金属腐蚀原理

合集下载

金属腐蚀的原理

金属腐蚀的原理

金属腐蚀的原理金属腐蚀是指金属与周围环境发生化学反应而导致金属表面失去原有性能的现象。

金属腐蚀是一个普遍存在的问题,不仅影响着金属制品的使用寿命,还给人们的生产和生活带来了诸多不便。

了解金属腐蚀的原理对于预防和控制金属腐蚀具有重要意义。

金属腐蚀的原理主要包括以下几个方面:1. 电化学腐蚀。

电化学腐蚀是金属在电解质溶液中发生的一种电化学反应。

在电解质溶液中,金属表面会发生阳极溶解和阴极析出两种反应,导致金属表面的腐蚀。

阳极溶解是金属表面的原子失去电子成为离子溶解到溶液中,而阴极析出是溶液中的阳离子得到电子在金属表面析出成为金属原子。

这种电化学腐蚀是金属腐蚀中最主要的一种形式。

2. 化学腐蚀。

化学腐蚀是指金属与一些化学物质直接发生化学反应而导致金属表面腐蚀的现象。

化学腐蚀的原因主要是金属与氧气、水、酸、碱等化学物质发生氧化、水解、酸碱中和等反应,导致金属表面的腐蚀。

例如,铁的表面会与空气中的氧气发生氧化反应,生成铁氧化物,即锈。

3. 生物腐蚀。

生物腐蚀是指微生物、植物或动物对金属表面进行化学侵蚀的现象。

微生物和植物会在金属表面产生一些酸性物质,这些酸性物质会对金属表面产生腐蚀作用。

而一些动物,如海洋生物,会在金属表面产生一些有机物,这些有机物也会对金属表面产生腐蚀作用。

4. 应力腐蚀。

应力腐蚀是指金属在受到应力作用的情况下,在特定环境中发生的腐蚀现象。

金属在受到应力作用时,其原子结构会发生变化,使得金属更容易发生腐蚀。

应力腐蚀是一种危害性很大的腐蚀形式,往往会导致金属的快速破坏。

以上就是金属腐蚀的主要原理。

了解金属腐蚀的原理有助于我们采取有效的措施来预防和控制金属腐蚀,延长金属制品的使用寿命,减少资源浪费,保护环境。

希望大家能够重视金属腐蚀问题,共同努力为建设美丽的地球贡献自己的一份力量。

自然环境中金属的腐蚀

自然环境中金属的腐蚀

自然环境中金属的腐蚀自然环境中,金属的腐蚀是一种常见的现象。

金属腐蚀指的是金属与周围环境发生化学反应,导致金属表面发生损坏。

金属腐蚀不仅会对金属材料本身造成损害,还会对环境和人类造成不良影响。

本文将介绍金属腐蚀的原理、影响因素以及防腐措施。

首先,金属的腐蚀是由于金属与氧气、水和其他化学物质之间的反应而引起的。

金属腐蚀的主要原理是电化学反应。

金属在电解质溶液中放电,被溶液中的阴离子氧化,并释放出电子。

在金属表面产生一个阳极区和一个阴极区,阳极区发生金属溶解,而阴极区则减少金属表面的反应。

金属腐蚀的速度在很大程度上取决于环境因素。

其中,氧气和水是金属腐蚀的主要因素。

水中的氧气与金属发生氧化反应,形成金属氧化物。

这种氧化反应是金属腐蚀的根本原因。

此外,温度、湿度、盐度、酸碱度等环境条件也会影响金属腐蚀的速度。

例如,高温和湿度会加速金属腐蚀的发生,而酸性环境也会增加金属腐蚀的程度。

金属腐蚀不仅会对金属材料本身造成损害,还会对环境和人类健康造成不良影响。

金属腐蚀会导致金属材料的强度降低,减少其使用寿命。

此外,金属腐蚀还会产生有害物质,如氧化物、盐和酸等,这些物质会对环境造成污染。

例如,铁腐蚀会生成铁锈,不仅对钢结构的稳定性造成威胁,还会对土壤和水体造成污染。

金属腐蚀还会导致环境中的金属离子增加,从而对生物体产生毒害。

为了延长金属材料的使用寿命,并减少金属腐蚀对环境和人类的危害,我们需要采取一系列的防腐措施。

其中,最常见的方法是涂层保护。

利用涂层可以将金属与周围环境隔离,降低金属表面与空气和水接触的机会,从而达到防止金属腐蚀的效果。

涂层材料通常有油漆、漆膜、聚合物薄膜等,其具有隔离作用,可以保护金属免受外界环境的侵蚀。

此外,金属腐蚀还可以通过电化学方法来防止。

例如,将金属与另一种更容易腐蚀的金属连接在一起,将使腐蚀发生在后者上,而保护前者。

这种方法被称为阴极保护。

此外,还可以通过阳极保护的方法,即在金属表面附着一个以金属为主的阳极,在金属腐蚀过程中发生氧化反应,将腐蚀反应集中在阳极上。

金属腐蚀的原理及防治方法

金属腐蚀的原理及防治方法

金属腐蚀的原理及防治方法金属腐蚀是指金属在化学或电化学作用下,发生破坏性变化的过程。

腐蚀过程会降低金属的强度和硬度,使其失去原有的机械性能,影响材料的使用寿命和安全性。

因此,研究金属腐蚀的原理和防治方法,对延长金属材料的使用寿命、提高生产效率和确保安全具有重要的意义。

一、金属腐蚀的原理金属在自然环境中,常被暴露在空气、水、液体、土壤、化工介质、海水等导致的化学反应和电化学作用中,而导致金属的腐蚀。

在金属腐蚀过程中,发生的反应分为化学腐蚀和电化学腐蚀两种类型。

(一)化学腐蚀化学腐蚀是指金属与某种化学物质,如酸、碱、盐等反应产生的腐蚀现象。

化学腐蚀常用来描述各种酸性、碱性和盐性的腐蚀。

例如,铁在水和氧气的作用下,会和水中的二氧化碳形成碳酸化合物,这种化合物会使铁逐渐被分解,并形成红褐色的铁锈。

当铁上的铁锈不断增长,破坏铁表面的保护层,导致铁的腐蚀。

(二)电化学腐蚀电化学腐蚀是指金属通过电极反应与电解质溶液中的阳、阴离子,或电解质溶液中的氧分子反应发生的腐蚀现象。

电化学腐蚀的过程中,金属表面的阳极区发生氧化反应,金属表面的阴极区发生还原反应。

例如,当铁在水中淋湿时,铁的表面会形成一个电解质界面。

随着时间的推移,铁表面的阳极区,也就是金属离子会溶解到电解质中,释放出电子,在表面形成负电位。

金属表面的阴极区则会吸收电子,在表面形成正电位。

由于阳离子的溶解和阴离子的吸附,会导致金属表面产生氢离子,它们会不断地在金属表面上沉积,并形成小洞使金属逐渐腐蚀。

二、金属腐蚀的防治方法(一)表面处理表面处理是一种防止金属腐蚀的有效方法。

表面处理的目的是为了增加金属的耐腐蚀性能,通过处理金属表面,使其不容易和外界物质发生反应,从而达到防止腐蚀的目的。

表面处理一般采用喷涂、热浸镀、电镀、电泳、涂层等方法,来对金属表面进行处理,从而防止金属腐蚀。

(二)金属镀层金属镀层是一种常用的防止金属腐蚀的方法。

在金属的表面涂上一层抗腐蚀能力强的金属,可以保护金属的表面不受腐蚀的侵蚀。

金属腐蚀原理

金属腐蚀原理

金属腐蚀原理金属腐蚀是指金属在环境条件下受到化学或电化学作用而逐渐失去其原有性能的过程。

金属腐蚀是一种普遍存在的现象,它不仅会影响金属的外观和机械性能,还可能导致设备的损坏和安全隐患。

了解金属腐蚀的原理对于预防和控制金属腐蚀至关重要。

金属腐蚀的原理主要包括化学腐蚀和电化学腐蚀两种类型。

化学腐蚀是指金属在化学环境中受到氧化、还原、酸碱等化学作用而发生腐蚀。

例如,铁在潮湿的空气中会与氧气发生化学反应,生成铁氧化物,即锈。

电化学腐蚀是指金属在电化学环境中受到阳极和阴极的作用而发生腐蚀。

当金属表面存在阳极和阴极区域时,就会形成电化学腐蚀电池,金属在阳极处发生溶解,而在阴极处发生析出,从而导致金属腐蚀。

金属腐蚀的原理可以通过电化学腐蚀的腐蚀电位和腐蚀电流密度来进行表征。

腐蚀电位是指金属在电化学腐蚀条件下的电位,它可以反映金属的耐蚀性能。

腐蚀电流密度是指单位面积上金属在电化学腐蚀条件下的电流密度,它可以反映金属的腐蚀速率。

通过对腐蚀电位和腐蚀电流密度的测定,可以评估金属在具体环境中的腐蚀倾向和腐蚀速率,为金属腐蚀的预防和控制提供依据。

金属腐蚀的原理还与金属的组织结构、表面状态、应力状态等因素密切相关。

金属的晶粒大小、晶界分布、缺陷等微观结构都会影响金属的腐蚀行为。

金属表面的光洁度、清洁度、涂层等状态也会影响金属的腐蚀行为。

此外,金属的应力状态和变形状态也会影响金属的腐蚀行为。

因此,要全面了解金属腐蚀的原理,需要综合考虑金属的化学性质、电化学性质以及物理性质等多方面因素。

在实际工程中,为了预防和控制金属腐蚀,可以采取多种措施。

例如,可以通过选择合适的金属材料和合金材料、采用防腐涂层和防腐膜、改善金属的工艺处理和热处理、控制金属的应力状态和变形状态等方式来降低金属的腐蚀倾向和腐蚀速率。

此外,还可以通过改善环境条件、控制金属表面的清洁度和涂层状态、采用阴极保护和阳极保护等方式来减少金属的腐蚀损失。

综上所述,金属腐蚀是一种普遍存在的现象,其原理涉及化学腐蚀和电化学腐蚀两种类型。

金属腐蚀原理

金属腐蚀原理

金属腐蚀原理金属腐蚀是指金属在特定条件下与周围环境中的化学物质发生反应导致其损失其原有性能和结构的现象。

金属腐蚀是一种自然现象,不可避免地影响了工业、农业、医疗、建筑和航空等领域的金属制品。

金属腐蚀的原理主要涉及以下几个方面:1. 化学反应金属与环境中的化学物质接触时,必然发生一系列化学反应。

铁与水和氧气反应会形成氧化铁,即铁锈。

Fe + H2O + O2 → Fe2O3·nH2O(铁锈)金属的电化学性质在这个过程中起着关键的作用。

如铜与氯离子反应如下:Cu + 2Cl- → CuCl2 + 2e-金属的原子释放出电子,产生正离子。

在电解质中,这些正离子随后会与负离子反应,导致金属表面的电化学腐蚀。

2. 电化学反应金属的表面被涂上一层绝缘性较好的材料或涂层,可以防止其与外部环境发生化学反应。

当涂层损坏或表面存在缺陷时,金属会变得更易受到腐蚀。

此时,金属会表现出电化学反应,也就是在金属表面形成电池。

金属的电子从阴极(电池的负极)流向阳极(电池的正极),从而导致阳极处的金属被电化学腐蚀。

3. 介质腐蚀金属腐蚀还会受到介质的影响,介质包括气体、液体和固体。

在钢材上,只有当表面附着了盐、油、水或化学物质等附件时,金属才会腐蚀。

在线的腐蚀往往会发生在地下管道和油罐等结构中,因为它们被完全包围在介质中。

在这种情况下,防护系统和钝化剂等方法可能会用来防护金属免受腐蚀的影响。

4. 海洋水腐蚀金属在海洋环境中面临更复杂的腐蚀挑战,因为海洋环境包含盐、水以及许多化学物质。

海水的腐蚀效果比纯水的腐蚀效果更严重,并可以在金属表面形成锈。

氯离子是最具腐蚀性的物质。

在船舶、桥梁和海上平台等重要结构中,通常需要采用特殊的腐蚀防护措施来保护金属免受海洋环境的损害。

金属腐蚀涉及多个因素,包括化学反应、电化学反应、介质腐蚀和海水腐蚀等。

通过了解这些原理,我们可以采取更有效的方法来防止金属腐蚀并延长其寿命。

除了了解金属腐蚀的原理之外,还需要对不同类型的金属腐蚀有深入的了解。

金属的腐蚀原理防腐技术措施和应用场景

金属的腐蚀原理防腐技术措施和应用场景

金属的腐蚀原理防腐技术措施和应用场景金属的腐蚀问题一直是工程领域中需要解决的重要难题之一。

腐蚀会导致金属材料的损耗、性能下降甚至结构破坏,给工业生产和生活带来很大的影响。

为了延长金属材料的使用寿命,科学家和工程师们提出了各种各样的防腐技术和措施。

本文将介绍金属的腐蚀原理、常见的防腐技术措施以及应用场景。

一、金属的腐蚀原理金属的腐蚀是指金属在特定环境下与周围介质发生氧化还原反应,造成金属表面的金属离子溶解掉或形成新的化合物。

常见的腐蚀形式有电化学腐蚀、化学腐蚀和微生物腐蚀等。

1. 电化学腐蚀电化学腐蚀是金属在电解质溶液中发生的一种腐蚀形式。

当金属表面存在不均匀的电位差时,形成电化学腐蚀电池,金属作为阳极处于电化学腐蚀的位置。

阳极反应导致金属的离子溶解,而阴极反应则是还原过程。

电化学腐蚀通常在潮湿环境中发生,如海水、土壤和大气中。

2. 化学腐蚀化学腐蚀是指金属与非电解质介质(如酸、碱等)发生的一种腐蚀形式。

在化学腐蚀中,金属表面与介质中的活性物质直接发生化学反应,形成稳定的化合物。

不同的金属对不同的化学物质有不同的腐蚀敏感性,一些金属可以在特定的酸或碱溶液中很容易发生化学腐蚀。

3. 微生物腐蚀微生物腐蚀是由微生物所引起的金属材料腐蚀。

微生物可以通过产生酸、产生腐蚀性代谢产物、吸附在金属表面等方式导致腐蚀。

微生物腐蚀广泛存在于土壤、水体、沉积物等环境中,对金属设备和管道的腐蚀破坏较为严重。

二、防腐技术措施为了减缓金属材料的腐蚀速度,延长其使用寿命,人们开发了多种防腐技术措施,常见的包括涂层保护、金属表面处理、合金改性以及阳极保护等。

1. 涂层保护涂层保护是通过在金属表面形成一层保护膜来防止金属与环境接触,减少腐蚀的发生。

常见的涂层材料包括涂漆、涂料、电镀等。

这些材料可以形成一层致密的膜,防止氧气、水分等腐蚀性物质渗入金属表面,起到防融化、隔绝和隔离的作用。

2. 金属表面处理金属表面处理是通过改变金属表面的物理或化学性质来提高其抗腐蚀性能。

金属腐蚀原理简介

金属腐蚀原理简介

2.设计选材时,采用某些耐缝隙腐蚀的材料,可以延长设备寿命。例如采用高钼铬镍不
锈钢、哈氏合金等,但由于价格昂贵,未能广泛使用。
电偶腐蚀
异种金属彼此接触或通过其它导体连通,处于同一个介质中,会造成接触部位的局部腐蚀。其中电位较 低的金属溶解速度增大,电位较高的金属溶解速度反而减小,这种腐蚀称为电偶腐蚀,或称接触腐蚀、 双金属腐蚀,异金属腐蚀 。 机理:混合电位理论。 在彼此偶接以后,电位比较低的M2成为阳极,电位比较高的M1为阴极,并有电偶电流从M1流向M2,因 而M2发生阳极极化,M1发生阴极极化。当极化达到稳定时,总阴极极化曲线与总阳极极化曲线的交点 所对应的电位Ec即为偶对的混合电位,对应的腐蚀电流ic即为电偶电流。 此时M2的腐蚀电流从icorr2增加到i’corr2,说明比其单独存在时腐蚀速度增加了,而M1则相反,它的腐蚀 电流从icorr1降到i’corr1,说明偶合后比单独存在时腐蚀速度下降了。 电偶腐蚀电池中,阳极体金属腐蚀速度增加的效应,称为接触腐蚀效应,而阴极体金属腐蚀速度减小的 效应,称为阴极保护效应。两种效应同时存在,互为因果。
小结
金属电化学腐蚀机理可帮助进行极化实验结果的分析,利用各种极化产生的根本原 因来改善材料的性质,在阅读文献时可以从更深层次来分析电化学分析数据产生的 原因,从而针对该材料的性质来进行相应的材料改进。 从一具体的材料成分上来计算分析该腐蚀现象所出现的内在原因。 从理论上对腐蚀情况作出解释。
极化:电极上有电流通过时,电动势偏离了平衡电位。故又分阴极极化和阳极极化。
极化电流:对腐蚀系统通入的外加电流。 腐蚀速度:用阳极电流密度表示,阳极腐蚀金属发生氧化反应。 过电位:描述电极电位偏离的程度,即极化程度。极化程度越高,腐蚀速度速度越小。 活化能:分子从常态转变为容易发生化学反应的活跃状态时所需要的能量。

金属腐蚀原理

金属腐蚀原理

金属腐蚀原理
几乎所有的金属材料都是在一定环境中使用。

在使用的过程中,金属材料受到周围环境的影响作用总会发生一定程度的腐蚀,那么金属腐蚀原理是什么呢?当金属与非电解质相接触时,非电解质中的分子被金属表面所吸附,并分解为原子后与金属原子化合,生成腐蚀产物。

化学腐蚀的基本过程是介质分子在金属表面吸附和分解,金属原子与介质原子化合,反应产物或者挥发掉或者附着在金属表面成膜,属于前者时金属不断被腐蚀,属于后者时金属表面膜不断增厚,使反应速度下降。

二、电化学腐蚀原理
金属材料与电解质溶液接触,通过电极反应产生的腐蚀。

电化学腐蚀反应是一种氧化还原反应。

在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);耐腐蚀志盛威华无
机防腐涂料耐腐蚀效果好,介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。

在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显著差别,进行两种反应的表面位置不断地随机变动。

直接造成金属材料破坏的是阳极反应,故通常
情况下采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 金属腐蚀原理
3.3.1概述
从腐蚀的定义及分类,我们知道腐蚀主要是化学过程,我们可以把腐蚀过程分为两种可能的主要机理-----化学机理和电化学机理.
化学腐蚀是根据化学的多相反应机理,金属表面的原子直接与反应物(如氧﹑水﹑酸)的分子相互作用。

金属的氧化和氧化剂的还原是同时发生的,电子从金属原子直接转移到接受体,而不是在时间或空间上分开独立进行的共轭电化学反应。

金属和不导电的液体(非电解质)或干燥气体相互作用是化学腐蚀的实例。

最主要的化学腐蚀形式是气体腐蚀,也就是金属的氧化过程(与氧的化学反应),或者是金属与活性气态介质(如二氧化硫﹑硫化氢﹑卤素﹑蒸汽和二氧化碳等)在高温下的化学作用。

电化学腐蚀是最常见的腐蚀,金属腐蚀中的绝大部分均属于电化学腐蚀。

如在自然条件下(如海水、土壤、地下水、潮湿大气、酸雨等)对金属的腐蚀通常是电化学腐蚀。

图3-11 铁的电化学腐蚀模型电化学腐蚀机理与纯化学腐蚀机理
的基本区别是:电化学腐蚀时,介质与金属的相互作用被分为两个独立的共轭反应。

阳极过程是金属原子直接转移到溶液中,形成水合金属离子或溶剂化金属离子;另一个共轭的阴极过程是留在金属内
的过量
电子被溶液中的电子接受体或去极化剂接受而发生还原反应。

左图即是铁的电化学腐蚀模型。

(点击放大播放flash)
3.3.2金属腐蚀的电化学概念
1.电极反应及电极
相:由化学性质和物理性质一致的物质组成的、与系统的其他部分之间有界面隔开的集合叫做相。

电极系统:如果系统由两个相组成,一个相是电子导体(叫电子导体相),另一个相是离子导体(叫离子导体相),且通过它们互相接触的界面上有电荷在这两个相之间转移,这个系统就叫电极系统。

将一块金属(比如铜)浸在清除了氧的硫酸铜水溶液中,就构成了一个电极系统。

在两相界面上就会发生下述物质变化:
Cu (M)→Cu 2+(sol)+2e (M)
这个反应就叫电极反应,也就是说在电极系统中伴随着两个非同类导体相(Cu 和CuSO 4溶液)之间的电荷转移而在两相界面上发生的
化学反应,称为电极反应。

这时将Cu 称为铜电极。

同样我们将一块金属放入某种离子导体相中,也会发生类似的电极反应:
Me→Me n++ne
但是大家注意,在电化学中,电极系统和电极反应这两个术语的意义是很明确的,但电极这个概念的含义却并不很肯定,在多数场合下,仅指组成电极系统的电子导体相或电子导体材料,而在少数场合下指的是某一特定的电极系统或相应的电极反应,而不是仅指电子导体材料。

图3-12 氢电极示意图
如一块铂片浸在H
2
气氛下的HCl溶液中,此时构成电极系统的是电子导体相Pt和离子导体相的水溶液,其电极反应是:
1/2H
2
→H+
(sol)
+e
(M)
我们称之为氢电极而不是铂电极。

(如左上图,点击放大)
电极反应的特点是:
<1>所有电极反应都是化学反应,因此所有关于化学反应的一些基本定律(如当量定律,质量作用定律)都适用于电极反应,但它又不同于一般的化学反应;
<2>电极反应必须发生在电极表面上;
<3>两个共轭的氧化还原反应。

2.电极电位
金属作为一个整体是电中性的。

当金属与溶液接触时,由于其具有自发腐蚀的倾向,金属就会变成离子进入溶液,留下相应的电子在金属表面上。

结果使得金属表面带负电。

而与金属表面相接触的溶液带正电。

这就使得在电极材料与溶液之间的相界区不同于电极材料或溶液本身,该相界区通常称为双电层。

由于双电层的建立,使金属与溶液之间产生了电位差。

这种电位差就叫电极电位。

随着时间的推移,进入溶液的离子越来越多,留在表面的电子也越来越多,由于电子对离子的吸引力,金属的离子化倾向愈来愈困难,最后达到平衡。

此时就有一个不变的电位量,称为平衡电位。

当温度为25°C ,金属离子的有效浓度是1克离子/升,(即活度为1
)时的平衡电位叫标准电极电位。

图3-13 电双层结构示意图
电极电位(金属与溶液的电位差)其绝对值即(E 金-E 液)我们
是无法测量出来的.
这个我们从下左图中(点击放大)可以清楚地看到.
图3-14 一个电极系统的绝对 电位无法测量示意图 我们要测如图中的(E cu -E sol ),就要将
电表连接到此电位的两端,为此必须引入金属Me ,所以实际上我们测得的电位是E=(E cu
-E sol )+(E sol -E Me )+(E Me -E cu ),
也就是由Cu/水溶
液和Me/水溶液两个电极系统所组成的原电
池的电动势。

而这个为了测量而使用的电极
系统(Me/水溶液)叫参考电极(对参考电极
的要求是:电极反应应保持平衡,且与该电
极反应有关的各反应物的化学位应保持恒
定)。

因此,确切地说我们测得的电极电位应是待测电极系统与参考电极系统组成的原电池的电动势。

在各种参考电极中,有一个电极最重要,这就是标准氢电极:它是镀了铂黑的Pt浸在压力为1个大气压的H
2
气氛下的H+离子活度为
每升1克离子的溶液中构成的电极系统,其电极反应为:1/2H
2(g)

H+
(sol)+e
(pt)
按化学热力学中规定,该电极的标准电极电位为零。

所以用标准氢电极与待测电极系统组成的原电池的电动势即电极电位就可以认为是等同于待测系统的电极电位绝对值。

如果我们采用别的参考电极(用饱和甘汞电极等),那么所测得的电极电位与用标准氢电极所测得的电极电位之间就有一个差值,这个差值只决定于参考电极系统,而与待测电极系统无关。

测定了这些差值后,用不同的参考电极测出的电极电位值之间可以互相换算。

故我们指某个电极系统的电极电位时一定要指明所用的参考电极类型。

一般来说,我们可以用一个通式来表示一个电极反应:
(-γR )R+(-γ1)S 1+(-γ2)S 2+…… → γo O+γl S l +γm S m +……+Ze
其中:R-----还原体; O-----氧化体
S-----氧化状态没有发生变化的物质
γj -----第j 种物质的化学计量系数
Z-----电极反应中电子e 的化学计量系数
这个电极系统其平衡电极电位与温度和浓度的关系可用能思特(Nernst )方程式表明:(以标准氢电极作为参考电极)
E e =E °+(RT/ZF)∑γj ㏑a j
=E °+(RT/ZF)㏑(∏a j γj )
其中:E e -----平衡电极电位,即该电极在不通电时所具有的
电极电位
E °-----标准电位:E °=(1/ZF)∑γj μj °(μj °-----j 种物质
的标准化学位)
R-----气体常数(8.313焦耳/度)
Z-----参加电极反应的电子数
T-----绝对温度(273+t )o C
F-----法拉第常数(96500库仑)
a-----金属离子活度
如对电极系统:Cu (M) → Cu 2+(sol)+2e (M)
E e =E °+(RT/2F)㏑a Cu 2+
当Cu 2+的活度等于1时,E e =E °。

将标准电极电位按次序排列的表格叫做电化序(如下表为在水溶液中某些电极的标准电极电位(电化序)。

表3-1 水溶液中某些电极的标准电极电位(电化序)。

相关文档
最新文档