浅谈高层建筑抗震
高层建筑抗震设计

高层建筑抗震设计在现代城市中,高层建筑的兴起成为城市发展的重要标志之一。
然而,面对地震等自然灾害,高层建筑的结构抗震性能显得尤为重要。
本文将探讨高层建筑抗震设计的原理和方法。
I. 抗震设计的背景和意义高层建筑的抗震设计是为了减少地震对建筑物造成的破坏和危险。
地震是一种极具破坏性的自然灾害,对于高层建筑来说尤其具有挑战性。
通过合理的抗震设计,能够提高建筑物的地震安全性,保护人民的生命财产安全。
II. 抗震设计的原则1. 结构配置合理性原则高层建筑的结构配置非常关键,必须根据地震区域的特点和设计要求,选择合适的结构形式。
一般而言,常用的结构形式包括框架结构、筒体结构、剪力墙结构等。
对于高层建筑来说,通常采用钢筋混凝土框架结构更为常见。
2. 材料可靠性原则抗震设计中材料的可靠性至关重要。
建筑材料应符合地震区域的要求,选用具有较好抗震性能和耐久性的材料,如高强度混凝土、钢结构等。
同时,在建筑施工过程中,应严格控制材料的质量,确保所有使用的材料符合设计要求。
3. 连接可靠性原则连接件的可靠性对于高层建筑的抗震性能起着重要作用。
连接件必须能够承受剪力、弯矩和轴力等作用,以保证整体结构的稳定性。
在抗震设计中,需要合理选择连接件的类型和数量,并且进行合理的布局。
4. 防护措施可行性原则除了结构本身的抗震设计,还需要采取其他防护措施来增加建筑物的抗震能力。
例如,可以设置减震装置、隔震装置、剪切支撑等,通过减少地震荷载的传递或改变其传递途径,降低地震对建筑物的破坏。
III. 抗震设计的方法1. 抗震设计的震级选取抗震设计的第一步是根据地震区域的震级选择适当的设计地震动参数。
根据地震带的划分以及历史地震数据的分析,确定不同设计地震动参数,如地震基本加速度和地震分组等。
2. 结构的抗震设计计算基于选择的设计地震动参数,进行抗震设计计算。
根据建筑物的结构形式和配置,进行静力分析或动力分析,计算各种荷载在结构中的传递和影响。
高层建筑结构的抗震性能

高层建筑结构的抗震性能高层建筑作为现代城市的标志性建筑,其结构的抗震性能至关重要。
在地震频发地区,高层建筑的抗震设计是确保人民生命安全的关键问题。
本文将从设计原则、材料选用、结构形式以及监测预警等方面,探讨高层建筑结构的抗震性能。
一、设计原则高层建筑的抗震设计应遵循以下原则:1. 安全性原则:高层建筑的抗震设计首要目标是保证建筑在地震中不倒塌,确保人员的安全。
因此,设计应考虑各类地震荷载的作用,采取合理的设计方法和措施。
2. 经济性原则:在保证安全性的前提下,尽可能减少材料和经济成本的消耗。
通过合理的结构分析和设计,可以实现高层建筑的抗震性能与经济性之间的平衡。
3. 可操作性原则:设计应考虑施工和维修的可操作性,以便提高工程质量和延长建筑的使用寿命。
因此,结构设计应合理布置,方便施工和日后维护。
二、材料选用高层建筑的结构材料选用对抗震性能有着重要影响。
以下是常用的结构材料:1. 钢材:钢材具有高强度、耐腐蚀和可塑性等优点,被广泛应用于高层建筑的骨架结构中。
通过合理设计和施工,可以提高钢结构的抗震性能。
2. 混凝土:混凝土是一种常用的结构材料,其具有良好的抗压和抗震性能。
在高层建筑中,混凝土常用于楼板、柱和剪力墙等部位。
3. 预应力混凝土:预应力混凝土具有更好的抗震性能和变形能力,可以减轻地震荷载对建筑结构的影响。
因此,在高层建筑中广泛使用预应力混凝土构件。
三、结构形式高层建筑的结构形式对其抗震性能有着重要影响。
常见的高层建筑结构形式包括:1. 框架结构:框架结构是高层建筑中最常见的结构形式之一。
通过合理设计和布置框架,可以提高建筑的整体抗震性能。
2. 筒结构:筒结构是指采用圆筒形或近似圆筒形的结构形式,如钢管混凝土结构、钢管桁架等。
筒结构具有良好的抗震性能和刚度分布特征。
3. 桁架结构:桁架结构通过形成大跨度的桁架系统,实现了结构的良好刚度和弯曲性能,从而提高了建筑的抗震性能。
四、监测预警为了及时了解高层建筑的结构状况,提前发现可能存在的安全隐患,需要进行结构监测和预警系统的建设。
高层建筑设计中的抗震技术分析

高层建筑设计中的抗震技术分析高层建筑的抗震技术是指用于提高建筑物在地震发生时抵御破坏和保护人员安全的一系列技术措施。
由于高层建筑在地震中所承受的荷载较大,所以对抗震技术的要求也更高。
以下是对高层建筑设计中的抗震技术的分析。
1.基础设计高层建筑的基础承载能力对于抵御地震荷载至关重要。
抗震基础设计的关键是确定基础形式、选取适当的基础底床、合理设计基础尺寸和布置钢筋等。
一般符合深基坑开挖与基础的结构完整、加固等技术要求,以强化基础的整体稳定性。
2.结构设计高层建筑结构设计的抗震性能是保证建筑安全的关键。
砖石结构和钢筋混凝土结构是高层建筑常见的结构形式,其抗震设计应遵循地震活动区的设计规范,采用适当的抗震设计参数,如设定合理的抗震设防烈度,选择合适的结构抗震形式和尺寸。
3.抗震设备高层建筑的抗震设备是用于减轻建筑物地震作用对人员和设备的影响。
常见的抗震设备包括隔震设备、阻尼器、减震器等。
隔震设备可以减小建筑物受到的地震作用强度,通过减小建筑物与地面之间的接触力来保护建筑。
阻尼器和减震器则通过调节建筑物结构的刚度和阻尼特性来减轻地震产生的动力响应,有效降低地震对建筑物的影响力。
4.立面设计高层建筑的立面设计也与抗震性能相关。
立面是建筑外表面的墙体装饰,具有一定的承力作用。
抗震立面设计一方面可以保护建筑物免受地震作用的破坏,另一方面也可以减轻地震作用对建筑内部的冲击力。
一般采用抗震材料和抗震技术,如阻燃材料和弹性夹层等,来增强立面的抗震性能。
5.紧急疏散系统设计高层建筑的抗震技术还需要考虑人员的疏散安全。
设计时应合理设置紧急疏散通道、逃生楼梯、安全出口等设施,确保人员可以迅速、安全地离开建筑物。
此外,还可以采用避震锚、透水透气泡沫等技术,增加建筑物的抗震可靠性。
总结而言,高层建筑的抗震技术是一个综合性的系统工程,需要从基础设计、结构设计、抗震设备、立面设计以及紧急疏散系统等多个方面进行考虑和实施。
通过合理的抗震技术手段,能够提高高层建筑的抗震能力,保护人员安全和建筑的完整性。
浅谈高层混凝土建筑结构的抗震设计

浅谈高层混凝土建筑结构的抗震设计高层混凝土建筑是现代城市中常见的建筑类型,其结构稳定性和抗震能力对于保障建筑安全至关重要。
在面对地震等自然灾害时,高层混凝土建筑的抗震设计显得格外重要。
本文将从混凝土的性能、高层建筑的结构和抗震设计三个方面,浅谈高层混凝土建筑结构的抗震设计。
一、混凝土的性能混凝土是一种由水泥、砂、碎石等材料混合而成的建筑材料,其性能对于高层建筑的抗震能力有着重要的影响。
混凝土的抗压性能是其最重要的性能之一。
高强度的混凝土能够承受更大的压力,从而在地震发生时能够更好地保持建筑的结构稳定。
混凝土的延性也是影响抗震性能的重要因素。
延性较好的混凝土在地震时能够有一定程度的变形能力,减小震后的破坏程度。
混凝土的粘结性能、疲劳性能等也对抗震能力有着重要影响。
在高层建筑的抗震设计中,需要充分考虑混凝土的这些性能,选择合适的混凝土材料以及加强材料。
二、高层建筑的结构高层建筑一般采用钢筋混凝土结构或钢结构,这两种结构在抗震设计中都有各自的特点和要求。
在钢筋混凝土结构中,梁柱结构和框架结构是较为常见的结构形式。
在地震发生时,梁柱结构能够承受较大的竖向荷载,同时框架结构由于其较大的剪力承载能力,也具有较好的抗震性能。
而对于钢结构来说,其轻质高强的特性使得其在地震中有较好的变形能力和减震能力,因此在高层建筑抗震设计中也具有重要的地位。
而在高层建筑的结构设计中,需要考虑建筑的整体平衡性、稳定性、刚度和延性等,以及对于在地震发生时的减震、隔震等措施的合理设计,提高建筑的抗震性能。
三、抗震设计在高层混凝土建筑的抗震设计中,需要充分考虑混凝土材料的性能、建筑的结构设计以及具体的抗震措施。
在材料的选择上,需要选择抗压、抗拉、延性等性能较好的混凝土材料,比如高强度混凝土、高延性混凝土等。
在混凝土的配筋上,需要根据不同部位的受力情况进行合理的配置,保证建筑结构在地震发生时有足够的承载能力和变形能力。
在结构设计上,需要充分考虑建筑的整体平衡性、稳定性和延性,采用适当的构造形式,合理布置构件,增加抗震性能。
高层建筑结构抗震设计现状及措施分析

我国的高层建筑结构抗震设计起步较晚,但发展迅速。20世纪80年代以来,我国逐步引入了基于性能的抗震设计 理念,并开展了大量的研究和实践。同时,我国也在不断推进建筑产业现代化,积极推广绿色建筑和智能建筑技 术,这也对高层建筑结构抗震设计产生了积极的影响。
现有高层建筑结构抗震设计的不足
设计规范不完善
促进技术交流与创新
通过国际会议、技术研讨会等形式,促进高层建筑结构抗震设计领 域的学术交流和技术创新。
与国际标准接轨
积极推动我国高层建筑结构抗震设计标准的制定和更新,使其与国 际标准接轨,提高我国在这方面的国际竞争力。
THANKS
感谢观看
和稳定性。
智能化设计
利用现代科技手段,实现高层建筑 结构的智能化设计,提高设计效率 ,降低误差率。
绿色环保
注重环保和可持续发展,采用低能 耗、低污染的建筑材料和设计方法 ,提高建筑物的环保性能。
提高抗震性能的建议与措施
1 2 3
优化结构体系
合理选择和优化高层建筑的结构体系,确保其具 有足够的刚度和稳定性,以抵抗地震引起的变形 和位移。
目前,国内外的高层建筑结构抗震设计规范虽然已经比较完善,但仍存在一些不足之处。 例如,对于一些特殊的地震环境和高烈度地区,现有的规范可能无法完全满足抗震要求。
设计理念和方法落后
传统的抗震设计理念和方法主要基于线性理论和小震模型,但在大地震时,这些方法可能 无法准确预测结构的响应和破坏情况。因此,需要改进现有的设计理念和方法,引入更先 进的非线性理论和精细化模型。
刚度与承载力合理分布
确保结构在地震作用下能有效地传递和分布地震力,避免局部构件 承受过大的地震力,造成破坏。
设置多道防线
通过设置多道防线,降低地震对建筑造成的损害,提高结构的整体 稳定性。
高层建筑的抗震设计原理与技术

高层建筑的抗震设计原理与技术随着城市化进程的加快,高层建筑在现代城市中得到广泛应用。
然而,高层建筑由于其高度和体量的特殊性,地震对其安全性构成了较大的威胁。
因此,高层建筑的抗震设计成为了至关重要的一环。
本文将介绍高层建筑的抗震设计原理和常用的抗震技术,以期为相关领域的人员提供参考。
一、抗震设计原理1.结构强度与刚度:高层建筑的结构必须具备足够的强度和刚度,以承受地震力引起的振动。
在设计过程中,需要根据建筑的高度和使用功能来确定结构的强度和刚度要求。
2.地基条件评估:地基是高层建筑抗震设计的基础,其稳定性和承载力直接影响建筑的抗震性能。
在设计中,需要进行详细的地质勘探和地震灾害评估,以确定地基的条件和选择合适的抗震措施。
3.减震措施:为了降低地震对高层建筑的影响,减震措施被广泛应用。
常见的减震措施包括负摆控制、摩擦阻尼器、液体阻尼器等。
这些措施能够有效地吸收和分散地震能量,减少建筑结构的震动反应。
二、常用抗震技术1.钢结构:钢结构是一种常见的高层建筑抗震技术。
相比传统的混凝土结构,钢结构具有较高的强度和韧性,能够更好地抵抗地震力的作用。
此外,钢结构可以采用更轻的构件,减少建筑的自重,从而降低地震荷载。
2.混凝土剪力墙: 剪力墙是一种传统的高层建筑抗震技术。
通过在建筑的主体结构中设置混凝土墙体,起到增加结构刚度和强度的作用,从而提高抗震性能。
在设计中,需要根据建筑的布置和使用功能来确定剪力墙的位置和尺寸。
3.基础隔震技术:基础隔震技术将建筑与地面分离,通过设置隔震层来减少地震荷载传递到建筑上。
常见的基础隔震技术包括弹簧隔震、橡胶隔震和液体隔震等。
4.消能装置:消能装置通过吸收地震震动的能量,减少地震对建筑的影响。
常用的消能装置有液体阻尼器、摩擦阻尼器和形状记忆合金等。
5.桥梁技术应用于高层建筑:将桥梁技术应用于高层建筑抗震设计中是一种有效的方式。
桥梁结构具有较强的抗震性能,可以借鉴其设计原理和技术,提高高层建筑的抗震能力。
高层建筑结构抗震设计浅析,基层建设.doc

高层建筑结构抗震设计浅析,基层建设,《基层建设》高层建筑结构抗震设计浅析潘小娃张红刚王磊摘要:随着建筑行业的发展,出现越来越多的高层建筑,高层建筑结构也越来越复杂,因我国是多地震国家,地震会造成建筑物灾害发生,对人们的生命财产造成严重的损失,因此,对高层建筑结构进行抗震设计是非常重要的。
本文首先分析了地震对高层建筑的影响,然后归纳了高层建筑抗震设计中出现的问题,最后详细阐述了高层建筑结构抗震设计的要点。
关键词:高层建筑;结构抗震;地基;抗震防线;隔震一、地震对高层建筑的影响分析(一)对高层建筑构件形式方面1、在高层建筑的框架结构中,通常地震对板和梁的破坏程度轻于柱;2、地震作用经常在多肢剪力墙(钢筋混凝土结构)的窗下引起交叉斜向的裂缝;3、如果混凝土柱配置螺旋箍筋,即使地震引起较大的层间位移,对柱以及核心混凝土作用并不明显;4、钢筋混凝土框架结构,如长、短柱并用于同一楼层,长柱受损害较轻。
(二)对高层建筑结构体系方面1、对于钢筋混凝土柱、板体系的高层建筑,各层楼板因楼层柱脚破坏或者侧移过大以及楼板冲切等因素而在地面坠落重叠;2、对于“填墙框架”体系的高层建筑,由于受窗下墙的约束,因而容易发生外墙框架柱在窗洞处短柱型剪切现象;3、对于“填墙框架”体系的高层建筑,地震对采用敞开式框架间未砌砖墙的底层破坏严重;4、对于框架-抗震墙体系的高层建筑,地震损害不大;5、对于“底框结构”体系的高层建筑,地震严重破坏刚度柔弱的底层。
(三)对高层建筑地基方面1、如果地基自振周期与高层建筑结构的基本周期相同或相近,地震作用因共振效应而增加;2、如果高层建筑处在危险和地形不利的区域,则容易使高层建筑因地基破坏而受损;3、地基处地质不均匀,在地震作用下容易使上部结构倾斜甚至倒塌;4、若高层建筑的地基处有较厚的软弱冲积土层,则地震作用对高层建筑的损害显著增大。
(四)对高层建筑刚度分布方面1、对于采用L形以及三角形等平面不对称的高层建筑,地震作用能够使建筑结构发生扭转振动,因而损害现象严重;2、对于采用矩形平面布置的高层建筑结构,如果该建筑的抗侧力构件(如电梯井等)布置存在偏心情况时时,同样会使建筑结构发生扭转振动。
关于高层建筑结构抗震设计的思考与探讨

关于高层建筑结构抗震设计的思考与探讨高层建筑结构抗震设计一直是建筑工程领域中备受关注的重要课题。
随着城市化进程的加快,高层建筑在城市中的比重越来越大,因此高层建筑结构的抗震设计显得尤为重要。
在地震频发的地区,高层建筑的抗震设计更是至关重要。
本文将从高层建筑结构抗震设计的必要性、现有抗震设计策略以及未来的发展方向等方面进行思考与探讨。
一、高层建筑结构抗震设计的必要性高层建筑因为其自身的体量较大,所以在地震中更容易受到影响。
如果高层建筑的结构抗震性能不足,一旦发生地震就会导致建筑倒塌,给人员生命和财产安全带来极大的威胁。
高层建筑结构抗震设计的重要性不言而喻。
抗震设计的目的是在地震发生时,使建筑结构能够尽可能地减少破坏,保护人员生命财产安全。
只有充分重视高层建筑结构的抗震设计,才能保证高层建筑在地震中的安全性和稳定性。
1. 结构材料的选用在高层建筑结构抗震设计中,结构材料的选用是至关重要的。
优质的结构材料能够增加建筑结构的抗震性能。
目前,混凝土和钢材是建筑中常用的结构材料。
混凝土结构因其刚性和稳定性较强,可以有效减少地震对建筑的影响;而钢结构则因其轻量化和弹性较好的特性在高层建筑结构中得到广泛应用。
未来,随着新材料技术的不断发展和成熟,一些具有更优异抗震性能的新型结构材料的使用将会成为可能,从而提高高层建筑结构的抗震能力。
2. 结构设计的创新结构设计是影响高层建筑抗震性能的关键因素之一。
现有的高层建筑结构设计策略主要包括剪力墙结构、框架结构、叠合结构等。
在实际应用中,这些设计策略各有利弊,需要根据具体情况来选择。
随着计算机技术的不断进步,有限元分析和CAD技术的应用已经成为了结构设计中不可或缺的部分,通过这些技术可以更加准确地评估结构受力情况,从而为结构设计提供更科学的依据。
而未来,随着大数据和人工智能技术的发展,结构设计将会进入一个全新的时代,更加智能和精准。
3. 抗震设防标准的更新抗震设防标准是保障建筑结构抗震性能的重要依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈高层建筑抗震
2008年的汶川地震和2010年的玉树地震对中国来说无不是沉重的打击,不但造成巨大的经济损失,更心痛的是有那么的生命离开了我们,这不得不让人们反思我们建筑的抗震设防能力。
在地震中,几乎所有的建筑都倒塌了,相对于低层建筑而言,高层建筑破坏和倒塌的后果就更加严重。
近年来国内国外高层、超高层建筑的高度不断攀升,就在2010年正式开放的哈利法塔的高度达到了惊人的828米,而且建筑的体型越来越复杂,不规则结构越来越多,这对于结构的抗震都是十分不利的。
为保证高层结构的抗震安全,达到安全和经济的统一,有必要对高层结构的抗震设计、抗震结构和抗震技术进行探讨。
1.地震导致建筑破坏的原因
根据地震经验,地震期间导致高层建筑破坏的直接原因可分为以下三种情况:
(1)地震引起的山崩、滑坡、地陷、地面裂缝或错位等地面变形,对其上部建筑的直接危害;
(2)地震引起的砂土液化、软土震陷等地基失效,对上面建筑物所造成的破坏;
(3)建筑物在地面运动激发下产生剧烈震动过程中,因结构强度不足、过大变形、连接破坏、构件失稳或整体倾覆而破坏;
2.建筑的抗震概念设计
所谓“建筑抗震概念设计”是指根据地震灾害和工程经验等所形成的基本设计原则和设计思想,依此进行建筑和结构总体布置并确定细部构造的过程。
科技论文。
3.建筑抗震设计方法的发展过程
3.1、静力理论阶段
水平静力抗震理论始创于意大利,发展于日本,1900年日本学者大森房吉提出“震度法”的概念。
该理论认为:结构物所收到的地震作用,可以简化为作用于结构的等效水平静力,其大小等于结构重力荷载乘以一个系数。
3.2、反应谱理论阶段
我国及国际上多数国家抗震设计规范本质上都采用了反应谱理论及结构能力设计原则。
其主要特点如下:
(1) 用规范规定的设计反应谱进行结构线弹性分析。
(2) 结构构件的承载力是根据设计反应谱所作的结构线弹性计算通过荷载和地震作用效应组合后内力进行设计。
(3) 在早期方案设计阶段,结构体系、结构体型的规则性及结构的整体性满足规范的规定,以使结构能可靠地发挥非弹性延性变形能力。
3.3、动力理论阶段
1971年美国圣费南多地震的震害,使人们清楚地认识到“反应谱理论只说出了问题的一大半,而地震持时对结构破坏程度的重要影响没有得到考虑”,从而推动了采用地震加速度过程a(t)来计算结构反应过程的动力法的研究。
此一新理论不但考虑了地震的持时,还更近一步地考虑了地震过程中反应谱所不能概括的其他特性。
4.高层建筑结构体系
设计地震区的高层建筑,在确定结构体系时,除了要考虑前面所提到的材料用量、建筑内部空间和使用的房屋高度等因素外,还需进一步考虑下列抗震设计准则:
(1)具有明确的计算简图和合理的地震力传递路线;
(2)具备多道抗震防线,不会因部分结构或构件失效而导致整个体系丧失抵抗侧力或承受重力荷载的能力
(3)具有必要的承载力、良好的延性和较多的耗能潜力,从而使结构体系遭遇地震时有足够的防倒塌潜力;
(4)沿水平和竖向,结构的刚度和强度分布均匀,或按需要合理分布,避免出现局部削弱或突变形成薄弱环节,从而防止地震时出现过大的应力集中或塑性变形集中。
在确定建筑方案的同时,应综合考虑房屋的重要性、设防烈度、场地条件、房屋高度、地基基础以及材料供应和施工条件,并结合体系的经济、技术指标,选择最合适的结构体系。
5.建筑抗震措施或设计
5.1、错开地震动卓越周期
一个场地的地面运动,一般均存在着一个破坏性最强的主振周期,如果建筑物的自振周期与这个卓越周期相等或相近,建筑物的破坏程度就会因共振而加重。
地震动卓越周期又称地震动主导周期。
从众多的地震倒塌建筑物中可以看出,建筑周期与地震动卓越周期相接近,是引起建筑共振破坏的主要因素和直接原因。
因此,在进行高层建筑设计时,首先要估计地震引起该建筑所在场地的地震动卓越周期;然后,在进行建筑方案设计时,通过改变房屋层数和结构类型,尽量加大建筑物基本周期与地震动卓越周期的差距。
5.2、采取基础隔震措施
传统的抗震方法是依靠结构的承载力和变形能力,来耗散地震能量,使结构免于倒塌,但由于是一种“被动防震”,就不免存在许多不足之处。
地震对建筑的破坏作用,是由于地面运动激发起建筑的强烈振动所造成的,也就是说,破坏能量来自地面,通过基础向上部结构传递。
人们总结地震经验后发现,地震时结构底部的有限滑动,能大幅度地减轻上部结构的破坏程度。
科技论文。
基于可动概念的基础隔震方案很多,主要有:(1)软垫式隔震。
在房屋底部设置若干个带铅芯的钢板橡胶隔振装置,使整个房屋坐落在软垫层上,遭遇地震时,楼房底面与地面之间产生相对水平位移,房屋自振周期加长,主要变形都发生在软垫块处,上部结构层间侧移变得很小,从而保护结构免遭破坏。
(2)滑移式隔震。
在房屋基础底面处设置钢珠、钢
球、石墨、砂粒等材料形成的滑移层或滚动层,使建筑物遇地震时在该处发生较大位移的滑动,达到隔震目的。
(3)摆动式隔震。
科技论文。
摆动式隔震方式实质上是柔性底层概念的改进和引伸。
(4)悬吊式隔震。
这一隔震方式的构思是,将整个建筑悬吊在支架下面,避免地震的直接冲击,从而大幅度较小建筑物所受到的地震惯力。
5.3、削减地震反应——提高结构阻尼
为了提高结构阻尼,可以在结构上设置阻尼器,以吸收地震输入的能量,减小结构变形。
台北101大楼在87~92楼安装了一个巨大的钢球风阻尼器,是世界上目前最大的大楼风阻尼器,它的球体直径5.5米,由四十一层12.5厘米厚钢板结合为球形,重量660吨,可以有效减轻由于飓风和地震所引起的震动和侧移。
为高层建筑提供附加阻尼的另一新途径,是利用主体结构与刚性挂板之间特殊装置的非弹性性能和摩擦。
采取这一措施后,可以使阻尼比仅为2%的抗弯钢框架,有效粘滞阻尼比增加到8%或更多,从而使底部地震剪力和顶点侧移降低50%。
此外,通过采用高延性构件和附设耗能装置也能有效削减地震反应。
6.高层建筑抗震技术发展展望
未来高层建筑的发展趋势,体型将更趋复杂,结构体系将更趋多样化。
出于对建筑艺术上的要求,高层建筑的体型将会更为复杂和多样,许多高层建筑都是综合性的和多用途的,因此对建筑和结构必然提出新的更高的要求。
从结构体系上看,也决不会停留在原有的几种形式上,而会更好地满足功能和艺术上的需求,创造出新的结构体系。