高中数学竞赛基本知识集锦
数学竞赛知识点总结高中

数学竞赛知识点总结高中一、函数的基本概念1.1 函数的定义函数是一种对应关系,将定义域中的元素映射到值域中的元素,通常用f(x)表示函数。
1.2 常见函数常见函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
1.3 函数的性质函数的奇偶性、周期性等性质对于解题非常重要。
1.4 函数的图像函数的图像对于理解函数的性质和解题都具有重要意义。
二、不等式2.1 不等式的表示不等式通常表示为a>b、a≥b、a<b、a≤b等形式。
2.2 不等式的解法解不等式通常通过分析不等式的性质、代数方法和图像法进行。
2.3 不等式的应用不等式在优化问题、绝对值不等式、三角不等式等问题中常常出现。
三、集合与映射3.1 集合的基本概念集合是由各种对象的总体,通常用大写字母表示集合。
3.2 集合的运算包括交集、并集、差集等。
3.3 映射的概念映射是一种元素之间的对应关系,通常用f:A→B表示从集合A到集合B的映射。
三、多项式和方程4.1 多项式的定义多项式是由多个项的代数式,通常表示为P(x)。
4.2 多项式的运算多项式包括加减乘除等基本运算。
4.3 多项式的因式分解因式分解是将多项式表示为若干个不可约的因式乘积。
4.4 方程与不等式方程和不等式是基于多项式的等式与不等式。
四、数列与数学归纳法5.1 等差数列与等比数列等差数列的通项公式为an=a1+(n-1)d,等比数列的通项公式为an=a1*q^(n-1)。
5.2 数学归纳法的基本思想数学归纳法用于证明递推关系的性质。
五、排列与组合6.1 排列的基本概念排列是从n个元素中取出m个元素进行排列的方式。
6.2 组合的基本概念组合是从n个元素中取出m个元素进行组合的方式。
6.3 排列组合的性质排列组合问题通常包括排列数、组合数、二项式定理等内容。
六、数论7.1 整数的性质奇数、偶数、素数、合数等是数论中的基本概念。
7.2 最大公约数与最小公倍数最大公约数和最小公倍数是数论中的重要概念。
高中数学竞赛知识点整理

高中数学竞赛知识点整理
一、代数知识
1.一元二次方程:
(1)一元二次方程的解法:
a、利用求根公式:解一元二次方程的根:
若ax2 + bx + c = 0,则x1 = (-b + √(b2 - 4ac))/2a,x2 = (-b -
√(b2 - 4ac))/2a
b、利用因式分解法:
将一元二次方程化为两个一元一次方程,求解。
2.一元一次方程:
(1)一元一次方程的解法:
a、利用移项法:把一元一次方程化为一元一次不等式,求解。
b、利用乘除法:将一元一次方程的系数化简,求解。
3.二元一次方程组:
(1)二元一次方程组的解法:
a、利用消元法:把二元一次方程组化为一元一次方程组,求解。
b、利用代入法:将一个方程的解代入另一个方程,求解。
4.不等式:
(1)一元一次不等式的解法:
a、利用移项法:将一元一次不等式化为一元一次方程,求解。
b、利用乘除法:将一元一次不等式的系数化简,求解。
二、几何知识
1.直线与圆:
(1)直线与圆的位置关系:
a、直线与圆有共点:直线与圆相切;
b、直线与圆无共点:直线与圆相交;
c、直线与圆有共线:直线与圆相离;
2.三角形:
(1)三角形的性质:
a、直角三角形:有两条直角边;
b、等腰三角形:有两条等长边;
c、等边三角形:三条边。
高中数学竞赛知识点整理

不等式块1.排序不等式(又称排序原理) 设有两个有序数组n a a a ≤≤≤ 21及.21n b b b ≤≤≤ 则n n b a b a b a +++ 2211(同序和)jn n j j b a b a b a +++≥ 2211(乱序和)1121b a b a b a n n n +++≥- (逆序和)其中n j j j ,,,21 是1,2,…,n 的任一排列.当且仅当n a a a === 21或n b b b === 21时等号(对任一排列n j j j ,,,21 )成立.2.应用排序不等式可证明“平均不等式”:设有n 个正数n a a a ,,,21 的算术平均数和几何平均数分别是n n n nn a a a G na a a A 2121=+++=和此外,还有调和平均数(在光学及电路分析中要用到nn a a a nH 11121+++=,和平方平均(在统计学及误差分析中用到)na a a Q nn 22221+++=这四个平均值有以下关系n n n n Q A G H ≤≤≤. ○* 3.应用算术平均数——几何平均数不等式,可用来证明下述重要不等式. 柯西(Cavchy )不等式:设1a 、2a 、3a ,…,n a 是任意实数,则).)(()(222212222122211n n n n b b b a a a b a b a b a ++++++≤+++等号当且仅当k ka b i i (=为常数,),,2,1n i =时成立. 4.利用排序不等式还可证明下述重要不等式.切比雪夫不等式:若n a a a ≤≤≤ 21,n b b b ≤≤≤ 21 ,则.21212211nb b b n a a a n b a b a b a nn n n +++⋅+++≥+++例题讲解1.,0,,>c b a 求证:.6)()()(abc a c ca c b bc b a ab ≥+++++2.0,,>c b a ,求证:.)(3c b a cb a abc c b a ++≥3.:.222,,,333222222abc ca b bc a b a c a c b c b a c b a R c b a ++≤+++++≤++∈+求证4.设*21,,,N a a a n ∈ ,且各不相同,求证:.32131211223221na a a a n n ++++≤++++ .5.利用基本不等式证明.222ca bc ab c b a ++≥++6.已知,0,,1≥=+b a b a 求证:.8144≥+b a7.利用排序不等式证明n n A G ≤8.证明:对于任意正整数R ,有.)111()11(1+++<+n n n n9.n 为正整数,证明:.)1(131211]1)1[(111----<++++<-+n nn n n nn n例题答案:1. 证明:abc a c ca c b bc b a ab 6)()()(-+++++)()()()2()2()2(222222222≥-+-+-=-++-++-+=b a c a c b c b a ab b a c ac c a b bc c b a.6)()()(a b c a c ca c b bc b a ab ≥+++++∴评述:(1)本题所证不等式为对称式(任意互换两个字母,不等式不变),在因式分解或配方时,往往采用轮换技巧.再如证明ca bc ab c b a ++≥++222时,可将22b a +)(ca bc ab ++-配方为])()()[(21222a c c b b a -+-+-,亦可利用,222ab b a ≥+ca a c bc c b 2,22222≥+≥+,3式相加证明.(2)本题亦可连用两次基本不等式获证.2.分析:显然不等式两边为正,且是指数式,故尝试用商较法.不等式关于c b a ,,对称,不妨+∈---≥≥R c a c b b a c b a ,,,则,且cb b a ,, ca都大于等于1..1)()()()(3333333333232323≥⋅⋅=⋅⋅⋅⋅⋅==---------------++c a c b b a b c a c c b a b c a b a b a c c a b c b a c b a cb a ca cb b a ccbbaacbaabc c b a评述:(1)证明对称不等式时,不妨假定n 个字母的大小顺序,可方便解题. (2)本题可作如下推广:若≥=>na naai a a a n i a 2121),,,2,1(0则.)(2121na a a n na a a +++(3)本题还可用其他方法得证。
高二数学竞赛题知识点

高二数学竞赛题知识点在高二数学竞赛中,学生们通常会遇到各种各样的数学问题和题目。
为了取得好成绩,竞赛选手需要了解并掌握一些重要的数学知识点。
本文将介绍一些高二数学竞赛中常见的知识点和相应的解题技巧。
一、函数与方程1. 一元二次方程一元二次方程是高中数学中的重要内容。
解一元二次方程可以使用求根公式和配方法。
在竞赛中,对于一元二次方程的解法要熟练掌握,并注意考虑方程是否有唯一解或无解的情况。
2. 指数与对数函数指数与对数函数是高中数学中的另一重要内容。
学生们需要了解指数与对数的基本性质,掌握指数与对数函数的图像和性质,以及指数方程与对数方程的解法。
二、平面几何1. 相似三角形相似三角形是平面几何中的重要概念。
学生们需要知道相似三角形的基本定义和性质,能够判断两个三角形是否相似,并应用相似三角形的性质解决相关问题。
2. 圆的性质圆是平面几何中的基本图形,学生们需要了解圆的圆心、半径、直径等基本概念,以及圆的切线、弦、弧、扇形等性质。
在竞赛中,对于圆的性质的掌握十分重要。
三、立体几何1. 空间几何体的体积、表面积与相关性质学生们需要掌握立方体、长方体、圆柱体、圆锥体、球体等常见几何体的体积和表面积的计算方法,了解它们的相关性质,并能够应用这些知识解题。
2. 空间向量空间向量是高中数学中的重要概念,学生们需要掌握向量的加法、减法和数量积的计算方法,了解向量的共线与垂直关系等基本性质。
在竞赛中,向量的应用常常涉及平面向量和空间向量的结合。
四、概率与统计1. 排列与组合排列与组合是概率与统计中的基本内容,学生们需要熟练掌握排列与组合的计算方法,并能够应用它们解决相关问题。
2. 概率的计算概率是概率与统计的核心内容,学生们需要掌握概率的基本定义、性质和计算方法,能够利用概率解决实际问题,例如计算事件的概率、条件概率和独立事件等。
总结:高二数学竞赛题目涉及的知识点广泛且深入,要取得好成绩,学生们需要充分准备。
本文介绍了一些高二数学竞赛题常见的知识点和解题技巧,包括函数与方程、平面几何、立体几何以及概率与统计。
高中数学竞赛大纲

高中数学竞赛大纲【高中数学竞赛应该掌握的内容和知识点(共17大点,101小点,244小小点)】1.**(set)5.1.3不动点法,迭代法1.1**的阶,**之间的关系。
5.1.4数学归纳法,递归法1.2**的分划1.3子集,子集族1.4容斥原理6(不等式(inequality)6.1解不等式2.函数(function)6.2重要不等式2.1函数的定义域、值域6.2.1均值不等式2.2函数的性质6.2.2柯西不等式2.2.1单调性6.2.3排序不等式2.2.2奇偶性6.2.4契比雪夫不等式2.2.3周期性6.2.5赫尔德不等式2.2.4凹凸性6.2.6权方和不等式2.2.5连续性6.2.7幕平均不等式2.2.6可导性6.2.8琴生不等式2.2.7有界性6.2.9Schur不等式2.2.8收敛性6.2.10嵌入不等式2.3初等函数6.2.11卡尔松不等式2.3.1一次、二次、三次函数6.3证明不等式的常用方法2.3.2幕函数6.3.1利用重要不等式2.3.3双勾函数6.3.2调整法2.3.4指数、对数函数6.3.3归纳法2.4函数的迭代6.3.4切线法2.5函数方程6.3.5展开法6.3.6局部法3.三角函数(trigonometricfunction)6.3.7反证法3.1三角函数图像与性质6.3.8其他3.2三角函数运算3.3三角恒等式、不等式、最值7.解析几何(analyticgeometry)3.4正弦、余弦定理7.1直线与二次曲线方程3.5反三角函数7.2直线与二次曲线性质3.64.向量(vector)4.1向量的运算8(立体几何(solidgeometry)4.2向量的坐标表示,数量积8.1空间中元素位置关系8.2空间中距离和角的计算5.数列(sequence)8.3棱柱,棱锥,四面体性质5.1数列通项公式求解8.4体积,表面积5.1.1换元法8.5球,球面5.1.2特征根法8.6三面角8.7空间向量10.5偏导数9.排歹U,组合,概率(permutations,11.复数(complexnumbers)combinatorics,probability)11.1复数概念及基本运算9.1排列组合的基本公式11.2复数的几个形式9.1.1加法、乘法原理11.2.1复数的代数形式9.1.2无重复的排列组合11.2.2复数的三角形式9.1.3可重复的排列组合11.2.3复数的指数形式9.1.4圆排列、项链排列11.2.4复数的几何形式9.1.5一类不定方程非负整数解的个数11.3复数的几何意义,复平面9.1.6错位排列数11.4复数与三角,复数与方程9.1.7Fibonacci数11.5单位根及应用9.1.8Catalan数9.2计数方法12.平面几何(planegeometry)9.2.1映射法12.1几个重要的平面几何定理9.2.2容斥原理12.1.1梅勒劳斯定理9.2.3递推法12.1.2塞瓦定理9.2.4折线法12.1.3托勒密定理9.2.5算两次法12.1.4西姆松定理9.2.6母函数法12.1.5斯特瓦尔特定理9.3证明组合恒等式的方法12.1.6张角定理9.3.1Abel法12.1.7欧拉定理9.3.2算子方法12.1.8九点圆定理9.3.3组合模型法12.2圆幕,根轴9.3.4归纳与递推方法12.3三角形的巧合点9.3.5母函数法12.3.1内心9.3.6组合互逆公式12.3.2外心12.3.3重心9.4二项式定理12.3.6费马点9.5.2互逆事件概率12.4调和点列9.5.3条件概率9.5.4全概率公式,贝叶斯公式12.5圆内接调和四边形9.5.5现代概率,几何概率12.6几何变换12.6.1平移变换9.6数学期望12.6.2旋转变换10.极限,导数(lim让s,derivatives)12.6.3位似变换10.1极限定义,求法12.6.4对称变换(反射变换)10.2导数定义,求法12.6.5反演变换10.3导数的应用12.6.6配极变换10.3.1判断单调性12.7几何不等式12.8平面几何常用方法10.3.2求最值12.8.1纯几何方法10.3.3判断凹凸性10.4洛比达法则12.8.2三角法12.8.3解析法15.13.1.3无穷递降法12.8.4复数法15.13.1.4反证法12.8.5向量法15.13.1.5不等式估计法12.8.6面积法15.13.1.6配方法,因式分解法15.13.2重要不定方程13.多项式(polynomials)15.13.2.1一次不定方程(组)15.13.2.2勾股方程13.1多项式恒等定理13.2多项式的根及应用15.13.2.3Pell方程13.2.1韦达定理15.14p进制进位制,p进制表示16.组合问题(combinatorics)13.2.2虚根成对原理13.3多项式的整除,互质16.1组合计数问题(参见9.1,9.2)13.4拉格朗日插值多项式16.2组合恒等式,不等式(参见9.3)13.7单位根16.5操作变换,对策问题13.8不可约多项式,最简多项式16.6组合几何16.6.1凸包14.数学归纳法(mathematicalinduction)16.6.2覆盖14.1第一数学归纳法14.2第二数学归纳法16.6.3分割16.6.4整点14.3螺旋归纳法16.7图论14.4跳跃归纳法14.5反向归纳法16.7.1图的定义,性质14.6最小数原理16.7.2简单图,连通图16.7.3完全图,树16.7.4二部图,k部图7.初等数论(elementarynumbertheory)15.1整数,整除16.7.5托兰定理15.2同余16.7.6染色与拉姆塞问题16.7.7欧拉与哈密顿问题15.3素数,合数15.4算术基本定理16.7.8有向图,竞赛图15.5费马小定理,欧拉定理16.8组合方法16.8.1映射法,对应法,枚举法15.6拉格朗日定理,威尔逊定理16.8.2算两次法15.7裴蜀定理15.8平方数16.8.3递推法15.9中国剩余定理16.8.4抽屉原理16.8.5极端原理15.10高斯函数16.8.6容斥原理15.11指数,阶,原根15.12二次剩余理论16.8.7平均值原理15.12.1二次剩余定理及性质16.8.8介值原理15.12.2Legendre符号16.8.9母函数法15.12.3Gauss二次互反律16.8.13反证法15.13.1.1同余法15.13.1.2构造法16.8.14构造法16.8.15数学归纳法17.1微积分,泰勒展开17.2矩阵,行列式16.8.16调整法17.3空间解析几何16.8.17最小数原理16.8.18组合计数法17.4连分数17.5级数,p级数,调和级数,幕级数17.其他(others)(了解即可,不作要求)17.6其他1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。
数学竞赛知识点总结

数学竞赛知识点总结一、数论1. 质数:质数是指只能被1和自身整除的自然数。
质数有许多特殊的性质,如朗格朗日四平方和定理、费马小定理等。
2. 素数:素数是指只有1和自身两个因数的自然数。
素数具有很多独特的性质,如欧拉公式、狄利克雷定理等。
3. 因数分解:对一个自然数进行因数分解可以得到其所有的素因数,进而可以得到其正因数的性质。
因数分解在解决二元一次方程、求最大公约数、求最小公倍数等问题中有很大的应用。
4. 同余:同余是指两个数的差能够被一个自然数整除。
同余理论是数论中重要的一部分,具有很多重要的性质和推论。
5. 约数和倍数:对一个自然数进行约数的求解可以得到其所有的因数,对一个自然数进行倍数的求解可以得到其所有的倍数。
约数和倍数在编程、数学证明等方面具有广泛的应用。
6. 最大公约数和最小公倍数:最大公约数是指两个数的公因数中最大的一个,最小公倍数是指两个数的公倍数中最小的一个。
最大公约数和最小公倍数在化简分数、约分、求解方程等方面有很多应用。
7. 质因数:一个合数可以通过质因数分解得到其所有的质因数。
质因数具有很多独特的性质,如欧拉函数、莫比乌斯函数等。
8. 模运算:模运算是指把数除以一个正整数后所得的余数。
模运算在密码学、编程等领域有很多应用。
9. 循环小数和无理数:循环小数是一类特殊的无限小数,无理数是指不能写成两个整数的比的数。
循环小数和无理数在解决方程、化简分数等方面有一定的应用。
10. 素数定理和哥德巴赫猜想:素数定理是指素数的分布规律,哥德巴赫猜想是指任何一个大于2的偶数可以被写成两个素数的和。
二、代数1. 多项式:多项式是由若干个单项式相加或相乘而成。
多项式在解方程、插值、二次函数等方面有广泛的应用。
2. 代数方程:代数方程是指含有未知数的等式。
代数方程的求解在计算机、数学证明等领域有很多应用。
3. 进制转换:进制转换是指将一个数从一种进制转换为另一种进制。
进制转换在计算机、密码学等领域有广泛的应用。
高二数学竞赛考的知识点

高二数学竞赛考的知识点高二数学竞赛是一项对学生数学能力的全面考核,并且考察的知识点涵盖了高一和高二的数学课程内容。
在这篇文章中,我们将详细介绍高二数学竞赛考试中涉及的各个知识点。
1.函数与方程函数与方程是高中数学的基础,也是竞赛中经常考察的内容。
其中包括线性函数、二次函数、指数函数、对数函数以及三角函数等。
考生需要理解各种函数的性质、图像特点,以及函数之间的关系。
此外,求解各种方程及不等式也是必备的技能。
2.数列与数列极限数列是一种特殊的函数,是将自然数映射到实数的一种方式。
高二数学竞赛中经常涉及到数列的性质、递推公式、通项公式等。
同时,数列极限也是重点考察的内容,包括数列的极限存在性、极限计算、极限的性质等。
3.概率与统计概率与统计是数学中的应用部分,也是高二数学竞赛中的重要内容。
其中包括事件的概率、条件概率、随机变量与概率分布以及统计图表的分析等。
考生需要掌握概率计算的方法和技巧,同时能够灵活运用统计学的基本理论进行问题求解。
4.立体几何立体几何是高中数学中的一大难点,也是高二数学竞赛中的考点之一。
重点包括立体图形的投影、表面积和体积的计算。
此外,还需要理解立体几何中的一些定理和推理思路,并能够应用到复杂的立体几何问题中。
5.平面向量平面向量是高二数学竞赛中的重要知识点,也是数学与物理结合的桥梁。
平面向量包括向量的性质、向量的加法与减法、数量积和向量积等。
考生需要掌握向量的运算方法和性质,并能够运用向量进行几何证明和问题求解。
6.三角函数与三角恒等式三角函数与三角恒等式是高二数学中的重要内容,也是竞赛考点之一。
考生需要熟练掌握三角函数的基本定义、性质和图像,以及能够灵活运用三角函数的恒等式解决各种三角函数的计算和证明题。
7.数学证明数学证明是高中数学中的重要部分,也是高二数学竞赛中的要求之一。
考生需要具备一定的证明思维能力,能够独立完成数学证明题。
在证明过程中,要注重逻辑严谨、推理准确,并能够灵活运用所学知识和定理。
数学竞赛知识基本知识集锦

数学竞赛知识基本知识集锦数学竞赛一直以来都是学生们展现自己数学能力和解题思维的舞台。
参加数学竞赛不仅能够提升数学水平,还能培养逻辑思维和解决问题的能力。
本文将为大家整理数学竞赛的基本知识,希望对参加数学竞赛的同学们有所帮助。
一、基础概念与定理1. 数列与数列的性质:数列是按照一定规律排列的数的序列。
常见的数列有等差数列、等比数列等。
掌握数列的通项公式及常见性质,能够更好地解决与数列相关的问题。
2. 平面几何与立体几何:平面几何主要涉及图形的性质、坐标系以及三角形、四边形等形状的性质。
立体几何则关注空间图形的特征与性质。
定理的掌握和灵活应用是解决几何问题的关键。
3. 三角函数与三角恒等式:三角函数是解决三角形问题的基础,包括正弦、余弦、正切等。
同时,熟悉三角恒等式的应用,能够简化计算过程,提高解题效率。
4. 数论基础知识:数论是研究整数性质的学科,涉及素数、约数、同余等概念。
对数论基础知识的掌握,对于解决一些特定的数学竞赛问题非常有帮助。
5. 初等代数与高等代数:初等代数包括方程、函数等基本概念与运算,高等代数则讨论向量、矩阵等更为复杂的代数运算。
掌握代数运算的方法和技巧是解决代数题的关键。
二、解题技巧与方法1. 抽象问题的具体化:遇到一些抽象的问题时,可以尝试将其具体化,通过构建具体的例子或者特殊情况来分析问题,从而找到解题的思路和方法。
2. 推理与演绎:在解决一些需要推理和演绎的问题时,可以采用逆向思维,从题目要求出发,逆向推导,找到问题的根源和解决方法。
3. 规律与模式的寻找:许多数学竞赛问题都存在一定的规律和模式,通过观察、总结,找到问题的规律,可以更加高效地解决问题。
4. 分析与综合:分析题目的条件和要求,将问题进行拆解,寻找其中的关联与规律,再进行综合运用,能够更好地解决复杂的数学竞赛问题。
三、参考书目与学习资源1. 《挑战杯数学竞赛》2. 《高中数学竞赛经典题解》3. 《奥林匹克数学教程》除了参考书籍,互联网上也有许多数学竞赛的学习资源,例如在线课程、数学竞赛论坛等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学竞赛基本知识集锦一、三角函数 常用公式由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。
但是由于现在的教材中常用公式删得太多,有些还是不能不写。
先从最基础的开始(这些必须熟练掌握): 半角公式2cos 12sinαα-±= 2cos 12cosαα+±= αααααααcos 1sin sin cos 1cos 1cos 12tan+=-=+-±=积化和差()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=cos cos 21sin sin和差化积2cos2sin2sin sin βαβαβα-+=+2sin2cos 2sin sin βαβαβα-+=- 2cos2cos 2cos cos βαβαβα-+=+ 2sin 2sin 2cos cos βαβαβα-+-=-万能公式ααα2tan 1tan 22sin +=ααα22tan 1tan 12cos +-= ααα2tan 1tan 22tan -=三倍角公式()()αααααα+-=-= 60sin sin 60sin 4sin 4sin 33sin 3 ()()αααααα+-=-= 60cos cos 60cos 4cos 3cos 43cos 3二、某些特殊角的三角函数值 除了课本中的以外,还有一些三、三角函数求值给出一个复杂的式子,要求化简。
这样的题目经常考,而且一般化出来都是一个具体值。
要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子求值:76cos74cos 72cosπππ++ 提示:乘以72sin 2π,化简后再除下去。
求值:︒︒-︒+︒80sin 40sin 50cos 10cos 22来个复杂的 设n 为正整数,求证nn n i ni 21212sin1+=+∏=π 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲四、三角不等式证明最常用的公式一般就是:x 为锐角,则x x x tan sin <<;还有就是正余弦的有界性。
例求证:x 为锐角,<2x设12π≥≥≥z y x ,且2π=++z y x ,求乘积z y x cos sin cos 的最大值和最小值。
注:这个题目比较难 数列关于数列的知识可以说怎么学怎么有,还好我们只是来了解竞赛中最基本的一些东西,不然我可写不完了。
☺1给递推式求通项公式(1)常见形式即一般求解方法注:以下各种情况只需掌握方法即可,没有必要记住结果,否则数学就变成无意义的机械劳动了。
①q pa a n n +=+1若1,则显然是以a 1为首项,q 为公差的等差数列, 若p ≠1,则两边同时加上1-p q ,变为⎪⎪⎭⎫⎝⎛-+=-++111p q a p p q a n n 显然是以11-+p qa 为首项,p 为公比的等比数列 ②()n f pa a n n +=+1,其中f(n)不是常数 若1,则显然1+()∑-=11n i i f ,n ≥2若p ≠1,则两边同时除以1,变形为()111++++=n n n n n pn f p a p a 利用叠加法易得()∑-=++=1111n i i n n p i f p a p a ,从而()⎥⎦⎤⎢⎣⎡+=∑-=-1111n i i n n p i f a p a 注:还有一些递推公式也可以用一般方法解决,但是其他情况我们一般使用其他更方便的方法,下面我们再介绍一些属于数学竞赛中的“高级方法”。
(2)不动点法当f(x)时,x 的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。
典型例子:da c ba a a n n n +⋅+⋅=+1注:我感觉一般非用不动点不可的也就这个了,所以记住它的解法就足够了。
我们如果用一般方法解决此题也不是不可以,只是又要待定系数,又要求倒数之类的,太复杂,如果用不动点的方法,此题就很容易了 令dx c b x a x +⋅+⋅=,即()02=--+b x a d cx ,令此方程的两个根为x 1,x 2, 若x 12 则有p x a x a n n +-=-+11111其中k 可以用待定系数法求解,然后再利用等差数列通项公式求解。
注:如果有能力,可以将p 的表达式记住,da c+2 若x 1≠x 2则有212111x a x a q x a x a n n n n --⋅=--++其中k 可以用待定系数法求解,然后再利用等比数列通项公式求解。
注:如果有能力,可以将q 的表达式记住,21cx a cx a --(3)特征根法特征根法是专用来求线性递推式的好方法。
先来了解特征方程的一般例子,通过这个来学会使用特征方程。
①n n n qa pa a +=++12特征方程为x 2,令其两根为x 1,x 2则其通项公式为nn n x B x A a 21⋅+⋅=,A 、B 用待定系数法求得。
②n n n n ra qa pa a ++=+++123特征方程为x 32,令其三根为x 1,x 2,x 3则其通项公式为nn n n x C x B x A a 321⋅+⋅+⋅=,A 、B 、C 用待定系数法求得。
注:通过这两个例子我们应当能够得到特征方程解线性递归式的一般方法,可以试着写出对于一般线性递归式的特征方程和通项公式,鉴于3次以上的方程求解比较困难,且竞赛中也不多见,我们仅需掌握这两种就够了。
(4)数学归纳法简单说就是根据前几项的规律猜出一个结果然后用数学归纳法去证。
这样的题虽说有不少但是要提高不完全归纳的水平实在不易。
大家应当都会用数学归纳法,因此这里不详细说了。
但需要记得有这样一个方法,适当的时候可以拿出来用。
(5)联系三角函数三角函数是个很奇妙的东西,看看下面的例子2112nnn a a a -=+ 看起来似乎摸不着头脑,只需联系正切二倍角公式,马上就迎刃而解。
注:这需要我们对三角函数中的各种公式用得很熟,这样的题目竞赛书中能见到很多。
例数列{}n a 定义如下:21=a ,2142n n a a --=+,求{}n a 通项注:这个不太好看出来,试试大胆的猜想,然后去验证。
(6)迭代法先了解迭代的含义()()()()()()()()()() ,,,,x f f f x f x f f x fx f x f x x f ====3210f 右上角的数字叫做迭代指数,其中()x f n-是表示()x f n 的反函数再来了解复合的表示()()()x g f x g f = ,()()()()x h g f x h g f =如果设()()x g f gx F 1-=,则()()x g f g x F n n 1-=,就可以将求F(x)的迭代转变为求f(x)的迭代。
这个公式很容易证明。
使用迭代法求值的基础。
而在数列中我们可以将递推式看成()n n a F a =+1,因此求通项和求函数迭代就是一样的了。
我们尽量找到好的g(x),以便让f(x)变得足够简单,这样求f(x)的n 次迭代就很容易得到了。
从而再得到F(x)的n 次迭代式即为通项公式。
练习{}n n n n n n n a a a a a a a a a 212221221221221++-+=+===,,,满足已知数列,试求数列的通项公式。
注:此题比较综合,需熟练掌握各种求通项公式的常用方法。
下面是我的一个原创题目已知数列{}n a 满足1021==a a ,,()11-++⋅=n n n a a n a ,求该数列的通项公式。
2数列求和求和的方法很多,像裂项求和,错位相减等等,这些知识就算单纯应付高考也应该都掌握了,这里不再赘述。
主要写竞赛中应当掌握的方法——阿贝尔恒等式。
阿贝尔()恒等式有多种形式,最一般的是()∑∑-=+=+-=1111n k n n k k k nk kk b S b b S ba其中∑==ki kk aS 1注:个人认为,掌握这一个就够了,当然还有更为一般的形式,但是不容易记,也不常用。
恒等式就是给出了一个新的求和方法。
很多时候能简化不少。
例:假设021≥≥≥≥n a a a ,且∑==n i i a 121,求证:∑=≥-+ni i i i a 111计数问题 1抽屉原则我第一次接触抽屉原则,是在一本奥赛书的答案上,有一步骤是:由抽屉原则可得……,于是我就问同学,什么是抽屉原则,同学告诉我,三个苹果放进两个抽屉,必有一个抽屉里至少有两个苹果。
后来才发现,抽屉原则不只是这么简单的,它有着广泛的应用以及许多种不同的变形,下面简单介绍一下抽屉原则。
抽屉原则的常见形式一,把(k ≥1)个物体以任意方式全部放入n 个抽屉中,一定存在一个抽屉中至少有两个物体。
二,把(k ≥1)个物体以任意方式全部放入n 个抽屉中,一定存在一个抽屉中至少有1个物体。
三,把m 12+…(k ≥1)个物体以任意方式全部放入n 个抽屉中,那么后在一个抽屉里至少放入了m 1+1个物体,或在第二个抽屉里至少放入了m 2+1个物体,……,或在第n 个抽屉里至少放入了1个物体 四,把m 个物体以任意方式全部放入n 个抽屉中,有两种情况:①当时(表示n 整除m ),一定存在一个抽屉中至少放入了n m 个物体;②当n 不能整除m 时,一定存在一个抽屉中至少放入了[nm]+1个物体([x]表示不超过x 的最大整数)五,把无穷多个元素分成有限类,则至少有一类包含无穷多个元素。
注:背下来上面的几种形式没有必要,但应当清楚这些形式虽然不同,却都表示的一个意思。
理解它们的含义最重要。
在各种竞赛题中,往往抽屉原则考得不少,但一般不会很明显的让人看出来,构造抽屉才是抽屉原则中最难的东西。
一般来说,题目中一旦出现了“总有”“至少有”“总存在”之类的词,就暗示着我们:要构造抽屉了。
例:从自然数1,2,3,…99,100这100个数中随意取出51个数来,求证:其中一定有两个数,它们中的一个是另一个的倍数.用2种颜色涂5×5共25个小方格,证明:必有一个四角同色的矩形出现. 2容斥原理容斥原理常常使用,其实说简单点,就是从多的往下减,减过头了在加回来,又加多了再减,减多了再加……,最终得到正确结果。