静止无功补偿装置

合集下载

静止无功补偿装置(SVC)介绍资料

静止无功补偿装置(SVC)介绍资料
静止无功补偿系统-SVC
南京南瑞继保电气有限公司
主要内容


概述
工作原理 SVC技术发展现状 南瑞继保SVC主要构成 南瑞继保SVC主要性能及技术优势 重点应用 SVC工程应用实例及补偿效果 SVC的型号和主要参数
概述

电网存在的问题

部分输电网可能过载而另一部分却未被充分利用; 最大静态稳定传输功率不足,有待进一步提高; 长距离电力传输过程中的过电压应该被有效抑制; 可能出现的次同步振荡(SSR)必须快速阻尼。 来自一些大功率负荷的谐波电流,应该滤除; 某些弱系统,需要大量动态无功来维持其电压稳定; HVDC换流站,为保证可靠稳定工作,也需要补偿一定的无功。
南瑞继保
中国电科院
鞍山荣信
西电科技
阀组触发系 统 散热器
冷却水管 支路水管 水管接头焊 接 触发单元
SVC发展现状

国内主要SVC制造公司的产品性能比较
厂家 主要指标
触发光缆 晶闸管元件 更换 阀组冷却系 统 阀组结构 全部单进单出 更换方便,单 人可完成 水冷或水风冷 却 立式阀,占地 小 观察维护方便 开环抑制闪变 和闭环提高功 率因数双调节 器 专业控制保护 制造厂家,利 用了高压直流 输电控制保护 平台,可靠性 高。占地更小, 操作通信非常 方便。 有两进八出等 至少要两人完 成更换 水水或水风冷 却 卧式阀 占地面 积大 加权合并的单 调节器 无 至少要两人完 成更换 热管风冷却, 须外配大功率 空调 卧式阀 占地 面积更大 约2 倍水冷阀面积 有两进八出等 至少要两人完 成更换 水水或水风冷 却 卧式阀 占地面 积大 功能单一的单 调节器
热备用和冗 余
可以另外加

解析静止无功补偿器装置未来发展领域

解析静止无功补偿器装置未来发展领域

解析静止无功补偿器装置未来发展领域静止无功补偿器的典型代表是晶闸管投切的电容器(TSC), 和晶闸管控制的电抗器(TCR)。

实际应用中, 将TCR与并联电容器配合使用, 根据投切电容器的元件不同, 可分为TCR与固定电容器配合使用的静止无功补偿器, 和TCR与断路器投切电容器配合使用的补偿器, 以及TCR与TSC配合使用的无功补偿器。

这些组合而成的SVC的重要特性是它能连续调节补偿装置的无功功率, 进行动态补偿, 使补偿点的电压接近维持不变, 但SVC只能补偿系统的电压, 其无功输出与补偿点节点电压的平方成正比, 当电压降低时其补偿作用会减弱。

SVC的主要作用是电压控制, 采用适当的控制方式后, SVC也可以有阻尼系统功率振荡和增加稳定性等作用。

目前, SVC技术已经比较成熟, 国外从60年代就已经开始应用SVC, 七十年代末开始用于输电系统的电压控制, 经过几十年的发展, 不仅将静止无功补偿器, 用于输电系统的电压控制, 也用于配电系统的补偿和控制, 还可用于电力终端用户的无功补偿一电压控制。

未来SVC装置各领域的需求如下:①电网建设领域目前电网侧SVC主要应用于35kV以上线路, 在不同电压等级下, 电网安装无功补偿装置与变压器的容量比值呈现出电压等级越高, 比值越大的关系, 安装40%左右变压器需要装配SVC且SVC调节容量为变压器容量的15%估算, 电网侧每年所需SVC的市场容量约为38亿元。

目前电网应用比例要明显小于企业用户, 伴随对电网建设投资的不断加大, 智能电网的技术要求不断提高, 这也意味着电网领域中对SVC装置的需求存在巨大增量空间。

上图中根据第二阶段电网整体投资推算得出SVC市场规模, 并平均分配到未来几年, 从国家电网的规划结合当前实际情况来看, 2013年之后或将是市场需求大规模爆发的集中时段。

②风电建设领域按照国家能源局所提出的风电并网指标, 将在2015年之前实现9000万千瓦风电机组上网, 而目前我国风电装机容量约为2000万千瓦, 这意味着未来5年中, 每年平均要实现1400万千瓦的风电机组实现上网, 目前风电所需无功补偿的容量约占装机容量的20%-30%, 以平均为25%计算, 每年风电机组所需的SVC装置大概在350万千乏左右。

静止无功补偿器((TCR+FC)SVC)

静止无功补偿器((TCR+FC)SVC)

SVC-技术参数
项目 电网电压(kV) TCR 额定功率(Mvar) 晶闸管阀组结构 晶闸管冷却方式
晶闸管型式
触发方式 控制系统 控制方式 无功调节范围 调节方式 调节系统响应时间 噪声水平 辅助电网供电电压 使用期限
规格
6
10 27.5
35 66
6-300
组架开放式
热管自冷、水冷却
电触发晶闸管(ETT)或 光控晶闸管(LTT)
--------------------------------------------------------------------------◆ 轧机
轧机及其他工业对称负载在工作中所产生的无功冲击会对电网造成如下影响: ■引起电网电压降及电压波动,严重时使电气设备不能正常工作,降低了生产效率 ■使功率因数降低 ■负载的传动装置中会产生有害高次谐波,主要是以 5、7、11、13 次为代表的奇次谐波及旁频,会使电网 电压产生严重畸变
◆ 先进的全数字控制系统
系统响应时间小于 10 ms 分相调节 自诊断 远程监控 ---------------------------------------------------------------------------
◆ 国内唯一的高压全载检测试验成套技术
72 小时高压全载动态连续运行成套试验检测技术 SCR 阀组成套试验技术 满足 IEC61954 要求
◆ 高可靠的 SVC 可控硅阀技术
直挂于 6 KV,10KV,35KV 系统 标准组架式结构 SCR 合理冗余设计 高效热管冷却和全密闭纯水冷却 光电触发和光触发 ---------------------------------------------------------------------------

SVC静止无功补偿原理解析(二)

SVC静止无功补偿原理解析(二)

SVC 静止无功补偿原理解析(二)一、静止无功补偿简述静止无功补偿器(SVC )于20 世纪70 年代兴起,现在已经发展成为很成熟的FACTS 装置,其被广泛应用于现代电力系统的负荷补偿和输电线路补偿(电压和无功补偿),在大功率电网中,SVC 被用于电压控制或用于获得其它效益,如提高系统的阻尼和稳定性等;这类装置的典型代表有:晶闸管控制电抗器(TCR )和晶闸管投切电容器(TSC )。

静止同步无功补偿器是目前技术最为先进的无功补偿装置。

它不再采用大容量的电容器,电感器来产生所需无功功率,而是通过电力电子器件的高频开关实现对无功补偿技术质的飞跃,特别适用于中高压电力系统中的动态无功补偿静止无功补偿器是一种没有旋转部件,快速、平滑可控的动态无功功率补偿装置。

它是将可控的电抗器和电力电容器(固定或分组投切)并联使用。

电容器可发出无功功率(容性的),可控电抗器可吸收无功功率(感性的)。

通过对电抗器进行调节,可以使整个装置平滑地从发出无功功率改变到吸收无功功率(或反向进行),并且响应快速。

二、SVC的组成部分1.固定电容器和固定电抗器组成的一个无功补偿加滤波支路,该部分适当选择电抗器和电容器容量,可滤除电网谐波,并补偿容性无功,将电网补偿到容性状态。

2•固定电抗器3.可控硅电子开关可控硅用来调节电抗器导通角,改变感性无功输出来抵补偿滤波支路容性无功,并保持在感性较高功率因数。

三、(SVC)静止无功补偿装置的用途静止无功补偿器(SVC)是一种由电容器和各种类型的电抗器组成的无功补偿装置,用电子开关来实现无功功率的快速平滑控制。

SVC的应用可以分为2个方面:系统补偿和负荷补偿。

当作为系统补偿时,他的作用主要有:维持输电线路上节点的电压,减小线路上因为功率流动变化造成的电压波动,并提高输电线路有功功率的传输容量和电网的静态稳定性;在网络故障情况下,快速稳定电压,维持线路输电能力,提高电网的暂态稳定性;增加系统的阻尼,抑制电网的功率振荡;在输电线路末端进行无功功率补偿和电压支持,提高电压稳定性等等。

静止无功补偿器

静止无功补偿器

静止无功补偿器
静止无功补偿器(Static Var Compensator,SVC)是一
种电力系统中用来补偿无功功率的装置。

它通过改变电流
的相位和大小来调整电力系统中的无功功率,以维持系统
的电压稳定。

静止无功补偿器主要由功率电子器件(比如可控硅和可控
开关等)、电力电容器以及控制系统组成。

当系统的无功
功率不平衡或者电压波动时,静止无功补偿器能够通过控
制电容器的电压和电流来实现电力系统的无功功率的调节。

静止无功补偿器在电力系统中的应用可以提高电力系统的
稳定性和可靠性,并且可以减少系统的无功损耗和电压波动。

它可以用于电力变电站、输电线路、大型工业用电系
统等场合。

静止无功补偿器是电力系统中的重要设备,它可以有效地改善电力系统的无功功率问题,提高电力系统的运行效率和稳定性。

电力电子技术在静止无功补偿装置中的应用

电力电子技术在静止无功补偿装置中的应用

电力电子技术在静止无功补偿装置中的应用一、静止无功补偿1.电力系统无功补偿在电力系统中,电压是衡量电能质量的一个重要指标。

为了满足用电设备对使用电压的要求,必须使各输配电的母线电压稳定在一定的范围内,电压控制的主要方法之一就是对电力系统的无功功率进行控制。

理想情况下,应尽量使功率因数保持为“1”,这样就能使线路中电流只存在有功分量,从而可完全消除无功电流分量所引起的线路损耗,使电能得到充分利用,为了达到此目的,电力系统通常采用无功补偿设备。

2.静止无功补偿工业配电系统中,多采用电容器组实现功率补偿,但这样投切式补偿电容的方法只能进行有级调节,并且受机械开关动作条件的限制,响应速度慢。

静止无功补偿器(SVC)是相对于“旋转”式同步调相机和同步电动机而言,采用“静止不动”的电力电子器件和储能元件构成的无功补偿装置。

这种无功补偿装置能快速、平滑无级地调节容性或感性无功功率,从而实现动态补偿;并且它的体积比传统的补偿装置小,现场噪声也小。

二、静止无功补偿器的工作原理静止无功补偿装置有两种类型:晶闸管可控电抗器(TCR)和晶闸管投切电容器(TSC)。

1.晶闸管可控电抗器TCR单相原理图如下:α电抗器通过反并联晶闸管构成双向开关与交流电源相连,假设电抗器呈纯感性,则功率因数角φ=90。

,所以在0。

≤α≤90。

范围内,不能通过改变α来改变电感中电流从而改变TCR吸收的感性无功功率。

在90。

<α<180。

时,随着α德增大,电感电流基波分量相应减小,电抗器等效电感值随之可控,继而TCR吸收的感性无功功率可以平滑调节。

整个TCR 就像一个连续可调的电感,可以快速、平滑调节其吸收的感性无功功率。

另外,电力系统中,有时需要感性无功功率,有时需要容性无功功率,所以在实际应用中,可以在TCR两端并联固定电容器组。

2.晶闸管投切电容器TCR投切时的原理图如下:TSC由两个反并联晶闸管与电容器串联而成。

TSC实际上是断续可调地吸收容性无功功率。

静止无功功率补偿器

静止无功功率补偿器
①晶闸管控制电抗器(Thyristor Controlled Reactor, TCR),用可 控硅阀控制线性电抗器实现快速连 续的无功功率调节,它具有反应时 间快(5~20ms),运行可靠、无级 补偿、分相调节、能平衡有功、适 用范围广、价格便宜等优点。TCR 装置还能实现分相控制,有较好的 抑制不对称负荷的能力,因而实际 应用最广,使用例子最多。
(a) TCR
(b) TSC
②晶闸管投切电容器(Thyristor Switched Capacitor, TSC),分相调 节、直接补偿、装置本身不产生谐波, 损耗小。在运行时,根据所需补偿电 流的大小,决定投入电容的组数。由 于电容是分组投切的,所以会在电网 中产生冲击电流。为了实现无功电流 尽可能的平滑调节,一是增加电容的 组数,组数越多,级差就越小,但这 又会增加运行成本;二是把握电容器 的投切时间,最佳投切时间是晶闸管 两端电压为零时,一般TSC都是采取过 零投切。
1.静止无功补偿器的简介 2.静止无功补偿器的结构 3.静止无功补偿器的基本应用
目 5.结语 录
4.静止无功补偿器的发展
静止无功补偿器简介
• 静止无功补偿器(Static Var Compensator),是将电容器(及电抗器 支路)与输电线路并接,通常接于开关站或变电所母线,通过晶闸管 控制的无功功率动态补偿,调节母线电压和线路无功功率在所需水平 上,从而提高电力系统稳定性,扩大线路输送容量。 • 静止同步无功补偿器是目前技术最为先进的无功补偿装置。它不再采 用大容量的电容器,电感器来产生所需无功功率,而是通过电力电子 器件的高频开关实现对无功补偿技术质的飞跃,特别适用于中高压电 力系统中的动态无功补偿。
④晶闸管控制高阻抗变压器 (Thyristor Controlled Transformer, TCT),优点与TCR 差不多,但高阻抗变压器制造复 杂,谐波分量也略大一些,由于 有油,要求一级防火,只宜于布 置在一层平面或户外,容量在 30MVar以上时价格较贵,而不能 得到广泛采用。

《静止无功补偿器》课件

《静止无功补偿器》课件
《静止无功补偿器》PPT课件
目录 CONTENTS
• 引言 • 静止无功补偿器的基本原理 • 静止无功补偿器的应用 • 静止无功补偿器的技术发展 • 静止无功补偿器的实际案例分析
01
引言
介绍静止无功补偿器的概念
静止无功补偿器(SVC):是一种用 于动态无功补偿的电力电子装置,通 过控制电力电子开关的通断,实现对 无功功率的快速补偿。
技术发展面临的挑战和解决方案
技术发展面临的挑战主要包括设备容量和电压等级的提高、损耗和散热问题以及设备可靠性的提高等 。
为了解决这些挑战,需要加强基础研究和技术创新,提高设备的核心性能和可靠性。同时,还需要加 强产学研合作和技术交流,推动静止无功补偿器的产业化和市场化进程。此外,制定相关标准和规范 也是推动技术发展的重要保障。
主要由电容器、电抗器和晶闸管控制 电抗器等元件组成,通过调节晶闸管 的触发角,可以改变电抗器的感性无 功功率,从而实现无功补偿。
静止无功补偿器的重要性
提高电网的稳定性
通过快速响应无功功率的变化, 静止无功补偿器能够有效地抑制 电压波动和闪变,提高电网的稳 定性。
改善电能质量
通过补偿负荷的无功需求,静止 无功补偿器可以降低线路损耗, 改善电压分布,提高电能质量。
提高输电效率
在长距离输电线路中,静止无功 补偿器可以控制线路的充电电容 ,减少线路损耗,提高输电效率 。
课程目标和内容概述
掌握静止无功补偿器的原 理和结构
了解静止无功补偿器的应 用场景和优势
学习静止无功补偿器的控 制策略和算法
掌握静止无功补偿器的安 装、调试和维护方法
02
静止无功补偿器的基本原理
在工业领域的应用
01
电动机的无功补偿
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
静止无功补偿装置(SVC)在电网中的应用
赣州供电公司黄东南
摘要:合理的无功补偿对输配电系统非常重要,SVC装置在江西电网中的首次应用表明SVC 在调相、调压、提高输电容量、改善静态和动态稳定性、抑制振荡等方面起到良好作用,在电力及工业企业中SVC装置可以改善电能质量(谐波、电压波动和闪变、三相不平衡),提高产品质量和数量,有利于节能增效。

为进一步推广装置应用,提高其运行管理水平,应加快SVC装置的设计、制造、试验和检验诸方面系列的行业标准制订。

关键词:电力系统电能质量静止无功补偿装置(SVC) TCR+FC 标准
国民经济各个部门大量使用了各种电力整流、换流、交流调速、轧机、电弧炉、电力机车等非线性或具有时变特性负荷的设备,致使电力系统中的暂态和冲击特性无功负荷增加,严重影响电网电压质量,也对用电设备的安全、经济运行带来了严重危害。

为了稳定电压、改善功率因数以降低能耗,必须对具有时变冲击性的无功负荷进行动态无功补偿。

采用无触点晶闸管开关的SVC装置,能自动跟踪电网无功的变化波动进行动态补偿,实现无功功率的连续调节。

具有响应速度快、工作可靠的特点,是电网中提高功率因数和维持电压稳定的理想无功补偿装置。

针对赣州电网220kV金堂变电站存在的电能质量问题:①220kV电源输电线路偏长,且受丰、枯水期小水电及负荷波动影响,电源电压波动大;②供电负荷中有220kV直供的鼎龙钢厂及定南、全南县的几个电弧炉冶炼金属企业,其负荷功率因数很低,造成电能的极大损耗;而负荷的冲击极大,引起电网电压波动和闪变,加以产生的高次谐波造成电网的严重污染,致使电网电能质量下降;③考虑到2008年京九铁路将进行电气化改造,电气化铁路的供电又将增加冲击性的非线性负荷使电网中不可避免增加降低电能质量的不稳定性。

为此在220kV 金堂变电站采用了SVC装置(TCR+FC型),这也是SVC装置在江西电网中的首次应用,同时也是国内第一座移动式无功补偿装置。

该装置于2007年12月30日顺利投入运行,从各项测试数据来看,SVC装置对改善母线电压总谐波畸变,以及调相、调压结果基本上能达到仿真计算水平,同时对抑制振荡,提高电网输电功率及输电能力有较大帮助。

为此作以下的初步总结分析。

1 SVC装置的工作原理及构成1.1 工作原理
SVC(static var compensator)全称静止式无功补偿装置,早期又称为SVS,目前国内市场上的SVC无功功率补偿装置主要是接触器或断路器投切电容器组(如PFC、HVC)、晶闸管控制电抗器(TCR加装消谐滤波装置组成TCR+FC)和晶闸管投切电容器(TSC)装置。

TCR型SVC动态无功功率补偿装置通过控制TCR支路中串联的功率可控硅的触发相角,来改变流经电抗器支路的电流,从而得到不同的无功功率。

装置由光电触发控制系统、阀控系统、主电抗器及保护元件等单元组成。

晶闸管触发角α在 90°~180°范围内可调节,即导通角β<180°。

当α=90°时,补偿装置吸收的无功功率最大(称为短路功率);当α=180°达到其在调节范围内的最大值时,吸收的无功功率最小(称为空载功率)。

通过调节触发角α的大小,即连续改变主电抗器的电流量,动态调节补偿的无功功率。

TCR型SVC动态无功功率补偿装置并联固定电容器组FC构成晶闸管控制电抗器加固定滤波电容器组(TCR+FC)型式,装置总的输出无功功率为 TCR 与FC无功功率抵消后的净无功功率,因而可以将补偿装置的总体无功电流偏置到可吸收容性无功的范围置内。

TCR 采用相控原理,在系统中将除产生特征谐波及非特征的奇次、偶次及三的倍数次谐波,并联固定电容器组FC则兼作滤波器,吸收 TCR 产生的谐波电流和系统其它谐波电流。

SVC动态补偿原理
见图1。

图1 SVC动态补偿原理图1.2 构成技术特征。

相关文档
最新文档