律★ 一、 带电粒子在复合场中运动规律 1.复合场 指重力场、磁场和电场并存,或其中某两场并存,或分区域存在.粒子连续运动时,一般要 同时考虑重力、洛伦兹力和静电力的作用. 2.三种场的不同特点比较
(1)粒子在 x 轴上方磁场做匀速圆周运动半径 r1
(2)如把 x 上方运动的半周与 x 下方运动的半周称为一周期的话,则。

高中物理人教版选修3-1(课件)第三章 磁场 3-2

高中物理人教版选修3-1(课件)第三章 磁场 3-2

上一页
返回首页
下一页
(1)磁感应强度的方向是小磁针静止时N极的指向. (2)磁场中不同位置的磁感应强度的方向一般不同,描述时一定要指明是哪一 点的磁场方向.
上一页
返回首页
下一页
磁感应强度的大小
[先填空]
1.电流元:很短的一段通电导线中的 电流I 与 导线长度L 的乘积.
2.影响通电导线在磁场中受力大小的因素:通电导线与磁场方向垂直时:
上一页
图3-2-1
返回首页
下一页
1.下列关于磁感应强度的方向和电场强度的方向的说法中,不正确的是 ()
A.电场强度的方向与电荷所受电场力的方向相同 B.电场强度的方向与正电荷所受电场力的方向相同 C.磁感应强度的方向与小磁针N极所受磁场力的方向相同 D.磁感应强度的方向与小磁针静止时N极所指的方向相同
__电__流__元__I_L___的比值,B=___I_L___.
N (2)单位:特斯拉,简称特,符号是T,1 T=1___A__·m_____.
上一页
返回首页
下一页
[再判断] 1.磁感应强度B=IFL与电场强度E=Fq都是用比值定义法定义的.( √ ) 2.电流为I,长度为L的通电导线放入磁感应强度为B的磁场中受力的大小一 定是F=ILB.( × ) 3.磁场中某处的磁感应强度大小与有无小磁针无关,与有无通电导线也无 关.( √ ) 4.公式B=IFL适用于任何磁场.( √ )
上一页
返回首页
下一页
[再判断] 1.与电场强度相似,磁场强度是表示磁场的强弱和方向的物理量.( × ) 2.磁场的方向就是小磁针静止时所受合力的方向.( × ) 3.小磁针的N极和S极所受磁场力的方向是相反的.( √ )
上一页

人教版高中物理选修(3-1)第3章《磁场》ppt课件

人教版高中物理选修(3-1)第3章《磁场》ppt课件
成才之路 ·物理
人教版 ·选修3-1
路漫漫其修远兮 吾将上下而求索
第三章 磁场
1 情景切入 2 知识导航 3 学法指导
情景切入
我们的祖先在磁现象的发现及应用方面写下了灿烂的一 页.早在战国时期就有“慈石召铁”的记载,讲的是天然磁石 对铁块的吸引。指南针是我国古代的四大发明之一,对世界文 明有重大影响。
• 3.要分清左右手的用法。用左手判断安培力的方向, 洛伦兹力的方向,用右手判断电流方向,还要注意 研究正负粒子在磁场中运动的问题时,四个手指指 向的区别。
• 4.善于利用几何关系。带电粒子的圆周运动,关键 是确定圆周的圆心,再利用洛伦兹力提供向心力这 一条件,确定圆周运动的半径和周期,再进一步确 定运动时间、偏转角度等物理量。
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知 识逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等 等,这些用语往往体现了老师的思路。来自:学习方法网
• 本章难点:带电粒子在磁场中运动的基本规律以及 带电粒子在电场、磁场、导
• 1.本章的学习可以通过与前面学过的电场类比从而 更好地理解,例如磁场与电场类比,磁感应强度与 电场强度类比,磁感线与电场线类比,安培力、洛 伦兹力与电场力类比等。
• 2.要注意培养空间想象能力。磁感应强度、电流、 安培力和洛伦兹力分布在一个立体空间,在头脑中 对它们的方向构成的立体关系要清晰,层次分明, 并且还要根据需要转化为平面内的关系。
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、 语文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。

高中物理第三章《第4节-通电导线在磁场中受到的力》新人教版选修

高中物理第三章《第4节-通电导线在磁场中受到的力》新人教版选修

[解析] 当开关K接通时,根据安培定则知电磁铁附近磁感 线的分布如图所示,由左手定则知通电直导线此时左端受力指 向纸内,右端受力指向纸外,故导线将转动,转到与磁感线接 近垂直时,整个导线受到的磁场力将竖直向下,故悬线张力变 大,选项D正确.
[答案] D
考点三 磁电式电流表 磁电式电流表的灵敏度较高,那么其原理是什么呢?
左手定则应用的两个要点 (1)安培力的方向既垂直于电流的方向,又垂直于磁场的方 向,所以应用左手定则时,必须使大拇指指向与四指指向和磁场 方向均垂直. (2)由于电流方向和磁场方向不一定垂直,所以磁场方向不一 定垂直穿入手掌,可能与四指方向成某一夹角.但四指一定要指 向电流方向.
[变式训练] 如图所示,导线 ABC 为垂直折线,其中电流 为 I,AB=BC=L,导线所在的平面与匀强磁场垂直,匀强磁场 的磁感应强度为 B,求导线 ABC 所受安培力的大小和方向.
把整段导线分为多段电流元,先用 左手定则判断每段电流元受力的方 电流元法 向,然后判断整段导线所受合力的 方向,从而确定导线的运动方向 环形电流可等效成小磁针,通电螺 等效法 线管可以等效成条形磁铁或多个环 形电流,反过来也成立
通过转动通电导线到某个便于分析的特殊 特殊位置法 位置,然后判断其所受安培力的方向,从
(3)形象记忆左手定则和安培定则的不同用途:“力”字最 后一笔是向左写的,用左手判断安培力的方向,电流的磁场中的 “电”字最后一笔是向右写的,用右手判断电流的磁场方向.简 称“左力右电”.
2. 安培力的大小 (1)当 B 与 I 垂直时,F=BIL;当 B 与 I 成 θ 角时,F=BILsinθ, θ 是 B 与 I 的夹角. (2)B 对放入的通电导线来说是外磁场的磁感应强度. (3)导线 L 所处的磁场应为匀强磁场;在非匀强磁场中,公 式 F=BILsinθ 仅适用于很短的通电导线(我们可以把这样的直 线电流称为直线电流元).

人教版高中物理选修3-1第三章 磁场

人教版高中物理选修3-1第三章 磁场

高中物理学习材料 (马鸣风萧萧**整理制作)第三章 磁场第一节 磁现象、磁场、磁感应强度〖知识精讲〗知识点1.磁性、磁极[例1] A. 物体能够吸引轻小物体的性质叫磁性( )B. 磁铁的两端部分就是磁铁的磁极( )[例2]磁场是一种物质吗?[例3] 下列说法正确的是( )A 、磁场中某点的磁感应强度可以这样测定:把一小段通电导线放在该点时,受到的磁场力F 与该导线的长度L 、通过的电流I 的乘积的比值B=ILF即为磁场中某点的磁感应强度B 、通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C 、磁感应强度B=ILF只是定义式,它的大小取决于场源及磁场中的位置,与F 、I 、L 以及通电导线在磁场的方向无关D 、磁场是客观存在的物质〖综合拓展〗磁感应强度的概念及其矢量性理解:考题1:有关磁感应强度的下列说法中,正确的是( ) A. 磁感应强度是用来表示磁场强弱的物理量B. 若有一小段通电导体在某点不受磁场力的作用,则该点的磁感应强度一定为零C. 若有一小段长为L ,通以电流为I 的导体,在磁场中某处受到的磁场力为F ,则该处磁感应强度的大小一定是F/ILD. 由定义式B=F/IL 可知,电流强度I 越大,导线L 越长,某点的磁感应强度就越小〖基础达标〗1.磁场中任一点的磁场方向规定为,小磁针在磁场中A.受磁场力的方向B.北极受磁场力的方向C.南极受磁场力的方向D.受磁场力作用转动的方向3、磁感应强度的单位是T ,1T 相当( )A 、1㎏/A ·s 2B 、1㎏·m/A ·s 2C 、1㎏·m /s 2D 、1㎏·m 2/A ·s 24、下列说法正确的是( )A .电荷处在电场强度为零的地方,受到的电场力一定为零B .小段通电导线放在磁感应强度为零的地方,受到的磁场力一定为零C .小段通电导线在某处不受磁场力的作用,则该处磁感应强度为零D .荷在某处不受电场力的作用,则该处电场为零〖能力提升〗ILF 知,磁场中某处磁感应强度的大小( )A 、随通电导线中电流I 的减少而增大B 、随IL 的乘积的减少而增大C 、随通电导线所受磁场力F 的增大而增大D 、跟F 、I 、L 的变化无关2、电流的磁场是由 首先发现的,而首先发现电流磁场的方向跟电流的方向的关系的是法国科学家Nab I2、如图所示,质量为m 、长度为l 的金属棒ab 通过两根金属丝悬挂在绝缘支架MN 下方。

人教版高中物理选修31第三章《磁现象和磁场》

人教版高中物理选修31第三章《磁现象和磁场》

磁性、磁体、磁极
磁现象
磁极间的相互用
同名磁极相互排斥 异名磁极相互吸引
奥斯特实验
电流的磁效应

结论:电流周围存在磁场


定义

磁 场
磁场
性质:对磁体或电流有力的作用 磁体周围有磁场
产生
电流周围有磁场
地磁场
地理南北极与地磁场南北极的关系 磁偏角
你知道吗?美丽的极光的发生与地球的 磁场有密切关系。
地球磁场能抵挡大部分太阳风
地理 北极
近,地磁的南极在地理的北极
附近,但两者并不完全重合,它
们之间的夹角称为磁偏角
4.磁偏角的数值在地球上不同 地方是不同的
地理
沈括在《梦溪笔谈》中指出:
南极
“常微偏东,不全南也”。这是
世界上最早的关于磁偏角的记载。
地磁 北极
地球磁场很弱,其表面的磁场比一个条形 磁铁近旁的磁场弱的多,但能自由旋转的 小磁针已能显示出地磁场对它的作用,指 南针正是利用这个原理制成的。
第三章 磁场
第一节 磁现象和磁场
信鸽是方向辨识的高手,即使在上千公里外,也能够找准方向 归巢,那么信鸽靠的是什么本领呢?
目前科学家已经证实了鸽子的上喙具有一种能够感应 地磁场的晶胞,正是这种器官为鸽子的飞行导航。
最初发现的磁体是被称为“天然磁石”的矿物,其中含有 主要成分为Fe3O4。
上海磁悬浮列车专线西起上海地铁龙阳路站,东至上海浦 东国际机场,列车加速到平稳运行之后,速度是430公里/小时。这 个速度超过了F1赛事的最高时速。
因此地磁场对地球生命有保护作用百年地球磁场衰减地磁场的减弱是可能导致磁场方向倒转的预兆。
美国科学家最新研究表明,未来地球磁场将出现方向反转, 在地球历史中经历过多次磁场反转,地球磁场就像一个条形磁

【高中物理】高中物理(人教版)选修3-1同步教师用书:-第3章-3-几种常见的磁场

【高中物理】高中物理(人教版)选修3-1同步教师用书:-第3章-3-几种常见的磁场

3 几种常见的磁场学习目标知识脉络1.知道磁现象的电本质,了解安培分子电流假说.2.知道磁感线的定义和特点,了解几种常见磁场的磁感线分布.(重点)3.会用安培定则判断电流的磁场方向.(难点)4.知道匀强磁场、磁通量的概念.(重点)磁感线安培定则[先填空]1.磁感线(1)定义:用来形象描述磁场的强弱及方向的曲线.(2)特点:①磁感线的疏密表示磁场的强弱.②磁感线上某点的切线方向表示该点磁感应强度的方向.2.安培定则(1)直线电流的磁场:右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向,如图3-3-1甲所示.图3-3-1(2)环形电流的磁场:让右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁感线的方向,如图3-3-1乙所示.(3)通电螺线管的磁场:右手握住螺线管,让弯曲的四指所指的方向跟电流方向一致,拇指所指的方向就是螺线管内部磁感线的方向,或拇指指向螺线管的N极,如图3-3-1丙所示.3.安培分子电流假说(1)内容:安培认为,在原子、分子等物质微粒的内部,存在着一种环形电流,即分子电流.分子电流使每个物质微粒都成为小磁体,它的两侧相当于两个磁极.(2)意义:能够解释磁化以及退磁现象,解释磁现象的电本质.(3)磁铁的磁场和电流的磁场一样,都是由电荷的运动产生的.[再判断]1.通电直导线周围磁场的磁感线是闭合的圆环.(√)2.磁感线可以用细铁屑来显示,因而是真实存在的.(×)3.磁感线闭合而不相交,不相切,也不中断.(√)4.除永久性磁铁外,一切磁场都是由运动电荷产生的.(×)5.一般的物体不显磁性是因为物体内的分子电流取向杂乱无章.(√)[后思考]1.有同学认为磁感线总是从磁体北极指向南极,你认为对吗?【提示】不对,在磁体外部磁感线从磁体北极指向南极,而在磁体内部,磁感线是从南极指向北极.2.怎样可以使磁铁的磁性减弱或失去磁性?【提示】高温或猛烈的撞击可以使分子电流取向变得杂乱无章,从而失去磁性.[合作探讨]如图3-3-2所示,螺线管内部小磁针静止时N极指向右方.图3-3-2探讨1:螺线管内部磁场沿什么方向?螺线管c、d端,哪端为N极?【提示】由c指向d.d端为N极.探讨2:小磁针放在螺线管上方e处,静止时N极指向什么方向?【提示】向左.探讨3:电源的a、b端,哪端为正极?【提示】a端.[核心点击]1.磁感线的特点(1)为形象描述磁场而引入的假想曲线,实际并不存在.(2)磁感线的疏密表示磁场的强弱,密集的地方磁场强,稀疏的地方磁场弱.(3)磁感线的方向:磁体外部从N极指向S极,磁体内部从S极指向N极.(4)磁感线闭合而不相交,不相切,也不中断.(5)磁感线上某点的切线方向表示该点的磁场方向.2.磁感线与电场线的比较两种线磁感线电场线相似点引入目的形象描述场而引人的遐想线,实际不存疏密场的强弱切线方向场的方向相交不能相交(电场中无电荷空间不相交)不同点闭合曲线不闭合,起始于正电荷,终止于负电荷3.常见永磁体的磁场图3-3-34.三种常见的电流的磁场安培定则立体图横截面图纵截面图直线电流以导线上任意点为圆心垂直于导线的多组同心圆,越向外越稀疏,磁场越弱环形电流内部磁场比环外强,磁感线越向外越稀疏通电螺线管内部为匀强磁场且比外部强,方向由S极指向N极,外部类似条形磁铁,由N极指向S极(1)磁化现象:一根软铁棒,在未被磁化时,内部各分子电流的取向杂乱无章,它们的磁场互相抵消,对外不显磁性;当软铁棒受到外界磁场的作用时,各分子电流取向变得大致相同时,两端显示较强的磁性作用,形成磁极,软铁棒就被磁化了,即磁化的实质是分子电流由无序变为有序.(2)磁体的消磁:磁体受到高温或猛烈撞击状况时,即在激烈的热运动或机械运动影响下,分子电流的取向又会变得杂乱无章,使得磁体磁性消失.1.如图3-3-4所示,表示蹄形磁铁周围的磁感线,磁场中有a、b两点,下列说法正确的是()图3-3-4A.a、b两处的磁感应强度的大小不等,B a>B bB.a、b两处的磁感应强度的大小不等,B a<B bC.蹄形磁铁的磁感线起始于蹄形磁铁的N极,终止于蹄形磁铁的S极D.a处没有磁感线,所以磁感应强度为零【解析】由题图可知b处的磁感线较密,a处的磁感线较疏,所以B a<B b,故A错,B对;磁感线是闭合曲线,没有起点和终点,故C错;在没画磁感线的地方,并不表示没有磁场存在,故D错.【答案】 B2.为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的.在下列四个图中,正确表示安培假设中环形电流方向的是()【解析】地磁场是从地球的南极附近出来,进入地球的北极附近,除两极外地表上空的磁场都具有向北的磁场分量,由安培定则,环形电流外部磁场方向向北、可知,B正确.A图地表上空磁场方向向南,A错误.C、D在地表上空产生的磁场方向是东西方向,C,D错误.故选B.【答案】 B安培定则记忆口诀“直对直,弯对弯”.即在应用安培定则时,四指始终弯曲,拇指始终伸直,当是直线电流时,拇指指向电流方向,四指指向磁场方向;当是环形电流时,四指弯曲指向电流方向,拇指指向磁场方向.匀强磁场和磁通量[先填空]1.匀强磁场(1)定义:强弱、方向处处相同的磁场.(2)磁感线特点:疏密均匀的平行直线.2.磁通量(1)定义:匀强磁场中磁感应强度和与磁场方向垂直的平面面积S的乘积,即Φ=BS.(2)拓展:磁场B与研究的平面不垂直时,这个面在垂直于磁场B方向的投影面积S′与B的乘积表示磁通量.(3)单位:国际单位制是韦伯,简称韦,符号是Wb,1 Wb=1_T·m2.(4)引申:B=ΦS,表示磁感应强度等于穿过单位面积的磁通量,因此磁感应强度B又叫磁通密度.[再判断]1.在匀强磁场中面积越大,磁通量一定越大.(×)2.磁感应强度等于垂直穿过单位面积的磁通量.(√)3.磁通量不仅有大小而且有方向,所以是矢量.(×)4.将一平面置于匀强磁场中的任何位置,穿过该平面的磁通量总相等.(×) [后思考]若通过某面积的磁通量等于零,则该处一定无磁场,你认为对吗?【提示】不对.磁通量除与磁感应强度、面积有关外,还与环面和磁场夹角有关,当环面与磁场平行时,磁通量为零,但仍能存在磁场.[合作探讨]如图3-3-5所示,匀强磁场B0竖直向下,且与平面BCFE垂直,已知平面BCFE的面积为S.图3-3-5探讨1:平面BCFE的磁通量是多大?【提示】B0S.探讨2:平面ABCD的磁通量是多大?【提示】B0S.探讨3:平面AEFD的磁通量是多大?【提示】0.[核心点击]1.磁通量的物理意义:表示磁场中穿过某一平面的磁感线条数,且为穿过的磁感线的净条数.2.磁通量的计算(1)匀强磁场,磁感线与平面垂直时:Φ=BS.(2)匀强磁场,磁感线与平面不垂直时:Φ=BS sin θ,公式中的θ是平面与磁感线的夹角,S sin θ是平面在垂直于磁感线方向的投影面积.3.磁通量的正、负值含义(1)磁通量是标量,但有正、负.若规定磁感线从某平面穿入时,磁通量为正值,则磁感线从该平面穿出时即为负值.(2)若某一平面有正反两个方向的磁感线穿过,穿过正向的磁通量为Φ1,反向的磁通量为Φ2,则穿过该平面的磁通量Φ=Φ1-Φ2.4.磁通量与磁感应强度的关系(1)磁感应强度的另一种定义:由Φ=BS得B=ΦS,此为磁感应强度的另一定义式,表示穿过垂直于磁场方向的单位面积的磁感线条数,所以B又叫作磁通密度.(2)磁感应强度的另一个单位:由B=ΦS得磁感应强度的另一个单位是Wbm2,且1 T=1 Wbm2=1NA·m.3.如图3-3-6所示,在条形磁铁中部垂直套有A、B两个圆环,设通过线圈A、B的磁通量为ΦA、ΦB,则()【导学号:34522039】图3-3-6A.ΦA=ΦBB.ΦA<ΦBC.ΦA>ΦBD.无法判断【解析】在条形磁铁的周围,磁感线是从N极出发,经外空间磁场由S 极进入磁铁内部.在磁铁内部的磁感线从S极指向N极,又因磁感线是闭合的平滑曲线,所以条形磁铁内外磁感线条数一样多,从下向上穿过A、B环的磁感线条数一样多,而从上向下穿过A环的磁感线多于B环,则从下向上穿过A环的净磁感线条数小于B环,所以通过B环的磁通量大于通过A环的磁通量.【答案】 B4.如图3-3-7所示,框架面积为S,框架平面与磁感应强度为B的匀强磁场方向垂直,则穿过平面的磁通量为多少?若使框架绕OO′轴转过60°角,则穿过线框平面的磁通量为多少?若从初始位置转过90°角,则穿过线框平面的磁通量为多少?图3-3-7若从初始位置转过180°角,则穿过线框平面的磁通量变化为多少?【解析】在图示位置时,磁感线与线框平面垂直,Φ=BS.当框架绕OO′轴转过60°时可以将原图改画成从上面向下看的俯视图,如图所示.Φ=BS⊥=BS·cos 60°=12BS.转过90°时,线框由磁感线垂直穿过变为平行,Φ=0.线框转过180°时,磁感线仍然垂直穿过线框,只不过穿过方向改变了.因而Φ1=BS,Φ2=-BS,ΔΦ=Φ2-Φ1=-2BS.即磁通量变化了2BS.【答案】BS 12BS02BS求ΔΦ的三种方法导致磁通量变化的原因不同,求解磁通量变化量的方法也有差异,常见以下三种情景:(1)磁感应强度B不变,由于有效面积S发生变化导致磁通量变化,这种情况的ΔΦ利用BΔS求解.(2)面积S不变,由于磁感应强度B发生变化导致磁通量变化,这种情况的ΔΦ利用ΔBS求解.(3)磁感应强度B和有效面积S均发生变化,这种情况的ΔΦ=B2S2-B1S1,不能用ΔB·ΔS求解磁通量变化量.高中物理考试答题技巧及注意事项在考场上,时间就是我们致胜的法宝,与其犹犹豫豫不知如何落笔,倒不如多学习答题技巧。

高中物理人教版选修31课件:第三章+磁场3.3几种常见的磁场课件

高中物理人教版选修31课件:第三章+磁场3.3几种常见的磁场课件

安培定则
立体图
横截面图
纵截面图
以导线上任意点为圆心的多组同心圆,越向外越 稀疏,磁场越 弱
答案
2.环形电流的磁场 环形电流的磁场可用另一种形式的安培定则表示:让 右 手弯曲的四指 与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁
感线的方向.
安培定则
立体图
横截面图
纵截面图
内部磁场比环外 强 ,磁感线越向外越 稀疏
1234
1.(对磁感线的理解)如图5所示的磁场中同一条磁感线(方
向未标出)上有a、b两点,这两点处的磁感应强度( B )
A.大小相等,方向不同 C.大小相等,方向相同
B.大小不等,方向相同
图5
D.大小不等,方向不同
解析 如题图,a点处磁感线比b点处磁感线密,则a点的磁感应强度 大于b点的磁感应强度,而某点的切线方向即为该点的磁感应强度的 方向.因此它们的方向相同.故B正确,A、C、D错误.
答案
3.通电螺线管的磁场 通电螺线管是由许多匝 环形电流 串联而成的.所以环形电流的安培定则
也可以用来判定通电螺线管的磁场,这时拇指所指的方向就是螺线管 内部磁场的方向.
安培定则
立体图
横截面图
纵截面图Βιβλιοθήκη 内部为匀强磁场且比外部强,方向由S极指向N极,外部类似_条__形__
磁铁,由 N 极指向 S 极
答案
图7
解析答案
4.(对磁通量的理解)如图8所示,一个单匝线圈abcd水 平放置,面积为S,有一半面积处在竖直向下的匀强 磁场中,磁感应强度为B,当线圈以ab边为轴转过30° 和60°时,穿过线圈的磁通量分别是多少?
1234
图8
解析 当线圈分别转过30°和60°时,线圈平面在垂直于磁场方向的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中物理选修3-1部分知识点
内部资料
第三章《磁场》
一、磁现象和磁场
1)磁体分为天然磁石和人造磁体。

磁体吸引铁质物体的性质叫做磁性。

磁体磁性最强的区域叫做磁极。

同名磁极相互排斥;异名磁极相互吸引。

2)电流的磁效应
奥斯特发现,电流能使磁针偏转,因此,电流就等效成磁体。

3)磁场
①磁场与电场一样,都是看不见摸不着,客观存在的物质。

电流和磁体的周围都存在磁场。

②磁体与磁体之间、磁体与电流之间,以及电流与电流之间的相互作用,是通过磁场发生的。

③地球的磁场
地球的地理两极与地磁两极并不重合,其间有一个夹角,这就是地磁偏角。

地理南极附近是地磁北极;地理北极附近是地磁南极。

二、磁感应强度B
1)物理意义:磁感应强度B 为矢量,它是描述磁场强弱的物理量。

2)方向:小磁针静止时N 极所指的方向或者小磁针N 极的受力方向规定为该点的磁感应强度的方向。

3)大小:IL
F B ,单位:特斯拉(T ) 条件:磁场B 的方向与电流I 的方向垂直。

其中:IL 为电流元,F 为电流元受到的磁场力。

三、几种常见的磁场
1)磁感线
为了形象地描述磁场,曲线上每一点的切线方向都是该点的磁感应强度B 的方向。

2)安培定则(右手螺旋定则)
①第一种描述:对于直线电流,右手握住导线,1、拇指指向电流的方向;2、弯曲的四指指向磁感线的方向。

直线电流的磁感线都是以电流为轴的同心圆,越远离电流磁场越弱。

②第二种描述:对于环形电流,1、弯曲的四指指向环形电流的方向;2、拇指指向环内部的磁感线方向。

环形电流内部的磁场恰好与外部的磁场反向。

3)安培分子电流假说
分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。

安培分子电流假说揭示了磁的电本质。

一条铁棒未被磁化的时候,内部分子电流的取向是杂乱无章的;当分子电流的取向一致时,铁棒被磁化。

磁体受到高温或猛烈撞击时会失去磁性。

4)磁通量Φ
①定义式:BS =φ,单位:韦伯(Wb ) 其中:S 为在磁场中的有效面积。

②磁通量是标量,但有正负,正负不表示大小。

四、安培力
(1)大小:θsin BIL F =
其中:θ为磁场B 与电流I 的方向夹角。

当B 与I 垂直时,0
90=θ,安培力最大F=BIL ;当B 与I 平行时,00=θ,安培力最小F=0。

(2)方向:左手定则
①磁感线垂直穿过手心;②四指指向电流的方向;③拇指所指的方向就是安培力的方向。

注意:安培力不但垂直于磁场B 的方向,而且垂直于电流I 的方向。

五、洛伦兹力
(1)大小:θsin qvB f =
其中:θ为磁场B 与运动电荷的速度v 的方向夹角。

当B 与v 垂直时,090=θ,安培力最大f=qvB ;当B 与v 平行时,00=θ,安培力最小f=0。

(2)方向:左手定则
①磁感线垂直穿过手心;②四指指向正电荷运动的方向;③拇指所指的方向就是洛伦兹力的方向。

注意:洛伦兹力不但垂直于磁场B 的方向,而且垂直于运动电荷速度v 的方向。

因此,洛伦兹力不做功。

六、带电粒子在电磁场中的运动
1、带电粒子的种类
①带电粒子,如电子、质子、α粒子、粒子等,一般情况下,不考虑重力。

②带电微粒,如液滴、尘埃、小球等,一般情况下,必须考虑重力。

2、带电粒子在场中的运动
(1)带电粒子在匀强磁场中的运动
①当v 平行于磁场B 进入时,粒子做匀速直线运动。

②当v 垂直于磁场B 进入时,粒子做匀速圆周运动,洛伦兹力提供向心力。

r
v m qvB 2
= 所以,粒子的轨道半径qB mv r =
,粒子运动的角速度m qB r v ==ω,粒子运动的周期
qB
m T πωπ
22==。

(2)质谱仪
质谱仪的结构:
由动能定理可得221mv qU =,所以带电粒子进入磁场的速度m
qU v 2=,在磁场中做匀速圆周运动,轨道半径q mU B qB mv r 21==,所以带电粒子射出的位置q
mU B r x 222==。

由此我们可以得到,(1)质谱仪可以测量带电粒子的质量;(2)如果带电粒子的电荷量q 相同,质量m 不同,带电粒子的射出位置就不同,因此质谱仪也可以发现同位素。

(3)回旋加速器
回旋加速器的结构:
回旋加速器能帮助我们获得高能粒子,带电粒子的最大动能m
R B q mv E m K 2212222max ==。

要使带电粒子持续加速,加速电场的电压必须是交变电压,并且交变电压的周期恰好等于带电粒子的运动周期qB
m T π2=。

(4)带电粒子运动轨迹对解题的帮助
解决粒子的运动问题关键是:
画出粒子的运动轨迹(左手定则+圆周运动知识)→确定圆心和半径(做两个速度的垂线,交点即为圆心)。

如图所示:
粒子在磁场中运动的时间t 与轨迹所对应的圆心角θ密切相关,
πθ2T t =,所以带电粒子在磁场中的运动时间T t π
θ2=。

两种重要情况下的轨迹问题:
①直线边界的匀强磁场
其轨迹可能是优弧也可能是劣弧,但是出射速度与边界的夹角等于入射速度与边界的夹角。

②圆形边界的匀强磁场
入射磁场的速度和出射磁场的速度方向必过磁场的圆心。

第四章《电磁感应》。

相关文档
最新文档