大学物理-气体分子动理论

合集下载

大学物理(第三版)热学 第二章

大学物理(第三版)热学 第二章

一、 理想气体的微观图象
1. 质点 P nkT P 0
在 T 一定的情况下 n 值小 意味着分子间距大 2 .完全弹性碰撞
3. 除碰撞外 分子间无相互作用 f=0
范德瓦耳斯力(简称:范氏力)
f
斥力
合力
r0
O
s
10 -9m r
d
引力
分子力
气体之间的距离
r 8r0 引力可认为是零 可看做理想气体
第3步:dt时间内所有分子对dA的冲量
dI dIi ix 0
1 2
i
dIi
nimi2xdtdA
i
dIi
2ni mi2xdtdA
第4步:由压强的定义得出结果
P

dF dA

dI dtdA

i
ni
m
2 ix
i dA
ixdt
P

dF dA

dI dtdA
2. 气体分子的自由度
单原子分子 双原子分子 多原子分子
i3 i5 i6
二、 能量按自由度均分原理 条件:在温度为T 的平衡态下 1.每一平动自由度具有相同的平均动能
1 2
kT

1 3

3 2
kT

1 2
m
1
3
2

1 2
m
2 x

1 2
m
2 y

1 2
m
2 z
每一平动自由度的平均动能为 1 kT
2
2.平衡态 各自由度地位相等
每一转动自由度 每一振动自由度也具有 与平动自由度相同的平均动能 其值也为 1 kT

大学物理-气体动理论必考知识点

大学物理-气体动理论必考知识点

第十章 气体动理论主要内容
一.理想气体状态方程: m PV RT M
'=; P nkT = 8.31J R k mol =;231.3810J k k -=⨯;2316.02210A N mol -=⨯;A R N k =
二. 理想气体压强公式
23kt p n ε= ε=213=22kt mv kT 分子平均平动动能
三. 理想气体温度公式
21322kt mv kT ε==
四.能均分原理
1. 自由度:确定一个物体在空间位置所需要的独立坐标数目。

2. 气体分子的自由度
单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i =
3. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为1
2
kT
五. 理想气体的内能(所有分子热运动动能之和)
1.1mol 理想气体=⋅=22A i i E N kT RT 3. 一定量理想气体()2i m E RT M
νν'==
六.麦克斯韦速率发布函数(可能会命题计算题,各种表达式的物理含义要牢记) 1()N
f v N v =d d , 速率在v 附近,单位速率区间内分子数占总分子数的百分率。

归一化条件:0()1f v v ∞=⎰d ,
=
=≈
平均速率:v ==≈ 最概然速率
:p v =≈
七.碰撞频率:
2z d nv =
平均自由程:λ=。

大学物理04第四章

大学物理04第四章

第四章 气体动理论一、基本要求1.理解平衡态的概念。

2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。

3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。

4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。

5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。

6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。

二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。

2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 nkT p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。

以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p ==≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。

重力场中粒子数密度按高度的分布(温度均匀):kT mgh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。

大学物理学第7章气体动理论(Temperature)

大学物理学第7章气体动理论(Temperature)
热力学着重阐明热现象的宏观规律,它是以大量实 验事实为基础,从能量的观点出发,分析研究热功转换的 关系和条件,以及消耗能量作功等一系列技术问题。二 者相辅相成,缺一不可。
4
研究对象:大量无规则热运动气体分子构成的系统 研究内容:物质与冷热有关的性质及这些性质的变化
对象特点:单个分子 无序性、偶然性、遵循力学规律 整体(大量分子):服从统计规律
mvx
l2
立直角坐标系。
a
O
-mvx
X
(2)选任意一个分子a作为研
究对象,求其对A1面的压力 Z
l1
分子“a” 的速度:
分子“ a”碰撞器壁A1面一次所受的冲量:
由牛顿第三定律可知,器壁A1面受分子碰撞一次所受的冲量:
23
分子“ a”相继碰撞器壁A1面两次所用的时间为: 单位时间内,分子“ a”与器壁A1面碰撞的次数为: 单位时间内,分子“ a”对器壁A1面的冲量即冲力为:
如压强 p、体积 V、温度 T等 .
平衡态:一定量的气体,在不受外界的影响下, 经过一 定的时间, 系统达到一个稳定的, 宏观性质不随时间变 化的状态称为平衡态 .(理想状态)
平衡态的特点
( p,V ,T )
p
*( p,V ,T )
o
V
1)单一性(
处处相等);
2)物态的稳定性---与时间无关;
3)自发过程的终点;
(2)在平衡态下,分子按位置的分布是均匀的 n dN N
则各处分子数密度是相同的。
dV V
(3) 分子速度指向任何方向的机会是一样, 或分子速度按方向的分布是均匀的。
vx2 vy2 vz2
各个方向的速度分量的平均值相等。
vx 2
v1 x 2

大学物理 气体动理论

大学物理 气体动理论

三、 温 度
决定一个系统是否与其它系统达到热平衡的宏观性质。
处于热平衡的多个系统具有相同的温度
具有相同温度的几个系统放在一起必然处于热平衡。
温度测量
酒精或水银
A
B
A 和 B 热平衡,TA = TB
热胀冷缩特性,标准 状态下,冰水混合, B 上留一刻痕, 水沸 腾,又一刻痕,之间 百等份,就是摄氏温 标(Co)。
生碰撞的�数目为:Ni = nivix dt d A 速度为 vi 分子在 dt 时间对 dA 的冲量为:

x
vxi
dA
vidt
nivixdAdt ⋅ (2mvix )
∑ 所有分子在
dt
时间内对
dA 产生的总冲量为:dI = 1 2
i
2mni
v
2
ix
dAdt
∑ ∑ 气体对器壁的宏观压强为:
p=
mni
T0
273.15
= 8.31(Jmol⋅K)
若写成 ν = N NA
N A = 6.023 × 1023 / mol
N为气体分子总数 阿伏伽德罗常量
µN
R
pV = RT = N T
µNA
NA

k

R NA
=
1.38 × 10−23
J
K
玻耳兹曼常数
pV = NkT
p = N kT = nkT V
n:气体分子数密度
2
三、气体分子的平均总动能
设分子有: 平动自由度 t 转动自由度 r
分子平均总动能:
1 εk = (t + r) 2 kT
单原子分子 刚性双原子分子
3

大学物理第16章气体动理论

大学物理第16章气体动理论
N2
pA
lim N
NA N

1 2
抛硬币的 统计规律
2020/1/15
DUT 余 虹
4
16.1 理想气体的压强
一、分子的作用力与压强
总数N 个,分子质量m ,摩尔质量,
体积V,温度T。
F
气体分子频繁碰撞 容器壁——给容器
壁冲量。大量分子在t 时间内给予I
的冲量,宏观上表现为对器壁的平均
vf
v
d
v

0
f
vd v


0
vf
v d
v
麦克斯韦分布律
v 1.60 RT

2020/1/15
DUT 余 虹
21
(3)方均根速率 v 2
一段速率区间v1~v2的方均速率
f v
v122
v2 v 2 d N N v v2 2 f v d v
v1 v2 d N
作用力
F I t
气体对容器壁的压强
P F I S S t
2020/1/15
DUT 余 虹
5
二、P 与微观量 的关系
分子按速度区 间分组
第i 组: 速度 近vi 似~ 认vi 为 都dv是i v i
分子数N
i ,分子数密度
ni

Ni V
考察这组分子给面元A的冲量
一 碰壁前速度 vix viy viz
一、速率分布函数
处于平衡态的气体,每个分子 朝各个方向运动的概率均等。
可是大量分子速度分 量的方均值相等。
一个分子,某一时刻速度
v
通常 v xv y v z

v

大学物理 气体动理论

大学物理 气体动理论

n k
(

n m)
分子平均平动动能
k

1 mv2 2
气体压强公式
p

2 3
n k
宏观可测量量
微观量的统计平均
12-4 理想气体分子的平均平动
动能与温度的关系
P nkT

P

2 3
n k
k

1 2
mv2

3 2
kT
T k ( 运动激烈程度 )
方均根速率 vrms
v2
3kT m
*可以用温度计来比较各个系统的温度
48ºC
A
48ºC
绝热板
B
AB
(a)
(b)
12-2 物质的微观模型 统计规律性
一.分子的线度和分子力 分子间的平均距离 l 3 1/ n
1.分子线度
占有体积
自身体积
有效体积 (相互作用)
2.分子力 — 短程力、电磁相互作用力
r0 引力>斥力 r r0 分子力为零
理想气体满足:分子体积不计,相互作用不计,完全弹性碰撞
(1) 定量,平衡态
m M
pV N k T 或 pV RT

N NA
k R / NA 1.381023J K1 Boltzmann常数
摩尔气体常量 R 8.31 J mol1 K1
m系统总质量,M摩尔质量,m 单个分子质量
8.
[讨论] a. 抛硬币,抛骰子— 等概率事件 b. 伽尔顿板实验—不等概率事件

............
...........
当小球数 N 足够大时小
............ ...........

大学物理06分子动理论

大学物理06分子动理论
热物理学
组成物质的分子或粒子都在作永不停息的无规则 运动,称为热运动。大量分子热运动的集体效应在宏 观上表现为物体的热现象和热性质。
研究分子热运动,讨论热现象的规律、分析物体 热性质的理论称为热物理学。 热物理学包括宏观理论和微观理论。 • 宏观理论——热力学:以观察和实验为基础,通过归 纳和推理得出有关热现象的基本规律,因而其结论普 遍而且可靠。 • 微观理论——分子动理论:从分子结构和分子运动出 发,应用力学规律和统计方法,研究大量分子热运动 的集体效应,从微观本质上解释热现象和热性质。
热力学平衡态
三、平衡与涨落 一个与外界没有能量、质量交换的系统,经一定时间后 达到稳定的,不再有宏观状态的变化。此时,系统内各 部分的宏观性质均相同。
处在平衡态的系统的宏观量,如压强,不随时间改变, 但不能保证任何时刻大量分子撞击器壁的情况完全一样, 这称为涨落现象,分子数越多,涨落就越小。 N
t
热力学平衡态
二、温标
确定温度数值的表示方法——温标 (1)选定测温质 (2)选定与温度单调变化的属性
(3)假定测温属性与温度成线性关系
(4)选定温度标准点,将温度计分度 不同测温质或不同测温属性测量同一温度数 值可能不同。
上海交通大学物理系高景jgao@
热力学平衡态
三、理想气体温标和状态方程
LR R R R LR R RRLR RRRL 1 3 4
R R R R 0 4 1
C(n) 1
上海交通大学物理系高景jgao@
C n 某一宏观态出现的几率: pn N 2
热力学平衡态
1 2 3 4 n n’
L L L L 4 0
LLLR LLR L LR LL R LLL 3 1 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v
v1 v2 v3 … …
N ΔN1 ΔN2 ΔN3 … …
速率为 vi 的概率为:
Pi
Ni N
长时间“观测”理想气体分子的速率 v :
v
0 ~ +∞ 连续分布
速率为 v → v + dv 的概率为:
Pv~vdv
dNv N
0
???
速率分布函数
Pv~vdv
dNv N
f (v)dv
f (v) dNv Ndv
刚性双原子分子的动能
分子动能
平动动能
t x
t y
t z
转动动能
r
r
t x
t y
t z
r
r
1 kT 2
t x
t y
t z
r
r
5 kT 2
温度较高时,双原子气体分子不能看作刚性分子,分子
平均能量更大,因为振动能量也参与能量均分
理想气体分子的平均能量
分子模型 刚性单原子分子 刚性双原子分子 刚性多原子分子
每个分子频繁地发生碰撞,速度也因此不断变化;
二、压强形成的微观解释
单个分子与器壁碰撞 冲力作用瞬间完成,大小、位置具有 偶然性;
大量分子(整个气体系统)与器壁碰撞 气体作用在器壁上是一个持续的、不 变的压力;
压强是气体分子给容器壁冲量的 统计平均量
三、理想气体的压强公式
建立三维直角坐标系 Oxyz
vz i N
气体处于平衡态时,气体分子沿各个方向运动的机会均等。
vx vy vz
气体分子速率平方的平均值
v v1 v2 v3 … …
N ΔN1 ΔN2 ΔN3 … …
v
2 x
v12x v22x
v32x … …
v
2 y
v12y v22y v32y … …
z viz vi vix
viy
O
y
v
2 z
vi
(vix, viy , viz )
x, y, z 方向规律相同,压强相同
分析 x 方向
yviy vi vOiz
vixc x b
a
z
x 方向速度分量为 vix 的分子 i 与气体分子 j 碰撞,
互换
y
Pix
Pjx
由于气体分子是全同的,而
且每次碰撞是弹性碰撞,因此气
体分子间的碰撞对结果的影响可
忽略。
N ΔN1 ΔN2 ΔN3 … …
vx v1x v2x v3x … … vy v1y v2y v3y … … vz v1z v2z v3z … …
z viz vi
vix
viy
O
y
x
vx
N1v1x
N2v2x N
N3v3x
i
Nivix N
Nivix
vx i N
Niviy
vy i N
Niviz
飞机 3 ?
轮船(看作刚体): 确定质心: (x, y) 确定方向: θ
3个自由度
y y’
海面
θ O’ (x, y) x’
O
x
细棒:
y
y’
确定质心: (x, y, z)
5个自由度
确定方位: (, )
(x, y,Oz)’
x’
z’
O
x
z
飞机(看作刚体):
确定质心: (x, y, z)
确定转轴: (, )
三、气体分子速率的三种统计平均值
平均速率
气体分子的速率 v 离散分布:
v
v1 v2 v3 … …
N ΔN1 ΔN2 ΔN3 … …
Nivi
v i N
气体分子的速率 v 连续分布:
dNv f (v)dv N
v
N vdNv
vf (v)dv
0N
0
对于理想气体:
f (v) 4 ( ) v e 3/ 2 2 v2 / 2kT 2kT
(n1
n2
n3
)
p 2 n
3
2 3
(n1
n2
n3
)
2 3
n11
2 3
n2 2
2 3
n3 3
p1 p2 p3
§7.4 能量按自由度均分原理
一、自由度的概念
确定一个物体的空间位置所需要的独立坐标数目。 下列物体看作质点时,自由度为多少?看作刚体时又为多少?
质点 刚体
火车 1 1
轮船 2 ?
伽耳顿板实验中粒子落入的位置 掷色子出现的点数 气体分子的速率、动量、动能等
概率 对随机变量 M 进行抽样试验:
M M1 M2 M3 … … N ΔN1 ΔN2 ΔN3 … …
Pi
lim
N
Ni N
M 取 M i 的概率。
( N = Δ N1 + Δ N2 + Δ N3 + … )
例 掷色子出现4的概率
v12z
v22z v32z … …
x
Nivi2x
vx2 i N
Nivi2y
v
2 y
i
N
Nivi2z
vz2 i N
vi2 vi2x vi2y vi2z
Nivi2 Nivi2x Nivi2y Nivi2z
i
i
i
i
Nivi2
Nivi2x
Nivi2y
Nivi2z
i
i
i
第7章 气体分子动理论
玻耳兹曼:奥地利物理学家,统计物理学的 奠基人之一。于1868年提出麦克斯韦-玻耳 兹曼分布定律 。在 1872年从非平衡态的分 子动力学得到 H 定理 ,这是经典分子动力 论的基础。1877年提出热力学第二定律与微 观几率态数 W 的关系以及熵的统计解释。 1900年普朗克运用玻耳兹曼的理论得出 S=k lnW 并证明了斯忒藩的实验结论 u =σT4 (斯忒藩 - 玻耳兹曼黑体辐射公式),掀开 了量子时代的帷幕。
O r0
r
r0
分子有效直径
引力
二、气体分子热运动服从统计规律
每个宏观点的气体分子数量巨大; 气体分子间距很大,除碰撞外, 分子间相互作用可忽略; 气体分子间的相互碰撞是非常频繁的;
一秒内一个分子大约要发生几十亿次 ( 109 ) 碰撞 气体分子的微观力学量取值无法预测,气体的宏观量稳定;
气体分子热运动服从统计规律
意义: 速率在 v 附近的单位速率区间的分子数占分子总数的 比率
速率分布函数的实质是相对概率,或者称为概率密度;
速率分布函数的归一化条件
P
N dNv
f (v)dv 1
0N
0
二、麦克斯韦速率分布律
f (v) 4 ( ) v e 3/ 2 2 v2 / 2kT 2kT
μ
分子质量
T
热力学温度
i
N
N
N
N
z viz vi vix
viy
O
y
x
即 v2 vx2 vy2 vz2
v2 vx2 vy2 vz2
气体处于平衡态时,气体分子沿各个方向 运动的机会均等。
vx2
v
2 y
vz2
1 v2 3
z viz vi
vix
O
viy
y
x
气体分子平动动能的平均值
i
1 2
vi2
1 2
vi2
1 2
Nivi2
i
N
z viz vi vix
viy
O
x
§7.2 理想气体的压强
一、理想气体的微观模型
气体分子的性质相同,质量相等,相对于分子间距大
小可忽略不计;
Ep
Ep
Ep
O r0
r
O r0
r
O
r
一般物质分子
刚性小球模型
理想气体分子
除碰撞外分子间相互作用可忽略不计,气体分子在 相邻两次碰撞间作匀速直线运动; 所有的碰撞为完全弹性碰撞;
3
3 kT
2
3p 3nkT 3 kT
2n 2n 2
理想气体的能量方程
温度的微观本质
二、道尔顿分压定律
混合气体的压强等于各种气体的分压强之和。
证明: 混合气体的分子数密度
n n1 n2 n3
混合气体各组分温度相同
3 kT
2
混合气体的压强
1 2 3
p 2 n
3
2 3
P4
1 6
小球出现在第3个小槽
P3
N3 N
S3 S
概率的归一化条件
Pi
lim
N
Ni N
( N = Δ N1 + Δ N2 + Δ N3 +… )
i
Pi
lim
N
N1 N
lim
N
N2 N
lim
N
N3 N
lim N1 N2 N3 1
N
N
Pi 1
i
平均值
M M1 M2 M3 … … N ΔN1 ΔN2 ΔN3 … …
z
vix A1 c
x
O
b
a
可看作大量气体分子同时作来回运动却“没有”碰撞
x 方向速度分量为 vix 的分子 i 与 A1 碰撞,动量变化:
Pix vix (vix ) 2vix
y
对 A1 的冲量:
Iix Pix 2vix
vix A1 c
连续两次与 A1 发生碰撞的时间
O
间隔为:2a / vix
§7.1 气体分子动理论的基本概念
一、分子动理论的三个基本概念
相关文档
最新文档