线性规划知识点总结

合集下载

高考数学丨线性规划知识点汇总

高考数学丨线性规划知识点汇总

高考数学丨线性规划知识点汇总一、知识梳理1 目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。

2 可行域:约束条件表示的平面区域称为可行域。

3 整点:坐标为整数的点叫做整点。

4 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。

只含有两个变量的简单线性规划问题可用图解法来解决。

5 整数线性规划:要求量整数的线性规划称为整数线性规划。

线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。

1 对于不含边界的区域,要将边界画成虚线。

2 确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。

若直线不过原点,通常选择原点代入检验。

3 平移直线y=-kx+P时,直线必须经过可行域。

4 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。

5 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等于表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。

基础知识:一、1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=02.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+ y0+C >0;当B<0时,Ax0+ y0+C<03.点P(x0+,y0)D在直线Ax0+ y0+C=0下方(左下或右下),当B>0时,Ax0+ y0+C<0;当B>0时,Ax0+ y0+C>0注意:(1)在直线Ax+ By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+ By+C=0,所得实数的符号都相同。

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结线性规划知识点总结 1.线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x,y的约束条件,这组约束条件都是关于x,y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x,y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x,y的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x,y)叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 2.用图解法解决简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解 3.解线性规划实际问题的步骤:(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;(4)验证. 4.两类主要的目标函数的几何意义: (1)-----直线的截距;(2)-----两点的距离或圆的半径;(3)-----直线的斜率风格很统一!以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。

”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。

听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。

水说:“同学们,你们知道我有多重要吗?”齐答:“知道。

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在经济管理、交通运输、工农业生产等领域都有着广泛的应用。

下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。

其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。

二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。

1、图解法适用于只有两个决策变量的线性规划问题。

步骤如下:画出直角坐标系。

画出约束条件所对应的直线。

确定可行域(满足所有约束条件的区域)。

画出目标函数的等值线。

移动等值线,找出最优解。

例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。

线性规划例题和知识点总结

线性规划例题和知识点总结

线性规划例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

下面通过一些例题来帮助大家更好地理解线性规划,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值问题。

线性约束条件通常是由一组线性等式或不等式组成。

例如:$2x +3y ≤ 12$,$x y ≥ 1$等。

目标函数一般表示为$Z = ax + by$的形式,其中$a$、$b$为常数,$x$、$y$为决策变量。

可行解是满足所有约束条件的解,可行域是所有可行解构成的集合。

最优解则是使目标函数达到最大值或最小值的可行解。

二、线性规划的例题例 1:某工厂生产甲、乙两种产品,已知生产甲产品 1 件需消耗 A原料 3 千克、B 原料 2 千克;生产乙产品 1 件需消耗 A 原料 2 千克、B 原料 4 千克。

A 原料有 12 千克,B 原料有 16 千克。

甲产品每件利润为 5 元,乙产品每件利润为 8 元,问该工厂应如何安排生产,才能使利润最大?设生产甲产品$x$件,生产乙产品$y$件。

则约束条件为:$\begin{cases}3x +2y ≤ 12 \\ 2x +4y ≤ 16 \\x ≥ 0, y ≥0\end{cases}$目标函数为$Z = 5x + 8y$画出可行域,通过解方程组找到可行域的顶点坐标,分别代入目标函数计算,可得当$x = 2$,$y = 3$时,利润最大为$34$元。

例 2:某运输公司有两种货车,每辆大型货车可载货 8 吨,每辆小型货车可载货 5 吨。

现要运输 60 吨货物,且大型货车的使用成本为每次 100 元,小型货车的使用成本为每次 60 元,问如何安排车辆才能使运输成本最低?设使用大型货车$x$辆,小型货车$y$辆。

约束条件为:$\begin{cases}8x +5y ≥ 60 \\x ≥ 0, y ≥ 0\end{cases}$目标函数为$Z = 100x + 60y$画出可行域,计算顶点坐标代入目标函数,可知当$x = 5$,$y =4$时,成本最低为$740$元。

线性规划例题和知识点总结

线性规划例题和知识点总结

线性规划例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在实际生活中,有很多问题都可以通过线性规划来解决,比如资源分配、生产计划、运输调度等。

下面我们通过一些具体的例题来深入理解线性规划,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值。

线性规划的数学模型通常可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_i$是约束条件的右端项。

二、线性规划的解题步骤1、建立数学模型:根据实际问题,确定决策变量、目标函数和约束条件。

2、画出可行域:将约束条件在直角坐标系中表示出来,得到可行域。

3、求出最优解:在可行域内,通过寻找目标函数的等值线与可行域边界的交点,求出最优解。

三、例题分析例 1:某工厂生产甲、乙两种产品,已知生产 1 单位甲产品需要消耗 A 资源 2 单位,B 资源 3 单位,可获利 5 万元;生产 1 单位乙产品需要消耗 A 资源 3 单位,B 资源 2 单位,可获利 4 万元。

现有 A 资源12 单位,B 资源 10 单位,问如何安排生产,才能使工厂获得最大利润?解:设生产甲产品$x_1$单位,生产乙产品$x_2$单位。

高中数学线性规划知识点汇总

高中数学线性规划知识点汇总

高中数学线性规划知识点汇总高中数学线性规划知识点汇总一、知识梳理1.目标函数:包含两个变量x和y的函数P=2x+y被称为目标函数。

2.可行域:由约束条件表示的平面区域被称为可行域。

3.整点:坐标为整数的点称为整点。

4.线性规划问题:在线性约束条件下,求解线性目标函数的最大值或最小值的问题被称为线性规划问题。

对于只包含两个变量的简单线性规划问题,可以使用图解法来解决。

5.整数线性规划:要求变量取整数值的线性规划问题被称为整数线性规划。

线性规划是一门研究如何使用最少的资源去最优地完成科学研究、工业设计、经济管理等实际问题的专门学科。

主要应用于以下两类问题:一是在资源有限的情况下,如何最大化任务的完成量;二是如何合理地安排和规划任务,以最小化资源的使用。

1.对于不含边界的区域,需要将边界画成虚线。

2.确定二元一次不等式所表示的平面区域的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。

若直线不过原点,通常选择原点代入检验。

3.平移直线y=-kx+P时,直线必须经过可行域。

4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域。

此时,变动直线的最佳位置一般通过这个凸多边形的顶点来确定。

5.简单线性规划问题就是求解在线性约束条件下线性目标函数的最优解。

无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:1)寻找线性约束条件和线性目标函数;2)由二元一次不等式表示的平面区域做出可行域;3)在可行域内求解目标函数的最优解。

积累知识:1.如果点P(x0,y0)在直线Ax+By+C=0上,则点P的坐标满足方程Ax0+y0+C=0.2.如果点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+y0+C>0;当B<0时,Ax0+y0+C<0.3.如果点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),则当B>0时,Ax0+y0+C0.注意:在直线Ax+By+C=0同一侧的所有点,将它们的坐标(x,y)代入Ax+By+C=0,所得实数的符号都相同。

线性规划知识点

线性规划知识点线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它可以帮助我们在资源有限的情况下,找到最佳的解决方案。

本文将详细介绍线性规划的基本概念、模型构建、求解方法以及应用领域。

一、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。

例如,最大化利润或最小化成本。

2. 约束条件:线性规划问题通常有一系列线性约束条件,用于限制变量的取值范围。

例如,生产数量不能超过资源限制。

3. 变量:线性规划问题中的变量是我们要优化的决策变量。

例如,生产的数量或分配的资源。

4. 非负约束:线性规划的变量通常需要满足非负约束,即变量的取值必须大于等于零。

二、模型构建线性规划问题的模型构建包括确定目标函数、约束条件和变量的定义。

下面以一个简单的生产问题为例进行说明。

假设某工厂生产两种产品A和B,每单位产品A的利润为10元,产品B的利润为15元。

工厂拥有两台机器,每台机器每天的工作时间为8小时。

生产一单位产品A需要2小时,生产一单位产品B需要3小时。

工厂希望确定每种产品的生产数量,以最大化总利润。

目标函数:最大化总利润,即10A + 15B。

约束条件:工作时间约束,即2A + 3B ≤ 16。

非负约束:A ≥ 0,B ≥ 0。

三、求解方法线性规划问题可以使用多种方法求解,其中最常用的方法是单纯形法。

单纯形法通过迭代的方式逐步接近最优解,直到找到最优解为止。

单纯形法的基本步骤如下:1. 将线性规划问题转化为标准形式,即将不等式约束转化为等式约束。

2. 选择一个初始可行解,通常为原点(0,0)。

3. 计算目标函数的值,并确定是否达到最优解。

4. 如果未达到最优解,则选择一个进入变量和一个离开变量,通过调整这两个变量的值来改善目标函数的值。

5. 重复步骤3和步骤4,直到达到最优解。

四、应用领域线性规划在各个领域都有广泛的应用,以下是一些常见的应用领域:1. 生产计划:线性规划可以帮助企业确定最佳的生产计划,以最大化利润或最小化成本。

线性规划知识点

线性规划知识点线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

它在经济学、管理学、工程学等领域有着广泛的应用。

本文将详细介绍线性规划的基本概念、模型建立方法、求解方法以及相关的应用案例。

一、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。

2. 约束条件:线性规划的解必须满足一组线性等式或者不等式,称为约束条件。

3. 变量:线性规划中的决策变量是用来表示问题中需要决策的量,可以是实数或者非负实数。

4. 可行解:满足所有约束条件的解称为可行解。

5. 最优解:在可行解中,使目标函数取得最大值或者最小值的解称为最优解。

二、模型建立方法1. 建立目标函数:根据问题的要求,确定目标函数的形式和系数。

2. 建立约束条件:根据问题中的限制条件,建立线性等式或者不等式。

3. 确定变量范围:确定变量的取值范围,可以是实数或者非负实数。

4. 建立数学模型:将目标函数和约束条件整合成一个数学模型。

三、求解方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。

通过绘制约束条件的直线或者曲线,找到目标函数的最优解。

2. 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。

该方法通过逐步迭代,不断改变可行解以找到最优解。

3. 整数规划方法:当变量需要取整数值时,可以使用整数规划方法进行求解。

该方法将线性规划问题扩展为整数规划问题,通过特定的算法求解最优解。

四、应用案例1. 生产计划问题:某工厂需要生产两种产品,每种产品的生产时间、材料消耗和利润都不同。

通过线性规划,可以确定最优的生产计划,以最大化利润或者最小化成本。

2. 运输问题:某物流公司需要将货物从多个仓库运送到多个客户,每一个仓库和客户之间的运输费用和容量都不同。

通过线性规划,可以确定最优的运输方案,以最小化总运输成本。

3. 资源分配问题:某公司有限的资源需要分配给多个项目,每一个项目的收益和资源需求都不同。

线性规划知识点

线性规划知识点线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

一、线性规划的基本概念首先,我们来了解一下线性规划中的几个关键概念。

约束条件:这是对决策变量的限制条件,通常以线性等式或不等式的形式出现。

比如,生产过程中对原材料的限制、对人力工时的限制等。

决策变量:是我们需要确定其最优值的变量。

比如,决定生产多少种产品,每种产品生产多少数量等。

目标函数:这是我们要优化的对象,通常是求最大值或最小值。

例如,追求利润最大化、成本最小化等。

可行解:满足所有约束条件的决策变量的取值。

可行域:由所有可行解构成的集合。

最优解:使目标函数达到最优值的可行解。

二、线性规划问题的数学模型一般来说,线性规划问题的数学模型可以用以下形式表示:目标函数:Z = c₁x₁+ c₂x₂+… + cn xn约束条件:a₁₁x₁+ a₁₂x₂+… + a₁nxn ≤(或≥、=)b₁a₂₁x₁+ a₂₂x₂+… + a₂nxn ≤(或≥、=)b₂……am₁x₁+ am₂x₂+… +amnxn ≤(或≥、=)bm其中,x₁,x₂,…,xn 是决策变量,c₁,c₂,…,cn 是目标函数的系数,a₁₁,a₁₂,…,amn 是约束条件的系数,b₁,b₂,…,bm 是约束条件的右端常数。

三、线性规划的求解方法1、图解法对于两个决策变量的线性规划问题,我们可以使用图解法来求解。

通过在平面直角坐标系中画出约束条件所对应的直线或区域,然后找出目标函数的最优解所在的点。

例如,假设有以下线性规划问题:目标函数:Z = 2x + 3y约束条件:x +2y ≤ 82x +y ≤ 10x ≥ 0,y ≥ 0我们先画出约束条件对应的区域,然后根据目标函数的斜率,找到使目标函数值最大或最小的点。

2、单纯形法对于多变量的线性规划问题,单纯形法是一种常用且有效的方法。

它的基本思想是从可行域的一个顶点出发,通过不断地转移顶点,最终找到最优解。

高三线性规划知识点

高三线性规划知识点线性规划是高中数学中的一个重要知识点,它在实际生活中有着广泛的应用。

本文将全面介绍高三线性规划的相关知识,包括定义、基本概念、解题步骤以及一些典型例题。

一、线性规划的定义线性规划是一种数学模型,用于求解一个线性函数在一组线性约束条件下的最优值。

在实际生活中,我们常常需要在一定的条件下寻找最优解,例如:生产成本最小、收益最大、资源利用最佳等等。

线性规划通过建立数学模型,帮助我们找到最优解。

二、线性规划的基本概念1. 目标函数:线性规划的目标通常是最大化或最小化一个线性函数。

这个函数被称为目标函数,记作Z。

2. 线性约束条件:线性规划的约束条件是一组线性不等式或等式,限制了变量的取值范围。

3. 变量:线性规划的变量是我们要求解的未知数,可以用任意字母表示。

4. 可行解:满足所有约束条件的解称为可行解。

可行解的集合称为可行域。

5. 最优解:在所有可行解中,使目标函数取到最大值或最小值的解称为最优解。

三、线性规划的解题步骤1. 建立数学模型:根据问题的描述,将目标函数和约束条件用代数式表示出来。

2. 确定可行域:将约束条件化为不等式形式,并将它们表示在坐标系中,找出它们的交集,确定可行域的范围。

3. 确定最优解:在可行域内寻找目标函数的极值点,得出最优解。

4. 检验最优解:将最优解代入原问题中,检验是否满足所有约束条件。

四、典型例题例题1:某工厂生产甲、乙两种产品,甲产品每吨利润为1000元,乙产品每吨利润为1200元。

已知生产一吨甲产品需要材料A 30千克,材料B 10千克;生产一吨乙产品需要材料A 20千克,材料B 40千克。

工厂每天可以使用材料A 600千克,材料B 200千克。

问如何安排生产,使得利润最大化?解:首先,我们定义两个变量x和y,分别表示甲、乙产品的生产量(吨)。

目标函数Z表示利润的最大值,即Z=1000x+1200y。

约束条件如下:30x+20y ≤ 60010x+40y ≤ 200x,y ≥ 0我们可以将该问题转化为图形解法,将约束条件绘制在坐标系中,确定可行域的范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划知识点总结
1.线性规划的有关概念:
①线性约束条件:

在上述问题中,不等式组是一组变量x,y
的约束条件,这组约束条件都是关于x,y的一
次不等式,故又称线性约束条件.

②线性目标函数:
关于x,y的一次式z=2x+y是欲达到最大值
或最小值所涉及的变量x,y的解析式,叫线性
目标函数.

③线性规划问题:
一般地,求线性目标函数在线性约束条件下
的最大值或最小值的问题,统称为线性规划问
题.

④可行解、可行域和最优解:
满足线性约束条件的解(x,y)叫可行解.由
所有可行解组成的集合叫做可行域.使目标函数
取得最大或最小值的可行解叫线性规划问题的
最优解.

2.用图解法解决简单的线性规划问题的基本
步骤:

(1)寻找线性约束条件,线性目标函数;
(2)由二元一次不等式表示的平面区域做
出可行域;

(3)在可行域内求目标函数的最优解
3.解线性规划实际问题的步骤:
(1)将数据列成表格;
(2)列出约束条件与目标函数;
(3)根据求最值方法:①画:画可行域;
②移:移与目标函数一致的平行直线;③求:求
最值点坐标;④答;求最值;

(4)验证.
4. 两类主要的目标函数的几何意义:
(1)-----直线的截距;
(2)-----两点的距离或
圆的半径;

(3)-----直线的斜率

相关文档
最新文档