《运筹学》课程实验指导书09级
《运筹学》课程实践教学大纲一、实践教学的目的与要求《运筹学》是工商

《运筹学》课程实践教学大纲一、实践教学的目的与要求《运筹学》是工商管理类专业一门重要的专业课程。
该课程利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答,改善或优化现有企业运作系统的效率。
通过该课程的实践教学,要达到以下的教学目的:1、领会运筹学的基本原理,熟悉运筹学的基本工具和方法;2、掌握复杂问题的建模和Excel求解运筹学各种问题的技能。
《运筹学》实践教学要求如下:1.要在体验和理解的基础上牢固掌握有关运筹学的理论方法;2.在实践中熟悉并掌握运筹学建模和Excel模型求解的技能。
二、实践教学的形式《运筹学》实践教学采取如下形式:1.实验室实验实训;2.课堂实例操作。
三、实践教学的内容(一)课堂实例操作(3学时)具体内容:结合上课章节内容的实例,老师运用Excel求解方法演示后,安排学生随堂多媒体电脑操作,台上展示,台下观摩。
(二)实验室实验实训(5学时)具体内容:1.一般线性规划问题的Excel求解(1学时)(综合性)包括:(1)Excel中“规划求解”功能模块的加载(2)在Excel电子表格中建立线性规划模型(3)用Excel“规划求解”功能求解线性规划问题2.线性规划的扩展问题的Excel求解(1学时)(综合性)包括:(1)整数规划的Excel求解(2)0-1规划的Excel求解(3)指派问题的Excel求解(4)运输问题的Excel求解(5)目标规划的Excel求解3.图与路径规划问题的Excel求解(1学时)(验证性)包括:(1)最小费用问题的Excel求解(2)网络最大流问题的Excel求解(3)最短路径问题的Excel求解4.网络计划技术的Excel求解(1学时)(验证性)包括:(1)关键路线的Excel求解(2)网络计划优化问题的Excel求解5.决策分析技术的Excel求解(1学时)(验证性)包括:(1)风险型决策的的Excel求解(2)不确定型决策问题的Excel求解附:实验实训作业格式(见下页,根据内容可加页)问题的Excel求解成绩1. 实训者2. 实训具体内容3. 实训操作过程与结果(贴图)4. 实训心得。
运筹学实验指导书

运筹学实验指导书马建华山东财经大学目录实验一lingo软件的基本操作 (3)1.实验目的 (3)2.实验内容 (3)3.实验步骤 (3)4.注意事项 (4)5.实验练习题 (4)实验二lingo软件的函数输入 (6)1.实验目的 (6)2.实验内容 (6)3.实验步骤 (6)4.注意事项 (6)5.实验练习题 (7)实验三Excel规划求解 (8)1.实验目的 (8)2.实验内容 (8)3.实验步骤 (8)4.注意事项 (10)5.实验练习题 (10)实验四Scilab软件的基本操作 (11)1.实验目的 (11)2. 实验内容 (11)3.实验步骤 (11)4.注意事项 (15)5.实验练习题 (15)实验五求解网络优化 (16)1.实验目的 (16)2.实验内容 (16)3.实验步骤 (16)4.注意事项 (20)5.实验练习题 (20)实验一lingo软件的基本操作1.实验目的熟悉lingo软件的基本操作,学会软件安装、调用和基本窗口组成及各种命令。
2.实验内容(1)Lingo软件的基本操作;(2)Lingo软件求解数学规划。
3.实验步骤第一步打开Lingo13.0 认识窗口菜单和命令第二步输入模型model:min=3*x1+2*x2+x3;x1+2*x2+x3<=15;2*x1+5*x3>=18;2*x1+4*x2+x3<=10;end第三步点击求解按钮求解规划第四步找出最优解和最优值4.注意事项(1)Lingo的输入必须在英文半角状态下输入;(2)Lingo没有下标,可以用字母后面跟数字表示;(3)Lingo没有≤或≥号,用<= 和>=分别代表两种不等号;(4)在系数与变量之间要有“*”表示乘号;(5)变量大于等于零为默认要求,不用输入。
如果要输入自由变量,需要用函数@free( )定义,每次只能定义一个。
(6)Lingo内部函数必须用“@”开始;(7)如果变量有上下界,用函数@BND(下界,变量,上界)。
《运筹学》课程实验指导书09级

《运筹学》课程实验指导书实验一线性规划问题模型的建立及求解1.实验目的和要求理解线性规划模型的基本思想,熟悉运筹学软件的安装及基本使用方法,能够使用运筹学软件对线性规划问题进行求解。
2.实验前准备复习教材第一、二、三、四、五、六章相关内容。
3.实验条件每名同学使用一台计算机。
小组同学相邻,方便讨论。
4.实验内容(1)熟悉运筹学软件的安装及基本使用方法。
(2)练习教材第二章习题8a,b的数学模型,使用运筹学软件求解,分析输出数据。
(3)选择教师指定的实际问题,进行分析、建模和求解(实验报告内容)。
5.实验报告完成本次实验的报告,写清实验步骤及实验结果。
指定问题:问题一:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。
假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?问题二:某厂每日8小时的产量不低于1800件。
为了进行质量控制,计划聘请两种不同水平的检验员。
一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15件/小时,正确率95%,计时工资3元/小时。
检验员每错检一次,工厂要损失2元。
为使总检验费用最省,该工厂应聘一级、二级检验员各几名?问题三:某农场有100公顷土地及15000元资金可用于发展生产。
农场劳动力情况为秋冬季3500人日,春夏季4000人日,如劳动力本身用不了时可外出干活,春夏季收入为2.1元/人日,秋冬季收入为1.8元/人日。
该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。
种作物时不需要专门投资,而饲养动物时每头奶牛投资400元,每只鸡投资3元。
养奶牛时每头需拨出1.5公顷土地种饲草,并占用人工秋冬季100人日,春夏季为50人日,年净收入400元/每头奶牛。
运筹学实验教案新部编本和指导书

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《运筹学》实验教案一、课程实验目标《运筹学》课程是工商管理类专业的五门核心课程之一,本课程实验课的教学旨在通过学生上机学习、实际操作、运用《管理运筹学》2.0软件,使学生从理论课教学中所学到的《运筹学》中线性规划、运输问题、整数规划、0-1规划和指派问题的基本概念、基本理论、基本计算方法得以进一步加深理解,并为后续管理专业课程的学习、毕业论文中的定量分析和今后在实际工作中熟练运用《管理运筹学》软件解决生产计划管理、产品营销、库存管理中的实际问题打下坚实的基础。
实验课数安排在6学时左右。
二、实验的基本内容实验一:单纯性方法解线性规划问题(2学时)实验二:表上作业法解运输问题(2学时)实验三;解目标规划问题、整数规划问题和指派问题(2学时)三、实验教学方法首先,教师结合实例介绍《管理运筹学》2.0软件与所学《运筹学》课程相关部分的理论、概念、方法之间的关系,并讲授软件的使用方法。
然后让学生自已实际操作软件,熟悉软件,在掌握《管理运筹学》2.0软件的基础上,去验算教师在课堂上讲过的例题、已做过的习题。
最后给出实际案例,让学生用《管理运筹学》2.0软件去计算线性规划问题、运输问题、目标规划问题、整数规划问题和指派问题,获得用运筹学方法去解决实际问题的能力。
实验一单纯性方法解线性规划问题1、实验目的让学生进一步掌握线性规划问题的相关基本概念、理论和方法。
加深对单纯性方法的理解,熟练运用它去解线性规划问题,并运用《管理运筹学》2.0软件去进行线性规划问题的相关计算。
2、重难点在掌握线性规划问题的有关理论、方法的基础上,运用《管理运筹学》2.0软件去解决实际问题。
3、实验步骤⑴结合实例介绍《管理运筹学》2.0软件与所学线性规划问题的理论、概念、方法之间的关系,并讲授《管理运筹学》2.0软件的使用方法。
运筹学实验指导书

运筹学实验指导书-CAL-FENGHAI.-(YICAI)-Company One1实验一、线性规划综合性实验一、实验目的与要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。
通过实验,使学生更深入、直观地理解和掌握线性规划的基本概念及基本理论和方法。
要求学生能对一般的线性规划问题建立正确的线性规划数学模型,掌握运筹学软件包线性规划模块的操作方法与步骤,能对求解结果进行简单的应用分析。
二、实验内容与步骤:1.选择合适的线性规划问题学生可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。
2.建立线性规划数学模型学生针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。
3.用运筹学软件求解线性规划数学模型学生应用运筹学软件包线性规划模块对已建好的线性规划数学模型进行求解。
4.对求解结果进行应用分析学生对求解结果进行简单的应用分析。
三、实验例题:(一)线性规划问题某集团摩托车公司产品年度生产计划的优化研究1)问题的提出某集团摩托车公司是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验。
近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。
为此公司决策层决心顺应市场,狠抓管理,挖潜创新,从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出1999年度总体经济效益最优的生产计划方案。
2)市场调查与生产状况分析1998年,受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求,该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。
该集团共有三个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。
20000辆和22000辆。
为1600万元。
根据以上情况,该公司应如何制定1999年度总体经济效益最优的生产计划方案(二)线性规划建模设X j表示生产M j型摩托车的数量(j=1,2,…,9),则总利润最大的摩托车产品生产计划数学模型为:MaxZ=×+×+×+×+×+×+×+×+×=++++++++满足 X1+X2+X3≤50000 (1)X4+X5+X6≤60000 (2)X7+X8+X9≤10000 (3)++++++++≤4000×5 (4)X3≤20000 (5)X6≤22000 (6)×(X1+X2+X3)+×(X4+X5+X6)+×3(X7+X8+X9)≤3000 (7)++++++++≤1600(8)X j≥0(j=1,2,3,4…9)模型说明:约束(1)、(2)、(3)分别表示三种系列摩托车的最大生产能力限制;约束(4)表示摩托车的生产受流动资金的限制;约束(5)和(6)表示M3和M6两种车产量受发动机供应量限制;约束 (7)表示未销售的产量受库存能力的限制;约束(8)表示未销售产品占用资金的限制。
运筹学试验指导书

《运筹学》实验指导书课程代码:0410073课程名称:运筹学/ Operational Research开课院实验室:经济与管理学院实验中心适用专业:工商管理、物流、信息管理等专业教学用书:《运筹学》(《运筹学》孙萍等编,中国铁道出版社出版)第一部分实验课简介一、实验的地位、作用和目的及学生能力标准运筹学是一门应用科学,在教学过程中通过案例分析与研究并与现代计算机技术相结合,力求实现理论与实践相结合,优化理论与经济管理专业理论相结合。
实验,是《运筹学》课程中重要的实践环节。
通过实验,可弥补课堂理论教学中的不足,增加学生的感性知识;要使学生能掌握系统的管理科学中的整体优化和定量分析的方法,熟练运用运筹学程序,对实际问题和研究对象进行系统模拟。
二、试验内容应用Lindo6 .1版运筹学软件包,解决实际问题。
三、实验方式与基本要求1、实验方式:综合性实验预习要求:复习编程方法及线性规划、整数规划的算法,对实际问题和研究对象,构造数学模型,确定优化技术方法,设计出原始数据表格。
实验设备:台式电脑实验要求:按实验任务要求调试程序,程序执行结果应正确。
实验分组:1人/组2、基本要求①在实验室进行实验前,学生熟悉实验软件Lindo程序、操作方法等;②将程序调好后,将程序结果记录,并由实验教师检查后签字;③将数据及有关的参数等记录在已经设计好的原始数据表格中;④在一周内完成实验报告。
四、考核方式与实验报告要求学生进入实验室后签到,实验结束后,指导教师逐个检查并提问,根据学生操作、实验结果、回答问题情况及实验纪律及作风等方面给出学生成绩,再综合实验报告情况给出最后的成绩。
报告格式如附录。
第二部分Lindo背景及功能菜单简介一、Lindo简介1.Lindo简介:LINDO(Linear, INteractive, and Discrete Optimizer)是一种专门用于求解数学规划问题的软件包。
由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题。
《运筹学》课程实验指导书09级汇总

《运筹学》课程实验指导书实验一线性规划问题模型的建立及求解1. 实验目的和要求理解线性规划模型的基本思想,熟悉运筹学软件的安装及基本使用方法,能够使用运筹学软件对线性规划问题进行求解。
2. 实验前准备复习教材第一、二、三、四、五、六章相关内容。
3. 实验条件每名同学使用一台计算机。
小组同学相邻,方便讨论。
4. 实验内容(1 熟悉运筹学软件的安装及基本使用方法。
(2 练习教材第二章习题8a,b 的数学模型,使用运筹学软件求解,分析输出数据。
(3 选择教师指定的实际问题,进行分析、建模和求解(实验报告内容)。
5. 实验报告完成本次实验的报告,写清实验步骤及实验结果。
指定问题:问题一:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。
假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?问题二:某厂每日8小时的产量不低于1800件。
为了进行质量控制,计划聘请两种不同水平的检验员。
一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15件/小时,正确率95%,计时工资3元/小时。
检验员每错检一次,工厂要损失2元。
为使总检验费用最省,该工厂应聘一级、二级检验员各几名?问题三:某农场有100公顷土地及15000元资金可用于发展生产。
农场劳动力情况为秋冬季3500人日,春夏季4000人日,如劳动力本身用不了时可外出干活,春夏季收入为2.1元/人日,秋冬季收入为1.8元/人日。
该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。
种作物时不需要专门投资,而饲养动物时每头奶牛投资400元,每只鸡投资3元。
养奶牛时每头需拨出1.5公顷土地种饲草,并占用人工秋冬季100人日,春夏季为50人日,年净收入400元/每头奶牛。
运筹学实验指导书

运筹学实验指导书运筹学实验指导书彭佑元闫莹刘东霞编经济与管理学院前言在目前的环境中,运筹学的性质正在改变。
这是因为人们对以算法为中心的课程不再有足够的耐心,相反,他们对以商业环境为背景的课程更为需要,包括一些著名的非数学问题、使用电子表格,以及建立和评估模型,而并非对模型结构本身的研究。
在教学中使用电子表格软件已经成为管理教学的一个明显的新潮流。
这意味着,原先在传统运筹学教科书中占有重要地位的代数学的门帘已经可以被轻轻拉开了。
对于未来的管理者和管理咨询人员,本实验将把重点放在电子表格在管理科学知识的应用上。
然而,对一个实际问题建立电子表格模型通常需要花很多时间在模型设计和数据输入上。
因此,常常按照下列工作程序,一步一步地完成建模:理解问题;以书面形式逐步展开某些重要结构;收集数据;用定量的语言表达数据间的关系;最后形成电子表格模型。
这种结构化的方法重点突出了建模的主要元素(数据、决策目标、约束条件、绩效度量)及其相应的不同类型的单元格。
另外,电子表格并不是进行管理科学分析的唯一工具,偶尔应用的代数学或图形分析工具也享有的重要地位。
电子表格软件只是我们达到某一目标的工具,而并非目标本身。
计算机运行的环境本实验介绍使用的应用软件是Microsoft Office 2000中文版中的Microsoft Excel,需要Microsoft Excel中的加载宏程序。
启动Excel后,在“工具”菜单上,单击“加载宏”命令。
在“加载宏”列表框中,选定待添加加载宏选项左侧的复选框。
单击“确定”按钮后,在“工具”菜单上就可以找到“规划求解”的命令项,这表明安装成功。
使用Excel的加载宏TreePlan在电子表格上进行构建和分析决策树。
与其他Excel加载宏一样,这些加载宏需要安装才能在Excel中显示出来。
目录1实验一线性规划113>.1实验目的11.2案例71.3实验内容71.4实验要求81.5练习9实验二指派问题92.1实验目的92.2案例152.3实验内容152.4实验要求162.5练习17实验三网络最优化--最短路问题173.1实验目的173.2案例213.3实验内容213.4实验要求223.5练习23实验四决策分析234.1实验目的234.2案例274.3实验内容274.4实验要求284.5练习29附录经典应用30(1)确定潘得罗索工业公司的产品组合31(2)联合航空公司的员工排程32(3)Citgo石油公司的供应、配送和营销规划实验一线性规划线性规划是一种对问题进行求解的方法,可以帮助管理者制定决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运筹学》课程实验指导书
实验一线性规划问题模型的建立及求解
1.实验目的和要求
理解线性规划模型的基本思想,熟悉运筹学软件的安装及基本使用方法,能够使用运筹学软件对线性规划问题进行求解。
2.实验前准备
复习教材第一、二、三、四、五、六章相关内容。
3.实验条件
每名同学使用一台计算机。
小组同学相邻,方便讨论。
4.实验内容
(1)熟悉运筹学软件的安装及基本使用方法。
(2)练习教材第二章习题8a,b的数学模型,使用运筹学软件求解,分析输出数据。
(3)选择教师指定的实际问题,进行分析、建模和求解(实验报告内容)。
5.实验报告
完成本次实验的报告,写清实验步骤及实验结果。
指定问题:
问题一:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。
假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?
问题二:某厂每日8小时的产量不低于1800件。
为了进行质量控制,计划聘请两种不同水平的检验员。
一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15件/小时,正确率95%,计时工资3元/小时。
检验员每错检一次,工厂要损失2元。
为使总检验费用最省,该工厂应聘一级、二级检验员各几名?
问题三:某农场有100公顷土地及15000元资金可用于发展生产。
农场劳动力情况为秋冬季3500人日,春夏季4000人日,如劳动力本身用不了时可外出干活,春夏季收入为2.1元/人日,秋冬季收入为1.8元/人日。
该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。
种作物时不需要专门投资,而饲养动物时每头奶牛投资400元,每只鸡投资3元。
养奶牛时每头需拨出1.5公顷土地种饲草,并占用人工秋冬季100人日,春夏季为50人日,年净收入400元/每头奶牛。
养鸡时不占用土地,需人工为每只鸡秋冬季需0.6人日,春夏季为0.3人日,年净收入为2元/每只鸡。
农场现有鸡舍允许最多养3000只鸡,牛栏允许最多养32头奶牛。
三种作物每年需要的人工及收入情况如表所示。
试决定该农场的经营方案,使年净收入为最大。
实验二运输问题模型的建立及求解
1.实验目的和要求
理解运输问题模型的基本思想,模型的建立方法及使用运筹学软件对运输问题进行求解。
2.实验前准备
复习教材第七章相关内容。
3.实验条件
每名同学使用一台计算机。
小组同学相邻,方便讨论。
4.实验内容
(1)练习教材第七章例4-例9中的一个例子,使用运筹学软件求解模型,分析输出数据。
(2)选择教师指定的实际问题,进行分析、建模和求解(实验报告内容)。
5.实验报告
完成本次实验的报告,写清实验步骤及实验结果。
指定问题:
问题一:已知A1,A2,A3三个矿区可分别供应煤炭200,300,400(万吨/年)。
下述地区需调入煤炭:B1为100—200万吨/年,B2为200—300万吨/年,B3为不低于200万吨/年,最高不限,B4为180—300万吨/年,已知单位运价表(元/吨)如表所示。
如要求把所有煤炭分配出去,求满足上述要求,又使总运费为最少的调动方案。
问题二:如表所示的运输问题中,若产地i有一个单位物资未运出,则将发生储存费用。
假定1,2,3产地单位物资储存费用分别为5,4和3。
又假定产地2的物资至少运出38个单位,产地3的物资至少运出27个单位,试求解此运输问题的最优解。
实验三 整数规划问题模型的建立及求解
1. 实验目的和要求
理解整数问题模型的基本思想,模型的建立方法及使用运筹学软件对整数规划问题进行求解。
2. 实验前准备
复习教材第八章相关内容。
3. 实验条件
每名同学使用一台计算机。
小组同学相邻,方便讨论。
4. 实验内容
(1) 练习教材第八章例4-例8中的一个例子,使用运筹学软件求解模型,分析输出数据。
(2) 选择教师指定的实际问题,进行分析、建模和用软件求解(实验报告内容)。
5. 实验报告
完成本次实验的报告,写清实验步骤及实验结果。
指定问题:
问题一:求解下面的整数规划问题
问题二:求解下面整数规划问题
某游泳队教练需选派一组运动员去参加4×200混合接力赛,候选运动员有甲、乙、丙、丁、戊五位,他们游仰泳、蛙泳、蝶泳、自由泳的成绩,根据统计资料算得平均值(以秒计)如下表:问:教练应选派哪四位运动员,各游什么泳姿,才能使总的成绩最好?
问题三:求解下面整数规划问题: 某地区在今后三年内有四种投资机会:
第一种:三年内每年年初投资,年底可获利润20%,并将本金收回;
⎪⎪⎪⎩⎪
⎪⎪⎨⎧≥≤≤+-≤-≤++-++=为整数
21321132132321321,,0,,1723113413
233max x x x x x x x x x x x x x x x x x Z
第二种:第一年年初投资,第二年年底可获利润50%,并将本金收回,但该项目投资不得超过2万元;
第三种:第二年年初投资,第三年年底收回本金,并获利润60%,但该项投资不得超过1.5万元;
第四种:第三年年初投资,于该年年底收回本金,且获利40%,但该项投资不得超过1万元。
现在该地区准备拿出5万元资金,问如何制定投资计划,使到第三年年末本利最大。
实验四存贮模型的建立及求解
1.实验目的和要求
理解存贮问题模型的基本思想,模型的建立方法及使用运筹学软件对存贮问题进行求解。
2.实验前准备
复习教材第十三章相关内容。
3.实验条件
每名同学使用一台计算机。
小组同学相邻,方便讨论。
4.实验内容
(1)选择教材第十三章例题中两个例子,使用运筹学软件求解模型,分析输出数据。
(2)选择教师指定的实际问题,进行分析、建模和用软件求解(实验报告内容)。
5.实验报告
完成本次实验的报告,写清实验步骤及实验结果。
指定问题:
问题一:某建筑工地每月需求水泥1200吨,每吨定价为1500元,不允许缺货,设每吨每月的存储费为2%,每次订货为1800元,需要提前7天订货,每年的工作日为365天,请求出:
(1)经济订货批量;
(2)再订货点(即当水泥存储量降为多少时,应该再订货);
(3)两次订货间隔时间;
(4)每月订货和存储的总费用。
问题二:某出版社要出版一本工具书,估计其每年的需求率为常量,每年需求18000套,每套成本为150元,每年的存储成本率为18%。
其每次生产准备费为1600元,印刷该书的设备生产率为每年30000套,假设该出版社每年250个工作日,要组织一次生产的准备时间为10天,请用不允许缺货的经济生产批量的模型,求出:
(1)最优经济生产批量
(2)每年组织生产次数
(3)两次生产间隔时间
(4)每次生产所需时间
(5)最大存储水平
(6)生产和存储的全年总成本
(7)再订货点
问题三:
某医院药房每年需某种药1000瓶,每次订货费用需要5元,每瓶每年保管费用为0.40元,每瓶单价2.50元。
制药厂提出的价格折扣条件是:
(1)订购100瓶时,价格折扣为5%;
(2)订购300瓶时,价格折扣为10%。
问医院应该如何决策最优订货批量?
上例中每年需要量为100瓶,其他条件不变,最优存贮策略是什么?上例中每年需要量为4000瓶,其他条件不变,最优存贮策略是什么?。