人教版七年级数学下册期末考试--选择填空题--易错题集

合集下载

人教版最新教材七年级数学下册经典易错题初一数学

人教版最新教材七年级数学下册经典易错题初一数学

七年级下册经典易错习题一、填空题1.一个数的平方等于它本身,这个数是;一个数的平方根等于它本身,这个数是;一个数的算术平方根等于它本身,这个数是;一个数的立方等于它本身,这个数是;一个数的立方根等于它本身,这个数是;一个数的倒数是它本身,这个数是;一个数的绝对值等于它本身,这个数是。

2.16的平方根为,=16,16的平方根等于 .3.;,则。

4.已知一个正数的两个平方根分别为3x-5和x-7,则这个正数为 .5.17-1的整数部分为;小数部分为;绝对值为;相反数为 .6. 如图,在数轴上,1的对应点是A、B, A是线段BC的中点,则点C所表示的数是。

7.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为。

8.如果∠1=80°,∠2的两边分别与∠1的两边平行,那么∠2= 。

9.已知点A(1+m,2m+1)在x轴上,则点A坐标为。

10.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为 .11.点P(a-2,2a+3)到两坐标轴距离相等,则a= .12.将点A(1,-3)向右平移2个单位,再向下平移2个单位后得到点B(a,b),则ab=.13.已知平面直角坐标系内点P的坐标为(-1,3),如果将平面直角坐标系向左平移3个单位,再向下平移2个单位,那么平移后点P的坐标为________.14.在平面直角坐标系中,已知A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有个。

15.点P(a+5,a)不可能在第象限。

16.平面直角坐标系内有一点P(x,y),满足x=0y,则点P在17.方程52=+yx在正整数范围内的解是_____ 。

18.已知x=1,y=﹣8是方程mx+y-1=0的解,则m的平方根是。

19.关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是。

20.如果不等式2x-m≤0的正整数解有3个,则m的取值范围是。

人教版七年级下册数学易错题50题含答案(广州)

人教版七年级下册数学易错题50题含答案(广州)

人教版七年级下册数学易错题50题含答案(广州)一、单选题1.下列四个实数中,是无理数的是()A B.0C.0.7⋅D.2 72.在平面直角坐标中,点(2,3)M-在()A.第一象限B.第二象限C.第三象限D.第四象限3.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的整数解为().A.﹣1,0,1B.﹣1,0C.0,1D.﹣1,14.若21xy=⎧⎨=⎩是关于x、y的方程ax﹣y=3的解,则a=()A.1B.2C.3D.45.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1006.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.65B.35C.15D.257.如图,△ABC沿直线BD向右平移,得到△ECD,若BD=10cm,则A、E两点的距离为()A.10cm B.5cm C.10cm3D.不能确定8.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4B.4C.﹣2D.29.某种衬衫的进价为400元,出售时标价为550元,由于换季,商店准备打折销售,但要保持利润不低于10%,那么至多打()A.6折B.7折C.8折D.9折10.如图所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,则∠AOF等于()A.130°B.120°C.110°D.100°11.在平面直角坐标系中,点A(2,-3)在第()象限.A.一B.二C.三D.四12.下列调查中,适宜采用全面调查方式的是()A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件13.如图,已知直线AB,CD被直线EF所截,如果要添加条件,使得MQ∠NP,那么下列条件中能判定MQ∠NP的是()A.∠1=∠2B.∠BMF=∠DNFC.∠AMQ=∠CNP D.∠1=∠2,∠BMF=∠DNF14.下列命题中,是假命题的是()A.邻补角一定互补B.平移不改变图形的形状和大小C.两直线相交,同位角相等D.相等的角不一定是对顶角15.已知21x y =⎧⎨=⎩是方程组5{1ax by bx ay +=+=的解,则a ﹣b 的值是( ) A .1- B .2 C .3 D .416.与3( ) A .6B .7C .8D .917.已知表示实数a ,b 的点在数轴上的位置如图所示,下列结论错误的是( )A .a <1<bB .1<-a <bC .1<a <bD .-b <a <-118.在平面直角坐标系中,若过不同的两点P(2a ,6)与Q(4+b ,3-b)的直线PQ∠x 轴,则( ) A .a =12,b =-3B .a≠12,b≠-3C .a =12,b≠-3D .a≠12,b =-319.某次数学测验,抽取部分同学的成绩(得分为整数)整理制成频数分布直方图,如图所示.根据图示信息,下列描述不正确的是( )A .共抽取了50人B .90分以上的有12人C .80分以上的所占的百分比是60%D .60.5~70.5分这一分数段的频数是1220.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-二、填空题 21.827-的立方根为______ 22.经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是_____人.23.计算:+=________.24.若点P(3,2m-1)在第四象限,则m的取值范围是______.25.如图,直线AB与CD相交于O,已知∠BOD=30°,OE是∠BOC的平分线,则∠EOA=______.26.如图,直线AB∠CD,E为直线AB上一点,EH,EM分别交直线CD与点F、M,EH平分∠AEM,MN∠AB,垂足为点N,∠CFH=α,∠EMN=______(用含α的式子表示)27.如图,在正方形网格中,三角形DEF是由三角形ABC平移得到的,则点C移动了________格.28.不等式-3x+1>-8的正整数解是__________.29.从学校七年级中抽取100名学生,调查学校七年级学生双休日用于数学作业的时间,调查中的总体是_________,个体是______,样本容量是____.30_______13(填“>”、“<”或“=”).31=_____.32.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,则A的成本是________元,B的成本是________元.33.如图,已知AB∠CD,BC∠DE.若∠A=20°,∠C=120°,则∠AED的度数是________ .34.在平面直角坐标系xOy 中,对于点P(x ,y),我们把点P′(-y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 2的坐标为__________,点A 2 019的坐标为__________;若点A 1的坐标为(a ,b),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为_______________.三、解答题 35.解下列方程组:(1)125x y x y -=⎧⎨+=⎩ (2)23346x y x y ⎧=⎪⎨⎪-=⎩ 36.解不等式组,并把解集在数轴上表示出来:(1)23120x x +⎧⎨-⎩>< (2)1122841x x x x +⎧-⎪⎨⎪+-⎩>< 37.已知∠ABC 在平面直角坐标系中的位置如图所示.将∠ABC 向右平移6个单位长度,再向下平移6个单位长度得到∠A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的∠A1B1C1;(2)直接写出∠A1B1C1各顶点的坐标(3)求出∠A1B1C1的面积38.为了了解七年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°,根据图表中提供的信息,回答下列问题:(1)求样本容量及n的值;(2)已知该校七年级共有500名学生,如果体育成绩达28分以上为优秀,请估计该校七年级学生体育成绩达到优秀的总人数.39.如图,AB//CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD//BC.40.列方程(组),解应用题甲、乙两人在400米的环形跑道上同一起点同时背向起跑,40秒后相遇,若甲先从起跑点出发,半分钟后,乙也从该点同向出发追赶甲,再过3分钟后乙追上甲,求甲、乙两人的速度.41.如图1,O为平面直角坐标系的原点,点A坐标为(4,0),同时将点A,O分别向上平移2个单位,再向左平移1个单位,得到对应点B,C.(1)求四边形OABC的面积;(2)在y轴上是否存在一点M,使△MOA的面积与四边形OABC的面积相等?若存在这样一点,求出点M的坐标,若不存在,请说明理由;(3)如图2,点P在OA边上,且∠CBP=∠CPB,Q是AO延长线上一动点,∠PCQ 的平分线CD交BP的延长线于点D,在点Q运动的过程中,求∠D和∠CQP的数量关系.42.解不等式322x-≤2,并把它的解表示在数轴上.43.已知:(2x+5y+4) 2+|3x-4y-17|=044.如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H.∠GFH+∠BHC=180°,求证:1=2∠∠.45.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.46.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是∠ABC的边AC上任意一点,∠ABC经过平移后得到∠A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出∠A1B1C1;(3)求∠AOA1的面积.47.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?48.如图∠,已知直线l1∠l2,且l3和l1,l2分别相交于A,B两点,l4和l1,l2分别交于C,D两点,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,点P在线段AB上.(1)若∠1=22°,∠2=33°,则∠3=________;(2)试找出∠1,∠2,∠3之间的等量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图∠,点A在B处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC 的度数;(4)如果点P在直线l3上且在A,B两点外侧运动时,其他条件不变,试探究∠1,∠2,∠3之间的关系(点P和A,B两点不重合),直接写出结论即可.参考答案:1.A【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:0,.0.7,27是有理数,故选A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,难度不大 2.B【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【详解】解:20-<,30>,(2,3)∴-在第二象限,故选:B .【点睛】本题考查了点的坐标,解题的关键是掌握四个象限内坐标的符号:第一象限:+,+;第二象限:-,+;第三象限:-,-;第四象限:+,-.3.C【分析】由不等式组解集在数轴上的表示即可得.【详解】由数轴可知,此不等式组的整数解为0、1.故选C .【点睛】本题主要考查不等式组的整数解,解题的关键是掌握不等式组解集在数轴上的表示.4.B【分析】根据方程的解满足方程,把解代入方程,可得关于a 的一元一次方程,根据解一元一次方程,可得答案.【详解】解:∠21x y =⎧⎨=⎩是关于x 、y 的方程ax ﹣y =3的解, ∠代入得:2a ﹣1=3,解得:a =2,故选B .【点睛】本题考查了本题考查了二元一次方程的解,掌握方程解的定义是解题的关键. 5.C【详解】解:要了解一批电视机的使用寿命,从中抽取100台,故样本是所抽取的100台电视机的使用寿命.故选:C.6.D【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【详解】解:如图,∠直尺的两边互相平行,∠1=65°,∠∠3=∠1=65°,又∠∠3与∠2互余,∠∠2=90°-65°=25°.故选D.【点睛】本题考查了平行线的性质,直角三角形的性质,熟记平行线的性质是解题的关键.7.B【分析】根据平移的性质得出BC=CD,进而解答即可.【详解】解:由平移可得:BC=CD,AE=BC,∠BD=10cm,∠BC=AE=5cm,故选B.【点睛】本题考查平移的基本性质,难度不大8.B【详解】解:512{34a ba b+=-=①②,∠+∠:4a+4b=16则a+b=4.故选:B.【点睛】本题主要考查了解二元一次方程组,熟练掌握二元一次方程组的解法——加减消元法、代入消元法是解题的关键.9.C【分析】设该商品可打x折,则该商品的实际售价为550×0.1x元,根据“利润不低于10%”列出不等式求解可得.【详解】解:设该商品可打x折,根据题意,得:550×0.1x﹣400≥400×10%,解得:x≥8.故选C【点睛】本题主要考查一元一次不等式的应用,根据利润率公式列出一元一次不等式是解题的关键.10.B【分析】先设出∠BOE=α,再表示出∠DOE=α∠AOD=4α,建立方程求出α,最用利用对顶角,角之间的和差即可.【详解】解:设∠BOE=α,∠∠AOD:∠BOE=4:1,∠∠AOD=4α,∠OE平分∠BOD,∠∠DOE=∠BOE=α∠∠AOD+∠DOE+∠BOE=180°,∠4α+α+α=180°,∠α=30°,∠∠AOD=4α=120°,∠∠BOC=∠AOD=120°,∠OF平分∠COB,∠∠COF=1∠BOC=60°,2∠∠AOC=∠BOD=2α=60°,∠∠AOF=∠AOC+∠COF=120°,故选B.【点睛】此题是对顶角,邻补角题,还考查了角平分线的意义,解本题的关键是找到角与角之间的关系,用方程的思想解决几何问题是初中阶段常用的方法.11.D【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】解:由题意得:点A(2,-3)位于第四象限,故选D.【点睛】本题主要考查了根据点的坐标判断点所在的象限,熟知每个象限点的坐标特征是解题的关键.12.D【详解】A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.13.D【分析】由图中各角的位置关系,根据平行线的判定定理及性质对选项逐一判断即可.【详解】A.∠1与∠2不是同位角,不能判定MQ∠NP,故该选项不符合题意,B.∠BMF=∠DNF,只能判定AB//CD,不能∠BMF=∠DNF,故该选项不符合题意,C.∠AMQ与∠CNP不是同位角,不能判定MQ∠NP,故该选项不符合题意,D. ∠∠BMF=∠DNF,∠AB//CD,∠EMB=∠MND,∠∠1=∠2,∠∠EMQ=∠MNP,∠MQ∠NP,故该选项符合题意,故选D.【点睛】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键.14.C【分析】利用邻补角的定义、平移的性质、平行线的性质及对顶角的定义分别判断后即可得到正确的选项.【详解】A.邻补角一定互补,正确,是真命题,B.平移不改变图形的形状和大小,正确,是真命题,C.两直线平行,同位角相等,故该选项是假命题,D.相等的角不一定是对顶角,正确,是真命题,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解邻补角的定义、平移的性质、平行线的性质及对顶角的定义等知识.15.D【分析】根据方程组解的定义将21xy=⎧⎨=⎩代入方程组,得到关于a,b的方程组.两方程相减即可得出答案.【详解】∠21xy=⎧⎨=⎩是方程组5{1ax bybx ay+=+=的解,∠25 {21a bb a+=+=.两个方程相减,得a﹣b=4.故选:D.16.C3即可得答案.【详解】∠4+3<5+3即:7<38∠24更接近于25,∠与38,故选C.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.17.A【分析】首先根据数轴的特征,判断出a、-1、0、1、b的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】根据实数a,b在数轴上的位置,可得a<-1<0<1<b,1<|a|<|b|,-b<a.由图可知,1<|a|<|b|,故选项A结论错误∠|a|<|b|,a<-1,b>1,∠1<-a<b,故选项B结论正确;∠1<|a|<|b|,b>1∠1<a<b,故选项C结论正确;∠1<|a|<|b|,b>1,a<-1,∠-b<a<-1,选项D结论正确.故选A.【点睛】本题考查了实数与数轴及实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.18.D【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【详解】过不同的两点P(2a,6)与Q(4+b,3-b)的直线PQ∠x轴,∠2a≠4+b,6=3-b,.解得b=-3,a≠12故选D.【点睛】本题考查了坐标与图形,熟记平行于x轴的直线上点的纵坐标相等是解题的关键.19.D【分析】根据表中提供的数据分别进行计算,即可找出描述不正确的选项.【详解】A、抽样的学生共有:4+10+18+12+6=50人,故本选项正确,不符合题意;B. 90分以上的有12人,故本选项正确,不符合题意;C. 80分以上的所占的百分比是121850+=60%;故本选项正确,不符合题意;D. 60.5~70.5分这一分数段的频数是10,故本选项错误,符合题意;故选D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.B【分析】解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.【详解】解:不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()(),由13x-﹣12x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()()有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.【点睛】本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.21.2 3 -【分析】a【详解】-827的立方根是-23.故答案为-2 3 .【点睛】本题考查的知识点是立方根,解题的关键是熟练的掌握立方根.22.800【分析】设选择“公交车”的学生人数是3x,则自行车的有7x,其他的有2x,根据该校学生有3200人,列出方程,求出x的值,即可得出答案.【详解】设选择“公交车”的学生人数是3x,根据题意得:7x+3x+2x=3200,解得:x=8003,则选择“公交车”的学生人数是8003×3=800人;故答案为800【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23【分析】先去掉绝对值,再合并同类二次根式,计算即可得到结果.【详解】+.【点睛】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.24.m<1 2【分析】根据第四象限的点的纵坐标是负数列出不等式求解即可.【详解】解:∠点P(3,2m-1)在第四象限,∠2m-1<0,∠m<12.故答案为m<12.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键25.105°【分析】根据对顶角相等求出∠AOC,根据邻补角求出∠BOC,根据角平分线定义求出∠COE即可.【详解】解:∠∠BOD=30°,∠∠AOC=∠BOD=30°,∠BOC=180°-∠BOD=150°,∠OE是∠BOC的平分线,∠∠COE=12∠BOC=75°,∠∠AOE=75°+30°=105°,故答案为105°【点睛】本题考查了角平分线定义,邻补角,对顶角的应用,关键是根据对顶角相等求出∠AOC.26.2α﹣90°【分析】先利用平行线的性质得到∠AEH=∠CFH=α,再根据角平分线定义得到∠MEH=∠AEH=α,再利用邻补角的定义得到∠MEN=180°-2α,然后根据三角形内角和得出∠EMN的度数.【详解】∠AB∠CD,∠∠AEH=∠CFH=α,∠EH平分∠AEM,∠∠MEH=∠AEH=α,∠∠MEN=180°-2α,∠MN∠AB,∠∠MNE=90°,∠∠EMN=90°-(180°-2α)=2α-90°.故答案为2α-90°.【点睛】本题考查了平行线性质定理、角平分线定义、邻补角的定义以及三角形的内角和定理,熟练掌握有关定理是解题的关键.27.5【分析】根据网格结构,找出对应点C、F之间的格数即可.【详解】∠∠DEF是由∠ABC平移得到,点C到F有5格,∠点C移动了5格.故答案为5【点睛】本题考查了平移的性质,根据网格结构找出对应点是解题的关键.28.1,2【分析】先求出不等式的解集,在取值范围内可以找到正整数解.【详解】不等式3x+1<8的解集为x<73,∠不等式3x+1<8的正整数解是:1,2.故答案是:1,2【点睛】本题考查了一元一次不等式的整数解.解答此题要先求出不等式的解集,再确定正整数解.29.七年级学生双休日用于数学作业的时间七年级每个学生双休日用于数学作业的时间100【详解】根据总体,个体,样本容量的概念即可总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:本题考查的对象是七年级学生双休日用于数学作业的时间,故总体是七年级学生双休日用于数学作业的时间;个体是七年级每个学生双休日用于数学作业的时间;样本是所抽取的100名学生双休日用于数学作业的时间,故样本容量是100.30.>【详解】∠4<5,2>0,13=>0,13>.故答案为:>.31.-7 5【分析】根据平方根、立方根及绝对值的运算法则计算即可.【详解】原式=12+0.1-2-=7 5 -.故答案为7 5 -【点睛】本题考查了实数的运算,熟练掌握运算法则是解题关键.32. 300 200【分析】设A 服装的成本为x 元,B 服装的成本为y 元,根据题中等量关系列方程组求出x 、y 的值即可.【详解】设A 服装的成本为x 元,B 服装的成本为y 元,则50030%20%130x y x y +=⎧⎨+=⎩, 解得300200x y =⎧⎨=⎩, 故答案为300;200【点睛】本题考查了二元一次方程组的应用,找出题中各量之间的等量关系并列出方程是解题关键.33.80°【分析】延长DE 交AB 于F ,根据平行线的性质得到∠AFE =∠B ,∠B+∠C =180°,根据三角形的外角的性质即可得到结论.【详解】延长DE 交AB 于F ,∠////AB CD DE BC ,,∠180B C AFD B ∠+∠=︒∠=∠,,∠∠C=120°,∠∠AFD =60°,∠∠AED =∠AFD +∠A ,∠A =20°,∠∠AED =80°,故答案为:80°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.34. (0,4) (-3,1) -1<a <1且0<b <2【分析】根据伴随点的定义,计算出A2的坐标,罗列出部分点A的坐标,根据点A的变化找出规律即可求出A2019的坐标;根据x轴上方的点的纵坐标大于0列出不等式组求解即可.【详解】∠A1的坐标为(3,1),∠A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∠2019÷4=504……3,∠A2019的坐标为(-3,1).(3)∠点A1的坐标为(a,b),∠A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∠对于任意的正整数n,点An均在x轴上方,∠1010aa+>⎧⎨-+>⎩且20bb-+>⎧⎨>⎩解得-1<a<1,0<b<2.故答案为(0,4);(-3,1);-1<a<1且0<b<2【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.35.(1)21xy=⎧⎨=⎩(2)23xy=-⎧⎨=-⎩【分析】两方程组利用加减消元法求出解即可.【详解】(1)125x yx y-=⎧⎨+=⎩①②,∠+∠得:3x=6,解得:x=2,把x=2代入∠得:y=1,则方程组的解为21xy=⎧⎨=⎩;(2)方程组整理得:32346x yx y=⎧⎨-=⎩①②,把∠代入∠得:2y-4y=6,解得:y=-3,把y=-3代入∠得:x=-2,则方程组的解为23xy=-⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,解题关键在于掌握运算法则36.(1)-1<x<2(2)x>3【分析】(1)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】(1)解不等式2x+3>1,得:x>-1,解不等式x-2<0,得:x<2,则不等式组的解集为-1<x<2,将解集表示在数轴上如下:(2)解不等式x-12x+>12,得:x>2,解不等式x+8<4x-1,得:x>3,则不等式组的解集为x>3,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.37.(1)详见解析;(2)A1(4,−2),B1(1,−4),C1(2,−1);(3)7 2【分析】(1)直接利用平移的性质得出A,B,C平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用∠A 1B 1C 1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:∠A 1 B 1 C 1,即为所求;(2)如图所示:A 1 (4,−2), B 1 (1,−4), C 1 (2,−1);(3) ∠A 1B 1C 1的面积为:3×3−12×1×3−12×1×2−12×2×3=72. 【点睛】本题考查了作图-平移变换,解题关键在于掌握作图法则.38.(1)样本容量为50,n=10;(2)300人.【分析】(1)先求得样本容量,根据得30分的圆心角度数,即可求出得30分的认识,即可求出n 的值;(2)28分(包括28分)以上的人数1510530=++=人,占的比例=30÷50=60%,即可求得该校九年级体育成绩达到优秀的总人数.【详解】(1)样本容量为8÷16%=50,∠30分的人数为36505360⨯=人, ∠()5081215510n =-+++=;(2)估计该校七年级学生体育成绩达到优秀的总人数为1510550030050++⨯=人. 【点睛】本题考查的是统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小. 39.见解析【分析】由AB 与DC 平行,利用两直角平行同位角相等得到一对角相等,再由AE 为角平分线,得到一对角相等,再根据已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证. 【详解】解:∠ AB //CD ,1CFE ∴∠=∠, AE 平分BAD ∠ ,12∴∠=∠,CFE E ∠=∠,2E ∴∠=∠,∠ AD //BC .【点睛】本题考查了平行线的判定和性质,准确识图,灵活运用相关知识是解题的关键. 40.甲的速度分别为6013m/s ,乙的速度分别为7013m/s 【分析】设甲、乙二人的速度分别为xm/s ,ym/s ,根据:相向而行时甲的路程+乙的路程=400,同向而行时甲的路程=乙的路程,列方程组求解即可.【详解】设甲、乙二人的速度分别为xm/s ,ym/s ,根据题意列方程为:4040400210180x y x y +=⎧⎨=⎩, 解得:60137013x y ⎧=⎪⎪⎨⎪=⎪⎩, 答:甲的速度分别为6013m/s ,乙的速度分别为7013m/s . 【点睛】本题主要考查二元一次方程组的实际应用,根据相向而行路程之和等于两地间距离、同向而行俩人路程相等列方程是关键.41.(1)8(2)M (0,4)或(0,-4)(3)∠CQP=2∠D【分析】(1)首先证明四边形OABC 是平行四边形,理由平行四边形的面积公式计算即可;(2)存在.如图1中,设M (0,m ),根据绝对值方程即可解决问题;(3)结论:∠CQP=2∠D .如图3中,延长CP 到K .首先证明∠DPQ=∠DPK ,设∠DPQ=∠DPK=x ,∠DCQ=∠DCP=y ,构建方程组即可解决问题;【详解】(1)如图1中,由题意B (3,2),C (-1,2),∠BC∠OA ,BC=OA ,∠四边形ABCO 是平行四边形.∠S 平行四边形ABCD =4×2=8.(2)存在.理由:如图1中,设M(0,m)由题意S△AOM=8,×4×|m|=8∠12∠m=±4,∠M(0,4)或(0,-4).(3)结论:∠CQP=2∠D.理由:如图3中,延长CP到K.∠BC∠OA,∠∠CBP=∠DPQ,∠∠CBP=∠CPB,∠CPB=∠DPK,∠∠DPQ=∠DPK,设∠DPQ=∠DPK=x,∠DCQ=∠DCP=y,则有22x y CQPx y D=+∠⎧⎨=+∠⎩①②,∠-2×∠得到∠CQP=2∠D.【点睛】本题考查三角形综合题、平行四边形的判定和性质、角平分线的定义、三角形的外角的性质、二元一次方程组等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程组解决问题42.x≤2,将不等式的解集表示在数轴上见解析.【详解】分析:先根据不等式的解法求解不等式,然后把它的解集表示在数轴上.详解:去分母,得:3x-2≤4,移项,得:3x≤4+2,合并同类项,得:3x≤6,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:点睛:本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.43.±2【详解】【分析】根据非负数的性质可得关于x、y的二元一次方程组,解方程组后把x、y.【详解】由题意,得:2540 34170x yx y++=⎧⎨--=⎩,解得:32xy=⎧⎨=-⎩,=4,±2.【点睛】本题考查了非负数的性质、解二元一次方程组、求平方根等,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.44.见解析.【分析】求出∠GFH+∠FHD=180°,根据平行线的判定得出FG∠BD,根据平行线的性质得出∠1=∠ABD,求出∠2=∠ABD即可.【详解】∠∠GFH+∠BHC=180°,∠BHC=∠FHD∠∠GFH+∠FHD =180°∠FG//BD∠∠1=∠ABD∠BD平分∠ABC∠∠2=∠ABD∠∠1=∠2.【点睛】本题考查了平行线的性质和判定,角平分线定义,对顶角相等的应用,主要考查学生的推理能力.45.(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.【详解】【分析】(1)根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m的值;(2)根据(1)中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得“数学”所对应的圆心角度数;(4)根据统计图中的数据,可以求得该校九年级学生中有多少名学生对数学感兴趣.【详解】(1)在这次调查中一共抽取了:10÷20%=50(名)学生,m%=9÷50×100%=18%,故答案为50,18;(2)选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15(名),补全的条形统计图如图所示;。

七年级下册数学易错题精选

七年级下册数学易错题精选

初一年级下学期易错题精选(一)第五章相交线与平行线1.下列判断错误的是() .A. 一条线段有无数条垂线;B. 过线段 AB 中点有且只有一条直线与线段AB 垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D. 若两条直线相交,则它们互相垂直 .2.下列判断正确的是() .A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D. 连接直线外一点与直线上各点的所有线段中垂线段最短.3.如图所示,图中共有内错角() .A.2 组;B.3 组;C.4 组;D.5 组.4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1 个;B.2 个;C.3 个;D.4 个.5.如图所示,下列推理中正确的有() .①因为∠ 1=∠ 4,所以 BC ∥AD ;②因为∠ 2=∠ 3,所以 AB ∥ CD ;③因为∠ BCD +∠ ADC = 180°,所以 AD ∥BC;④因为∠ 1+∠ 2+∠ C= 180°,所以BC ∥AD.A.1 个;B.2 个;C.3 个;D.4 个 .6.如图所示,直线,∠ 1= 70°,求∠ 2 的度数 .7.判断下列语句是否是命题 . 如果是,请写出它的题设和结论.( 1)内错角相等;( 2)对顶角相等;( 3)画一个60°的角 .正解:(1)是命题 . 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等 . 这个命题是一个错误的命题,即假命题.(2)是命题 . 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.( 3)不是命题,它不是判断一件事情的语句.8.“如图所示,△ A ′ B′ C′是△ ABC 平移得到的,在这个平移中,平移的距离是线段 AA ′”这句话对吗?第六章平面直角坐标系1.点 A 的坐标满足,试确定点A 所在的象限 .2.求点 A( -3, -4)到坐标轴的距离 .第七章三角形1.如图所示,钝角△ABC 中,∠ B 是钝角,试作出BC 边上的高AE.2.有四条线段,长度分别为4cm, 8cm,10cm, 12cm,选其中三条组成三角形,试问可以组成多少个三角形?3.一个三角形的三个外角中,最多有几个角是锐角?4.如图所示,在△ABC 中,下列说法正确的是() .A. ∠ ADB >∠ ADE ;B. ∠ ADB >∠ 1+∠ 2+∠ 3;C.∠ ADB >∠ 1+∠ 2;D. 以上都对 .正解: C.正解解析:∵∠ ADB 是△ ADC 的一个外角,∴∠ADB =∠ 1+∠ 2+∠ 3,∴∠ADB >∠ 1+∠ 2.5.一个多边形的内角和为1440°,求其边数.第八章二元一次方程组1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D. 只有②不是二元一次方程组 .2.用加减法解方程组.3.利用加减法解方程组.4.两个车间,按计划每月工生产微型电机680 台,由于改进技术,上个月第一车间完成计划的 120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798 台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为() .A. ;B. ;C. .D. .第九章不等式与不等式组1.利用不等式的性质解不等式:.2.某小店每天需水1m3,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81 ㎡,那么高至少为多少米时才够用?(精确到0.1m)3.解不等式组.第十章数据的收集、整理与描述1.调查一批药物的药效持续时间,用哪种调查方式?2. 2011 年 4 月 11 日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600 多人,其中硕士、博士占4%,本科生占79%,大专生占 13% . 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.正解:如下图所示:3.某班组织 25 名团员为灾区捐款,其中捐款数额前三名的是10 元 5 人, 5 元 10 人, 2 元5 人,其余每人捐1 元,那么捐 10 元的学生出现的频率是 __________.4. 26 名学生的身高分别为(身高: cm):160; 162; 160; 162; 160; 159; 159; 169; 172; 160;161; 150; 166; 165; 159; 154; 155; 158; 174; 161;170; 156; 167; 168; 163; 162.现要列出频率分布表,请你确定起点和分点数据.正解:起点为 149.5,分五组: 149.5~ 154.5,154.5~ 159.5,159.5~ 164.5,164.5~169.5, 169.5~ 174.5.方程(组)、不等式(组)易错一、填空题1、关于 x 的不等式 2x-a≥ -2 的解集如图所示,则 a 的取值范围为 _______0 1 2 3 42、已知 3( 2x-1 )=2-3x 的解与关于 x 的方程6-2k=2 ( x+3)的解相同,则k=_______3、某品牌商品,按标价8 折出售,仍可以获得20% 的利润,若该商品的标价为30 元,则进价为元。

人教版七年级数学易错题讲解及答案

人教版七年级数学易错题讲解及答案

⼈教版七年级数学易错题讲解及答案⼀.判断⑴ a与-a⑵在数轴上,数是5.⑶在数轴上,⑸⑺如果-x⑻是1个.⑼若0,a=⼆.填空题⑴若1a-=a⑵式⼦3-5│x⑶在数轴上的线段AB⑸在数轴上的B位长度.⑹已知│a│=5为;⑺化简-│π-⑻如果a<b<|x|-x=0,|y|+y=0,|y|>|x|,化简ac、-ad、bc、bd中⾄少有⼀个.,判断(a+b)(c-b)和(a+b)(b-c)的(+42.75)34--⑶77(35)9-÷+2()3-⑹6(5)(6)()5-÷-÷-3,这个数为_______;,3=x则x=_______;;负整数是________;3的整数是________.5个单位长度的点所表⽰的(5)(6) 平⽅得,4122=x (7)若(8)若⼆.各取1——(1)若a ________(2)已知x 则x 满⾜若<2a (3)有理数a ( A .a + b <-b >0“*”:a *b =b a ,如3*2=()的问题)①0除以任))③a)-1.()⑤0除以)那么a= 1 ; -3.14 -π61)3161(12?-÷-75.04.34353.0?-?0.2)÷(-2)36712743-+)×(-60)⑤ ()8142033--÷- ⑥()()2010201111---⑦()25332301-÷+-- 六.应⽤题1. 某⼈⽤400元购买了8套⼉童服装,准备以⼀定价格出售,如果以每套⼉童服装55元的价格为标准,超出的记作正数,不⾜的记作负数,记录如下:+2,-3,+2,+1,-2,-1,0,-2.(单位:元)(1)当他卖完这⼋套⼉童服装后是盈利还是亏损?(2)盈利(或亏损)了多少钱?有理数·易错题整理1.填空:(1)当a________时,a 与-a 必有⼀个是负数; (2)在数轴上,与原点0相距5个单位长度的点所表⽰的数是________;(3)在数轴上,A 点表⽰+1,与A 点距离3个单位长度的点所表⽰的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表⽰的数的绝对值是________.2.⽤“有”、“没有”填空:在有理数集合⾥,________最⼤的负数,________最⼩的正数,________绝对值最⼩的有理数.3.⽤“都是”、“都不是”、“不都是”填空: (1)所有的整数________负整数; (2)⼩学⾥学过的数________正数; (3)带有“+”号的数________正数; (4)有理数的绝对值________正数; (5)若|a|+|b|=0,则a ,b________零; (6)⽐负数⼤的数________4.⽤“⼀定”、“不⼀定”、“⼀定不”填空: (1)-a________是负数;(2)当a >b 时,________有|a|>|b|; (3)在数轴上的任意两点,距原点较近的点所表⽰的数________⼤于距原点较远的点所表⽰的数;(4)|x|+|y|________是正数; (5)⼀个数________⼤于它的相反数; (6)⼀个数________⼩于或等于它的绝对值;5.把下列各数从⼩到⼤,⽤“<”号连接:并⽤“>”连接起来. 8.填空:(1)如果-x=-(-11),那么x=________; (2)绝对值不⼤于4的负整数是________; (3)绝对值⼩于4.5⽽⼤于3的整数是________. 9.根据所给的条件列出代数式:(1)a ,b 两数之和除a ,b 两数绝对值之和;(2)a 与b 的相反数的和乘以a ,b 两数差的绝对值; (3)⼀个分数的分母是x ,分⼦⽐分母的相反数⼤6;(4)x ,y 值.10.代数式-|x|11.⽤适当的符号((1)若a 是负数,则(2)若a 是负数,则-(3)如果a >0,且|a|>12.写出绝对值不⼤于2 13.由|x|=a 能推出x=±a 14.由|a|=|b|⼀定能得出15.绝对值⼩于516.⽤代数式表⽰:⽐a1718.算式-3+5-7+2-919再求出各式的值.(1)(-7)-(-4)-(+9)(2)(-5)-(+7)-(-6)20以改正;(2)5-|-5|=10;21.⽤适当的符号(>、<、≥、≤)填空: 7与-15的绝对值的和.26.⽤“都”、“不都”、“都不”填空: a ,b________为零;a +b >0,那么a ,b________a +b <0,那么a ,b________a +b=0,那么a ,b________为ab 是_________; (a +b)a 是________.积为负数,那么负因数31.计算下列各题:(5)-15×12÷6×5.34.下列叙述是否正确?若不正确,改正过来.(1)平⽅等于16(2)(-2)3的相反数是-)B. b没有系数D. -3是单项式D。

七年级数学易错题集及答案解析

七年级数学易错题集及答案解析

七年级知识点检测一.选择题(共8小题)1.(益阳)有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()元D.元9.(昆明)据报道,2014年4月昆明库塘蓄水量为58500万立方米,将58500万立方米用科学记数法表示为_________万立方米.10.(普陀区二模)1纳米等于0.000000001米,用科学记数法表示:2014纳米=_________米.11.已知一个多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有_________条,可以将此多边形分成_________个三角形.12.(思明区模拟)一个多边形的每个外角都等于72°,则这个多边形的边数为_________.13.小明从镜子里看到镜子对面电子钟的像,如图所示,实际时间是_________14.如图所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,则PD等于_________.15.如图,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=_________,AE:EC= _________.三.解答题(共15小题)16.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为_________.17.(1)在数轴上画出表示﹣2,1.5,﹣|﹣4|,,0.(2)有理数a、b在数轴上如图,用“>、=或<”填空.①a_________b,②﹣a_________﹣b,③|a|_________|b|,④|a|_________a,⑤|b|_________b.18.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:∠A=∠F.19.解三元一次方程组.20.已知关于x,y的方程组的解为满足x+y=4,求a的值.21.(黔东南州)若不等式组无解,求m的取值范围.22.(栖霞市二模)解不等式组并写出它的正整数解.23.已知:如图,点A和点B在直线l同一侧.求作:直线l上一点P,使PA+PB的值最小.24.如图,在长方形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.(1)试求BF的长;(2)试求AD的长;(3)试求ED的长.25.(禅城区模拟)A、B两市相距300千米.现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问几小时后两车之间的距离为30千米.26.某学校现有学生总数2300人,今年比去年总数增加了15%,其中男生比去年增加了25%,女生比去年减少了25%,问去年男、女生各多少人?27.(柳州)列方程解应用题:今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?解:设张红购买甲礼物x件,则购买乙礼物_________件,依题意,得.28.(包头)某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?29.某校暑假准备组织该校的“三好学生”参加夏令营,由1名老师带队.甲旅行社说:“若老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内都6折优惠”若全票价是1200元,则:(1)设三好学生人数为x人,则参加甲旅行社的费用是_________元;参加乙旅行社的费用是_________元.(2)当学生人数取何值时,选择参加甲旅行社比较合算?参考答案与试题解析一.选择题(共8小题)1.(益阳)有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()4.(鄂尔多斯)为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价元D.元是底边时,腰长为7.如图,∠BAD=90°,∠ADC=30°,∠BCD=142°,则∠B=()2二.填空题(共7小题)9.(昆明)据报道,2014年4月昆明库塘蓄水量为58500万立方米,将58500万立方米用科学记数法表示为 5.85×104万立方米.10.(普陀区二模)1纳米等于0.000000001米,用科学记数法表示:2014纳米= 2.014×10﹣6米.11.已知一个多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有9条,可以将此多边12.(思明区模拟)一个多边形的每个外角都等于72°,则这个多边形的边数为5.13.小明从镜子里看到镜子对面电子钟的像,如图所示,实际时间是10:5114.如图所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,则PD等于2.PC=215.如图,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=,AE:EC=1:3.AF=AB==AF=,=三.解答题(共15小题)16.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为﹣2.17.(1)在数轴上画出表示﹣2,1.5,﹣|﹣4|,,0.(2)有理数a、b在数轴上如图,用“>、=或<”填空.①a<b,②﹣a>﹣b,③|a|>|b|,④|a|>a,⑤|b|=b.,)∵﹣,﹣=18.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:∠A=∠F.19.解三元一次方程组.,把代入方程,的解为20.已知关于x,y的方程组的解为满足x+y=4,求a的值.,21.(黔东南州)若不等式组无解,求m的取值范围.22.(栖霞市二模)解不等式组并写出它的正整数解.23.已知:如图,点A和点B在直线l同一侧.求作:直线l上一点P,使PA+PB的值最小.24.如图,在长方形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.(1)试求BF的长;(2)试求AD的长;(3)试求ED的长.=,cm25.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?26.(禅城区模拟)A、B两市相距300千米.现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问几小时后两车之间的距离为30千米.,小时后两车之间的距离为27.某学校现有学生总数2300人,今年比去年总数增加了15%,其中男生比去年增加了25%,女生比去年减少了25%,问去年男、女生各多少人?28.(柳州)列方程解应用题:今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?解:设张红购买甲礼物x件,则购买乙礼物x+1件,依题意,得.29.(包头)某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?.30.某校暑假准备组织该校的“三好学生”参加夏令营,由1名老师带队.甲旅行社说:“若老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内都6折优惠”若全票价是1200元,则:(1)设三好学生人数为x人,则参加甲旅行社的费用是1200+600x元;参加乙旅行社的费用是720(x+1)元.(2)当学生人数取何值时,选择参加甲旅行社比较合算?。

人教版七年级初一数学下学期第六章 实数单元 易错题难题测试基础卷

人教版七年级初一数学下学期第六章 实数单元 易错题难题测试基础卷

人教版七年级初一数学下学期第六章 实数单元 易错题难题测试基础卷一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个 B .2个 C .3个D .4个 2.若24a =,29b =,且0ab <,则-a b 的值为( ) A .5±B .2-C .5D .5- 3.下列说法错误的是( )A .a 2与(﹣a )2相等B 互为相反数CD .|a|与|﹣a|互为相反数4.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a + 5.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,①a*2=2*a ;②(-2)*a=a*(-2);③(2*a )*3=2*(a*3);④0*a=a ,正确的为( )①a*2=2*a ②(-2)*a=a*(-2) ③(2*a )*3=2*(a*3) ④0*a=aA .① ③B .① ② ③C .① ② ③ ④D .① ② ④6.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .47.a ,小数部分为b ,则a-b 的值为()A .6-B 6C .8D 88.下列各式中,正确的是( )A 34B 34;C 38D 349.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数2P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上10.下列判断正确的有几个( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③33是3的立方根;④无理数是带根号的数;⑤2的算术平方根是2.A .2个B .3个C .4个D .5个二、填空题11.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.12.若实数a 、b 满足240a b +-=,则a b =_____. 13.写出一个3到4之间的无理数____.14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________. 16.规定运算:()a b a b *=-,其中b a 、为实数,则154)15+=____ 17.49的平方根是________,算术平方根是______,-8的立方根是_____.18.202044.9444≈⋯20214.21267≈⋯20.2(精确到0.01)≈__________. 19.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(I )解方程:log x 4=2;(Ⅱ)log 28=(Ⅲ)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018= (直接写答案) 22.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<,请确定332768是______位数;(2)由32768的个位上的数是8,请确定332768的个位上的数是________,划去32768后面的三位数768得到32,因为333=27,4=64,请确定332768的十位上的数是_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:332768=____;3-110592________=23.操作与推理:我们知道,任何一个有理数都可以用数轴上一个点来表示,根据下列题意解决问题:(1)已知x=2,请画出数轴表示出x 的点:(2)在数轴上,我们把表示数2的点定为基准点,记作点O ,对于两个不同的点A 和B ,若点A 、 B 到点O 的距离相等,则称点A 与点B 互为基准等距变换点.例如图2,点A 表示数-1,点B 表示数5,它们与基准点O 的距离都是3个单位长度,我们称点A 与点B 互为基准等距变换点.①记已知点M 表示数m ,点N 表示数n ,点M 与点N 互为基准等距变换点.I .若m=3,则n= ;II .用含m 的代数式表示n= ;②对点M 进行如下操作:先把点M 表示的数乘以23,再把所得数表示的点沿着数轴向右移动2个单位长度得到点N ,若点M 与点N 互为基准等距变换点,求点M 表示的数; ③点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度,对Q 点做如下操作: Q 1为Q 的基准等距变换点,将数轴沿原点对折后Q 1的落点为Q 2这样为一次变换: Q 3为Q 2的基准等距变换点,将数轴沿原点对折后Q 3的落点为Q 4这样为二次变换: Q 5为Q 4的基准等距变换点......,依此顺序不断地重复变换,得到Q 5,Q 6,Q 7....Q n ,若P 与Q n .两点间的距离是4,直接写出n 的值.24.阅读下列材料:问题:如何计算1111122334910++++⨯⨯⨯⨯呢? 小明带领的数学活动小组通过探索完成了这道题的计算.他们的解法如下:解:原式1111111(1)()()()22334910=-+-+-++- 1110=-910= 请根据阅读材料,完成下列问题: (1)计算:111112233420192020++++⨯⨯⨯⨯; (2)计算:111126129900++++; (3)利用上述方法,求式子111115599131317+++⨯⨯⨯⨯的值. 25.规律探究 计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯= 计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而121的小数部分.请解答下列问题:(1_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y +-的平方根。

人教版七年级数学下册 期末试卷易错题(Word版 含答案)

人教版七年级数学下册 期末试卷易错题(Word版 含答案)

人教版七年级数学下册 期末试卷易错题(Word 版 含答案)一、选择题1.25的平方根是()A .±5B .5C .±5D .﹣52.在下列图形中,不能..通过其中一个三角形平移得到的是( ) A .B .C .D .3.在平面直角坐标系中,点()3,2A -在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列语句中:①同角的补角相等;②雪是白的;③画1AOB ∠=∠;④他是小张吗?⑤两直线相交只有一个交点.其中是命题的个数有( ) A .1个 B .2个C .3个D .4个5.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是( )A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒ 6.若一个正数的两个平方根分别是2m +6和m ﹣18,则5m +7的立方根是( ) A .9 B .3C .±2D .﹣97.如图,直线AB ∥CD ,BE 平分∠ABD ,若∠DBE =20°,∠DEB =80°,求∠CDE 的度数是( )A .50°B .60°C .70°D .80°8.如图所示,已知点A (﹣1,2),将长方形ABOC 沿x 轴正方向连续翻转2021次,点A依次落在点A 1,A 2,A 3,…,A 2021的位置,则A 2021的坐标是( )A .(3038,1)B .(3032,1)C .(2021,0)D .(2021,1)二、填空题9.若,则()m a b +的值为10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,在ABC ∆中A α∠=,作ABC ∠的角平分线与ACB ∠的外角的角平分线交于点1A ;1A BC ∠的角平分线与1A CB ∠角平分线交于2A ,如此下去,则2021A ∠=__________.12.如图,AB ∥DE ,AD ⊥AB ,AE 平分∠BAC 交BC 于点F ,如果∠CAD =24°,则∠E =___°.13.如图,四边形ABCD 中,点M 、N 分别在AB 、BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠D 的度数为 ___.14.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.15.在平面直角坐标系中,点P 的坐标为()22,1a ---,则点P 在第________象限.16.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O 为顶点,边长为正整数的正方形的顶点,A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,2),A 6(0,2),A 7(0,3),A 8(3,3)……依此规律A 100坐标为________.三、解答题17.计算: (1)(3201931232(1)-(2)3339368(1)116--+18.求下列各式中的x 值. (1)2164x -= (2)()318x -=19.阅读并完成下列的推理过程.如图,在四边形ABCD 中,E 、F 分别在线段AB 、AD 上,连结ED 、EF ,已知∠AFE =∠CDF ,∠BCD +∠DEF =180°.证明BC ∥DE ; 证明:∵∠AFE =∠CDF (已知) ∴EF ∥CD ( ) ∴∠DEF =∠CDE ( ) ∵∠BCD +∠DEF =180°( ) ∴ ( ) ∴BC ∥DE ( )20.如图,ABC 在平面直角坐标系中.(1)写出ABC 各顶点的坐标; (2)求出ABC 的面积;(3)若把ABC 向上平移2个单位长度,再向右平移1个单位长度后得111A B C △,请画出111A B C △,并写出1A ,1B ,1C 的坐标.21.已知某正数的两个平方根分别是12a -和4,421a a b ++-的立方根是3,c 是13的整数部分.(1)求, , a b c 的值;(2)求2a b c ++的算术平方根.二十二、解答题22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A ,那么点A 表示的数是多少?点A 表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长二十三、解答题23.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AENCDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.24.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.25.模型与应用. (模型)(1)如图①,已知AB ∥CD ,求证∠1+∠MEN +∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)26.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的32倍,求∠ABO的度数.【参考答案】一、选择题1.A解析:A【分析】根据平方根的定义,进行计算求解即可.【详解】解:∵(±5)2=25∴25的平方根±5.故选A.【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义. 2.D【分析】根据平移的性质即可得出结论.【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D解析:D【分析】根据平移的性质即可得出结论.【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意.故选:D.【点睛】本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键.3.B【分析】根据各象限内点的坐标特征解答即可.【详解】解:点A(-3,2)在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据命题的定义分别对各语句进行判断.【详解】解:“同角的补角相等”是命题,“雪是白的”是命题;“画∠AOB=Rt∠”不是命题;“他是小张吗?”不是命题;“两直线相交只有一个交点”是命题.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.B【分析】根据平行可得出∠DAB +∠CBA =180°,再根据折叠和平角定义可求出1290∠+∠=︒. 【详解】解:由翻折可知,∠DAE =21∠,∠CBF =22∠, ∵//AD BC ,∴∠DAB +∠CBA =180°, ∴∠DAE +∠CBF =180°, 即2122180∠+∠=°, ∴1290∠+∠=︒, 故选:B .【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算. 6.B 【分析】根据立方根与平方根的定义即可求出答案. 【详解】解:由题意可知:2m +6+m ﹣18=0, ∴m =4, ∴5m +7=27, ∴27的立方根是3, 故选:B . 【点睛】考核知识点:平方根、立方根.理解平方根、立方根的定义和性质是关键. 7.B 【分析】延长DE ,交AB 于点F ,根据角平分线的定义以及已知条件可得20EBF ∠=︒,由三角形的外角性质可求EFB ∠,最后由平行线的性质即可求解. 【详解】延长DE ,交AB 于点F ,BE平分∠ABD,20∠=︒,DBE∴∠=∠=︒,EBF DBE20∠=∠+∠,∠DEB=80°,DEB DFB EBFEFB DEB EBF∴∠=∠-∠=︒-︒=︒,802060AB CD,//CDE EFB∴∠=∠=︒,60故选B.【点睛】本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键.8.B【分析】观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,解析:B【分析】观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,利用周期变化规律即可求解.【详解】解:由题意A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,∵2021÷4=505.....1,∴A2021的纵坐标与A1相同,横坐标=505×6+2=3032,∴A2021(3032,1),故选B.【点睛】本题主要考查坐标与图形的变化规律型问题,解题的关键是学会探究规律的方法.二、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】 解:有题意得,,,,则()m a b + 10.(2,﹣5).【分析】根据题意分析点P ,先关于y 轴对称,再求关于x 轴对称的点即可【详解】∵点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴解析:(2,﹣5).【分析】根据题意分析点P ,先关于y 轴对称,再求关于x 轴对称的点即可【详解】∵点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴对称,∴点P 的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵,的角平分线与的外角的角平分线交于点,∴,同 解析:202112α【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出A ∠与1A ∠,A ∠与2A ∠的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵180ACD ACB ∠=︒-∠,ABC ∠的角平分线与ACD ∠的外角的角平分线交于点1A ,∴111180()A A BC ACB ACA ∠=︒-∠+∠+∠11180(180)22ABC ACB ACB =︒-∠-∠-︒-∠ 190()2ABC ACB =︒-∠+∠ 190(180)2A =︒-︒-∠ 12A =∠, 同理可得1221122A A A ∠=∠=∠, 2331122A A A ∠=∠=∠, ∴2021202112A A ∠=∠, ∵A α∠=, ∴2021202112A α∠=, 故答案为:202112α.【点睛】 本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键.12.33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD ⊥AB ,∴∠BAD=90°,∵∠C解析:33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠CAD=24°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠CAE=33°,∵AB∥DE,∴∠E=∠BAE=33°,故答案为33.【点睛】本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.13.95°【分析】首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.解析:95°【分析】首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.【详解】解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=100°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°−50°−35°=95°,∴∠D=360°−100°−70°−95°=95°.故答案为:95°.【点睛】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.14.﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a<﹣,0<b<,故|﹣b|+|a+|+=﹣b﹣(a+)﹣a=﹣b﹣a﹣﹣a=﹣2a﹣b解析:﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a0<b故b|+|ab﹣(a ab﹣a a=﹣2a﹣b.故答案为:﹣2a﹣b.【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.15.三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P的符号为(-,-)∴点P在第三象限.故答案解析:三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P的符号为(-,-)∴点P在第三象限.故答案为:三.【点睛】本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3)…,∴数据每隔三个增加一次,100÷3得33余1,则点A在x轴上,故A100坐标为(34,0),故答案为:(34,0)【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A的脚标数之间的联系寻找规律.三、解答题17.(1)-5;(2)【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.【详解】(1)原式=;(2)原式=解析:(1)-5;(2)7 4【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.【详解】(1)原式1315-=-;(2)原式= -6+2+1+54=74-.故答案为:(1)-5;(2)7 4 - .【点睛】本题考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义.18.(1);(2).【分析】(1)首先求出的值是多少,然后根据平方根的含义和求法,求出x的值即可.(2)根据立方根的含义和求法,可得x-1=2,据此求出x的值是多少即可.【详解】(1)解解析:(1)52x=±;(2)3x=.【分析】(1)首先求出2x的值是多少,然后根据平方根的含义和求法,求出x的值即可.(2)根据立方根的含义和求法,可得x-1=2,据此求出x的值是多少即可.【详解】(1)2164x-=2254x=解得:52 x=±故答案为:52 x=±(2)()318x-=12x-=解得:3x=故答案为:3x=【点睛】本题考查了平方根的含义和求法,立方根的含义和求法.19.同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE=∠CD解析:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE=∠CDF(已知)∴EF∥CD(同位角相等,两直线平行)∴∠DEF=∠CDE(两直线平行,内错角相等)∵∠BCD+∠DEF=180°(已知)∴∠BCD+∠CDE=180°(等量代换)∴BC∥DE(同旁内角互补,两直线平行)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1)A(-1,-1),B(4,2),C(1,3);(2)7;(3)画图见解析,A1(0,1),B1(5,4),C1(2,5)【分析】(1)根据平面直角坐标系,确定出所求点坐标即可;(2)由长解析:(1)A(-1,-1),B(4,2),C(1,3);(2)7;(3)画图见解析,A1(0,1),B1(5,4),C1(2,5)【分析】(1)根据平面直角坐标系,确定出所求点坐标即可;(2)由长方形面积减去三个直角三角形面积求出所求即可;(3)直接利用平移的性质进而得出对应点坐标进而得出答案.【详解】解:(1)由图可知:A(-1,-1),B(4,2),C(1,3);(2)根据题意得:S△△ABC=11154243153⨯-⨯⨯-⨯⨯-⨯⨯=7;222(3)如图所示:△A 1B 1C 1为所求,此时A 1(0,1),B 1(5,4),C 1(2,5).【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键. 21.(1),,c=4;(2)4【分析】(1)由题意可得出,得出a 的值,代入中得出b 的值,再根据即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某解析:(1)5a =,4b =,c=4;(2)4【分析】(1)由题意可得出(12)(4)0a a -++=,得出a 的值,代入3421327a b +-==中得出b 的值,再根据3134<即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某正数的两个平方根分别是12a -和4a∴(12)(4)0a a -++=∴5a =又∵421a b +-的立方根是3∴3421327a b +-==∴4b =又∵3134<,c 13∴3c =(2)2524316a b c ++=+⨯+=故2a b c ++的算术平方根是4.【点睛】本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c 值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键.二十二、解答题22.(1)5;;(2);;(3)能,.【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正解析:(1)5;5;(2)51-;(3)能,10.-;15【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.【详解】试题分析:解:(1)拼成的正方形的面积与原面积相等1×1×5=5,边长为5,如图(1)(2)斜边长=22+=,2222故点A表示的数为:222-;点A表示的相反数为:222-(3)能,如图拼成的正方形的面积与原面积相等1×1×10=1010考点:1.作图—应用与设计作图;2.图形的剪拼.二十三、解答题23.(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2)12;(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC 平分∠PBD ,AM 平分∠CAD ,∠PBC =25°,∴∠PBD =2∠PBC =50°,∠CAM =∠MAD ,∵PQ ∥MN ,∴∠BJA =∠PBD =50°,∴∠ADB =∠AJB -∠JAD =50°-∠JAD =50°-∠CAM ,由(1)可得,∠ACB =∠PBC +∠CAM ,∴∠ACB +∠ADB =∠PBC +∠CAM +50°-∠CAM =25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.24.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.25.(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB ∥CD ,∴EF ∥AB ,∴∠1+∠MEF解析:(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB ∥CD ,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.26.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB,∠ABC=12∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF=32∠F,∠E=30°,∠ABO=60°;②∠F=32∠E,∠E=36°,∠ABO=72°;③∠EAF=32∠E,∠E=60°,∠ABO=120°(舍去);④∠E=32∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.。

七年级数学易错题总结(含答案)

七年级数学易错题总结(含答案)

七年级数学易错题总结(含答案)一、选择题(本大题共9小题,共27.0分)1.观察等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2…已知按一定规律排列的一组数:250、251、252.…、298、299.若250=a,用含a的式子表示这组数的和是().A. a2−aB. a2−2a−2C. a2−2aD. a2+a【答案】A【解析】【分析】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+⋯+2n=2n+1−2.由等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2,得出规律:2+22+23+⋯+2n=2n+1−2,那么250+251+252+⋯+299=(2+22+23+⋯+ 299)−(2+22+23+⋯+249),将规律代入计算即可.【解答】解:∵2+22=23−2;2+22+23=24−2;2+22+23+24=25−2;…∴2+22+23+⋯+2n=2n+1−2,∴250+251+252+⋯+299,=(2+22+23+⋯+299)−(2+22+23+⋯+249)=(2100−2)−(250−2)=2100−250,∵250=a,∴2100=(250)2=a2,∴原式=a2−a,故选A.2.三条直线两两相交于同一点时,对顶角有m对;交于不同的三点时,对顶角有n对,则m与n的关系是()A. m<nB. m=nC. m>nD. m+n=10【答案】B【解析】【分析】本题考查对顶角,掌握对顶角相关概念是解答本题的关键.直线相交形成的对顶角的对数,只与有多少对直线相交有关,三条直线两两相交,每对相交的直线就会形成2对对顶角,这三条直线每两条都相交,相交直线的对数,与是否交于同一点无关,因而m=n.【解答】解:因为三条直线两两相交形成的对顶角的个数与是否交于同一点无关,所以m=n,故选B.3.两条直线相交形成的两个角为∠α和∠β,且∠α=(x+10)∘,∠β=(2x−25)∘,则∠α的度数为()A. 45°B. 75°C. 45°或75°D. 45°或55°【答案】C【解析】解:由题意可知∠α+∠β=180°或∠α=∠β,∵∠α=(x+10)°,∠β=(2x−25)°,∴x+10+2x−25=180或x+10=2x−25,解得:x=65或x=35,∴∠α=75°或45°,故选C.根据两直线相交得到对顶角与邻补角,从而得出两角相等或互补,得出方程,求出即可.本题考查了对顶角与邻补角,x−a=3x−14,若a为正整数时,方程的解也为正整数,则4.已知关于x的方程52a的最大值是()A. 12B. 13C. 14D. 15【答案】B【解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.表示出方程的解,根据方程的解与a都为正整数,确定出a的最大值即可.【解答】x=a−14,解:方程移项合并得:−12去分母得:−x=2a−28,解得:x=28−2a,∵方程的解x是正整数,∴28−2a>0,∴a<14,又a也为正整数,则a的最大值为13,故选:B.x−a=3x−14,若a为正整数时,方程的解也为正整数,则5.已知关于x的方程52a的最大值是()A. 12B. 13C. 14D. 15【答案】B【解析】【试题解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.表示出方程的解,根据方程的解与a都为正整数,确定出a的最大值即可.【解答】x=a−14,解:方程移项合并得:−12去分母得:−x=2a−28,解得:x=28−2a,∵方程的解x是正整数,∴28−2a>0,∴a<14则a的最大值为13,故选:B.x−a=3x−14,若a为正整数时,方程的解也为正整数,则6.已知关于x的方程52a的最大值是()A. 12B. 13C. 14D. 15【答案】Bx=a−14,【解析】解:方程移项合并得:−12去分母得:−x=2a−28,解得:x=28−2a,∵方程的解x是正整数,∴28−2a>0,∴a<14则a的最大值为13,故选:B.表示出方程的解,根据方程的解与a都为正整数,确定出a的最大值即可.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.下列说法中:①过两点有且只有一条直线;②两点之间线段最短;③过一点有且仅有一条直线垂直于已知直线;④线段的中点到线段的两个端点的距离相等.其中正确的有()A. 1个B. 2C. 3个D. 4个【答案】C【解析】解:①过两点有且只有一条直线,即两点确定一条直线,说法正确;②两点的所有连线中,线段最短.简单说成:两点之间,线段最短,说法正确;③在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;④线段的中点到线段的两个端点的距离相等,说法正确.故选C.根据直线的性质判断①;根据线段的性质判断②;根据垂线的性质判断③;根据线段的中点的定义判断④.本题考查了直线的性质,线段的性质,垂线的性质,线段的中点的定义,是基础知识,需牢固掌握.8.下列角度换算错误的是()A. 10.6°=10°36″B. 900″=0.25°C. 1.5°=90′D. 54°16′12″=54.27°【答案】A【解析】【分析】本题考查了度、分、秒之间的换算关系:1°=60′,1′=60″,难度较小.根据度、分、秒之间的换算关系求解.【解答】解:A.10.6°=10°36′,错误;B.900″=0.25°,正确;C.1.5°=90′,正确;D.54°16′12″=54.27°,正确;故选:A.9.若M和N都是3次多项式,则M+N为()A. 3次多项式B. 6次多项式C. 次数不超过3的整式D. 次数不低于3的整式【答案】C【解析】【分析】本题主要考查整式加减.多项式的次数即为多项式中次数最高项的次数.由M和N都是3次多项式,得到M+N的次数为3或2或1或0,即M+N的次数不一定为3次,不可能超过3次,即可得到正确的选项.【解答】解:∵M和N都是3次多项式,∴M+N为次数不超过3的整式.故选C.二、填空题(本大题共8小题,共24.0分)10.有三个互不相等的有理数,既可表示为−1,a+b,a的形式,又可表示为0,−ba,b的形式,则b2021a2020的值为.【答案】−1【解析】略11.德国数学家莱布尼兹证明了π=4×(1−13+15−17+19−111+113−115+⋯),由此可知:13−15+17−19+111−113+115−⋯=________.【答案】1−π4【解析】【分析】本题考查了有理数运算的运用.根据所给条件,观察题目所给条件,可将π=4×(1−13+1 5−17+19−111+113−115+⋯)整理变形,使之与所求的原式一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册选择填空题易错题集、选择题3分/题(适用于人教版七年级下册)1. 下列各式中,正确的是()A. ..16=± 4B. ± .16=4C. 3T27 =-3D. . 口)2=-4 2•已知a>b>0,那么下列不等式组中无解.的是()x < a x a —a aA.丿 B .丿 C .丿Dx > —b x c -b x £—b3.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A)先右转50°,后右转40 °(B) 先右转50°,后左转40°(C)先右转50°,后左转130°(D) 先右转50°,后左转50°4. 如图,在△ ABC中,/ ABC=50,/ ACB=80, BP平分/ ABC CP平分/ ACB 则/BPC的大小是( )A. 100° B . 110° C . 115° D . 120°小1冈小军小华5. 课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(?0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)6. 若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为()A 3,3B 、-3,3C 、-3,-3D 、3,-31 17. △ ABC中, / A』/ B=- / C,则厶ABC是()3 4A.锐角三角形B.直角三角形C.钝角三角形D. 都有可能8. 用代入法解方程组;7x-2y=3 (1)有以下步骤:x -2^-12 (2)①:由⑴,得厂7^⑶②:由⑶代入⑴,得7X-2 土^=32 2③:整理得3=3 ④:二x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是()A、① B 、② C 、③ D 、④9. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5 倍多1284千米,小东根据地理教师的介绍,设长江长为x千米,黄河长为y千米,然后小东列的方程组可能是()通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么A 、; "x + y =836B 、丿 \-y = 836 'C 、\ + y = 836D 、丿 'x — y = 836、5x —6y=12846x —5y =1284 、6y-5x =12846y-5x = 128410■若x m-n - 2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是()A.m = 1,n=0B. m = 0,n=1C. m = 2,n=1D. m = 2,n=3 11. 一个四边形,截一刀后得到的新多边形的内角和将()A 、增加180oB 、减少180oC 、不变D 、以上三种情况都有可能 12. 如右图,下列能判定AB // CD 的条件有⑴ B BCD =180 ; (2) .1^.2 ; (3)A.1B.2C.3D.413■下列调查:⑴为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥 有一部手机;⑶为了解本班学生的平均上网时间;(4)为了解中央电视台春节联 欢晚会的收视率。

其中适合用抽样调查的个数有 ( )A 、1个B 、2个C 、3个D 、4个14. 某人从一鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼, 平均每条b 元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔2了钱,原因是() A . a >b B . a v bC . a = bD .与 ab 大小无关x > — 215.如果不等式/ 无解,则b 的取值范围是()x v b20. 如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上,如果/ 1= 20°,那么/ 2的度数是(b >-2 B .b v -2 C . b >-2 D . b < -216. 下列式子正确的是( A. 一 49=7B.17. 下列说法正确的是(A.无限小数都是无理数C.无理数是无限不循环小数18. 已知点P (m, 1)在第二象限,则点B •带根号的数都是无理数 D.实数包括正实数、负实数Q (- m 3)在( c •第三象限)0D.第四象限 19.已知在同一平面内三条直线 关系是( )A. a 丄 ba 、b 、c ,若 a II c ,b II c ,贝U a 与b 的位置 B. a 丄 b 或 a I b C. a I b D.无法确定 .3=/4 ; (4) . B =/5.小东列的方程组可能是()A. 30°B. 25°C. 20°D. 15°21. 一个正数x的平方根是2a-3与5- a,则x的值是()A. 64B. 36C. 81D. 4922 .在平面直角坐标系中,已知点A (-4, 0)和B (0, 2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是()。

A.(0,- 2)B.(4, 2)C.(4, 4)D.(2,4)23. 为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B.每名学生是个体C. 50名学生是所抽取的一个样本D.这个样本容量是5024. 导火线的燃烧速度为0.8 cm/ s,爆破员点燃后跑开的速度为5m/ s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A. 22cmB. 23cmC. 24cmD. 25cm_ 3^ 3x + 525. 不等式组丿x— 3 4 5的解集为x v4,则a满足的条件是()3. 从A沿北偏东60°的方向行驶到B,再从B沿南偏西20°的方向行驶到C,?则/ ABC= ____ 度.4 如图,AD// BC,Z D=100° ,CA 平分/ BCD贝U/ DAC= _____5 若I x2-25 | + Jy _3=0,贝U x= ______ ,y= ______ .6. 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同13■如图所示,想在河的两岸搭建一座桥是________ ,理由是 _______________14■小刚在小明的北偏东60°方向的500m处,则小明在小刚的______________ (请用方向和距离描述小明相对于小刚的位置)15. __________________________________ 绝对值小于8的所有整数是.16. 已知a、b为两个连续的整数,且a V 11-11 V b,则a・b= _____________ .17. 若m -3 +(n + 2f =0,则m +2n 的值是 ______ .18. 如图,已知a // b,小亮把三角板的直角顶点放在直线/仁40°,则/ 2的度数为______________ .19. ________________________________ 某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.20. 设X表示大于x的最小整数,如 3 =4,I-1.2 =是_________________ .(填写所有正确结论的序号)小东列的方程组可能是()x v a -26. 下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条 直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个 角相等.其中真命题的个数是()A . 1个B . 2个C . 3个 27. 下列运动属于平移的是( )B. 地球绕着太阳转28. 一个正方形的面积是15,估计它的边长大小在( ) 29.已知实数x , y 满足J x -2 +(y +1 4 =0,则x-y 等于( ) D . -1 示右眼,那么嘴的位置可以表示成( )A.(1, 0)B . ( -1, 0)C. ( - 1 , 1) D . (1 , - 1)二、填空题3分/题1. 如果点 P (a,2)在第二象限,那么点 Q (-3,a )在①0 =0; ②X -x 的最小值是0; ③'x -x 的最大值是0; ④存在实数x ,使x -x =0.5成立.4 如图3所示,在铁路旁边有一李庄,现要建一火车站,?为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选 一点来建火车站(位置已选好),说明理由: _______________________________A . a v 4B . a=4C . a_4C .风筝在空中随风飘动D .急刹车时,汽车在地面上的滑动 A .荡秋千A . 2与3之间 C . 4与5之间 D . 5与6之间B . -330■如图是丁丁画的一张脸的示意图,如果用( 0, 2)表示左眼,用(2, 2)表位角相等;③对于实数a, a2和a都是非负数;④垂直于同一条直线的两条直线互相平行。

请把你认为是真命题的命题的序号填在横线上____________________ 7. 不等式-3 < 5-2 x v 3 的正整数解是____________________ .°2x + v =•= 58. 如图.小亮解方程组/x y—的解为5,由于不小心,滴上了两2x_y=12 y =★滴墨水,刚好遮住了两个数•和★,请你帮他找回•这个数,•=9■数学解密:若第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是仃=9+8…,观察以上规律并猜想第六个数是________ .10. 3 _ 的相反数是________________ ,绝对值是________________ 。

11■如果,3=1.732,、- 30=5.477,那么0.0003 的平方根是__________________ 。

12■命题“同角的余角相等”改写成“如果……那么……”的形式b上.若AS并七年级数学下册选择填空题易错题集(答案)、选择、填空1.第三象限2.垂线段最短3. 404.405.x - _5, y = 36. (3)7.2、3、4&89.65=33+3210. 11 -3、11 -311.-0.0173212■如果有两个角是同一个角的余角,那么这两个角相等。

相关文档
最新文档